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Abstract: The aim of this work was to deposit cost-effective g-C3N4/ZnO nanocomposite
photocatalysts (weight ratios of g-C3N4:ZnO from 0.05:1 to 3:1) as well as pure ZnO and g-C3N4 on
Al2O3 foam and to study their photocatalytic efficiency for the photocatalytic decomposition of N2O,
which was studied in a home-made batch photoreactor under ultraviolet A irradiation (λ = 365 nm).
Based on the photocatalysis measurements, it was found that photocatalytic decomposition of N2O
in the presence of all the prepared samples was significantly higher in comparison with photolysis.
The photoactivity of the investigated nanocomposite photocatalysts increased in the following order:
g-C3N4/ZnO (3:1) ≈ g-C3N4/ZnO (0.45:1) ≤ g-C3N4/ZnO (2:1) ZnO < g-C3N4 < g-C3N4/ZnO (0.05:1).
The g-C3N4/ZnO (0.05:1) nanocomposite showed the best photocatalytic behavior and the most
effective separation of photoinduced electron–hole pairs from all nanocomposites. The key roles
played in photocatalytic activity were the electron–hole separation and the position and potential
of the valence and conduction band. On the other hand, the specific surface area and band gap
energy were not the significant factors in N2O photocatalytic decomposition. Immobilization of
the photocatalyst on the foam permits facile manipulation after photocatalytic reaction and their
repeated application.
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1. Introduction

Nitrous oxide is one of the most important greenhouse gases and represents 6.4% of the total global
radiative forcing. Its contribution to global warming is important, because it is nearly 300 times higher
than that of carbon dioxide [1]. N2O is also a significant contributor to the destruction of the ozone
layer in the stratosphere. The increase of N2O emissions in the atmosphere (approximately 0.3% per
year) is caused particularly by anthropogenic activities [1]. Synthetic nitrogen fertilizers in agriculture,
combustion (fossil fuel, biomass), and the production of adipic acid and nitric acid are among the main
contributors to N2O emissions. The decomposition of nitrous oxide into N2 and O2 offers a simple
method for its transformation to natural air elements. Decomposition of N2O under UV irradiation on
semiconductor materials (Equation (1)) is one possible solution for its removal:

N2O
hν, catalyst
→ N2 +

1
2

O2. (1)
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Photocatalytic decomposition of nitrous oxide was studied on Cu ions embedded on various
oxides, e.g., (SiO2·Al2O3, Al2O3, SiO2) [2], ZnS [3], TiO2 [4], TiO2 doped by Ag [5–7], Ce [8,9].

Graphitic carbon nitride (g-C3N4) is an n-type semiconductor with a unique structure and
useful optical, electric, and physicochemical properties. Although g-C3N4 has attracted increasing
interest worldwide, its photocatalytic performance is still limited due to fast recombination of charge
carriers [10–13]. Enhancing the photoactivity of g-C3N4-based photocatalysts can be achieved by the
construction of semiconductors’ heterojunctions [13,14]. The combination of different semiconductor
photocatalysts may create new materials with optimal performances. The formation of unique
semiconductor–semiconductor junctions can enhance the electron–hole separation for improved
photocatalytic efficiency and extend the spectral range for light absorption. Looking into the
mechanisms, one can identify that four dissimilar models of semiconductor–semiconductor junctions
have been utilized to enhance the charge kinetics, including semiconductor sensitization, Type II,
phase junction, and Z-scheme [15,16]. In our previous work, heterojunction photocatalysts (g-C3N4/TiO2

and g-C3N4/WO3 photocatalysts with various weight ratios) were prepared and studied for N2O
photocatalytic decomposition [17–19]. The formation of heterojunctions contributed to the increase of
the N2O conversion.

Recent investigations on semiconductors’ photocatalysis are oriented to photocatalyst
immobilization [16]. The immobilization of photocatalysts removes any imperfections with the
powder form of the photocatalysts: (i) The difficulties of separating photocatalysts, (ii) the inclination of
the nanoparticles of photocatalysts to aggregate, and (iii) the difficulty of applying them to continuous
flow reactors [20].

For those reasons, we decided to prepare g-C3N4/ZnO nanocomposites with different weight ratios
to immobilize them on Al2O3 foam, and to investigate them for N2O photocatalytic decomposition
under UVA (365 nm) irradiation. The g-C3N4/ZnO photocatalysts have not yet been studied for N2O
photocatalytic decomposition.

2. Results and Discussion

2.1. Photocatalysts Characterization

The real content of ZnO in prepared samples was determined by atomic absorption measurements
(Table 1). The nitrogen physisorption characterization technique was used for the specific surface area
determination (Figure 1). Each photocatalyst displayed a mesoporous-macroporous character. From the
comparison of textural properties of the prepared samples, it is evident that the g-C3N4 addition
positively affected the properties of the photocatalyst’s porous structure, significantly enhancing its
specific surface area as well as the net pore volume, e.g., pure ZnO showed a specific surface area of
7 m2/g and a net pore volume of 61 mm3

liq/g, while g-C3N4 /ZnO (3:1) showed a specific surface area
of 68 m2/g and a net pore volume of 339 mm3

liq/g (Table 1).
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Table 1. Structural and microstructural properties and content of ZnO ZnO, g-C3N4, and g-C3N4/ZnO.

Photocatalysts SBET (m2/g) V net (mm3
lig/g) Content of Zn2+ (wt.%)

ZnO 7 61 80
g-C3N4/ZnO (0.05:1) 8 62 77
g-C3N4/ZnO (0.45:1) 37 212 55

g-C3N4/ZnO (2:1) 58 298 26
g-C3N4/ZnO (3:1) 68 339 21

g-C3N4 85 413 0

The X-ray powder diffraction (XRD) patterns of all investigated photocatalysts are shown in
Figure 2. Two different phases based on zinc, zinc oxide, and zinc cyanamide were observed in all
mixtures with higher contents of g-C3N4. The zinc oxide phase was markedly more significant than the
zinc cyanide phase. Graphitic carbon nitride was confirmed by the presence of the reflection at position
14.9◦ 2Theta (d = 0.695 nm) indexed as the (100) plane and attributed to the in-plane tri-s-triazine units
forming one-dimension melon strands. The most typical reflection was found around 32.2◦ 2Theta
(d = 0.322 nm) and could be interpreted as long range interplanar stacking of the aromatic systems with
the hkl plane (002). Unfortunately, this reflection was overlapped with the zinc cyanamide reflection
(211) in all measured samples.

For the obtained g-C3N4/ZnO photocatalysts, nearly all of the characteristic diffraction peaks of
zinc oxide were observed in the XRD pattern and confirmed the presence of the ZnO phase. In the
case of the g-C3N4 phase, the (002) peak of g-C3N4 was almost not observed. The relatively poor
crystallinity of the g-C3N4 phase indicates that simultaneous crystallization of the ZnO phase interferes
with the condensation process and interlayer stacking patterns of the g-C3N4 phase, as shown by its
weak diffraction intensity [21]. The XRD patterns in g-C3N4/ZnO photocatalysts indicate that these
two phases occur separately in the composite and they do not have strong crystal lattice incorporation.
This result was also confirmed by transmission electron microscopy (TEM).

All phases in the XRD patterns are marked by different symbols (Figure 2). All phases were
identified using the PDF-2 database issued by the international center diffraction data. Zinc oxide
corresponds to PDF-2 card no. 01-080-0075 and zinc cyanamide to PDF-2 card no. 01-070-4898. All XRD
patterns were recorded using co-radiation with wavelength lambda = 1.78 Å. For this reason, all peaks
were shifted to the higher 2Theta angles (based on the Braggs equation) than Cu radiation, which is
more common.
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The UV–vis diffuse reflectance spectra of g-C3N4, ZnO, and g-C3N4/ZnO photocatalysts are
compared in Figure 3a. The band gaps’ energy values of the prepared nanocomposites were estimated
by plotting the Kubelka–Munk function, as shown in Figure 3b. The largest band gap was 3.09 eV
and it belongs to pure ZnO. On the other hand, pure g-C3N4 had a band gap energy of 2.64 eV.
The nanocomposites band gap energies were 3.00, 2.75, 2.75, and 2.75 eV for g-C3N4/ZnO (0.05:1),
g-C3N4/ZnO (0.45:1), g-C3N4/ZnO (2:1), and g-C3N4/ZnO (3:1), respectively. The presence of g-C3N4 in
the nanocomposites extended the light absorption of the composites into the visible region compared
to pure ZnO photocatalyst.
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The infrared spectra are seen in Figure 4. The spectra of samples g-C3N4, g-C3N4/ZnO (3:1),
g-C3N4/ZnO (2:1), and g-C3N4/ZnO (0.45:1) primarily contain bands that are characteristic for graphitic
carbon nitride [22–24]. The regions are labelled as N1, N2, and N3. The region N1 contains bands at
3280, 3255, 3160, and 3090 cm−1. These bands can be assigned to the stretching vibration of N-H bonds.
The region N2 contains intensive bands at 1680 (shoulder), 1635, 1575, 1545, 1460, 1430 (shoulder),
1410, 1335 (shoulder), 1320, 1280, (shoulder), 1240, and 1210 cm−1. Characteristic bands of the skeletal
“breathing” vibration of aromatic rings of nitrogen heterocyclic compounds and stretching vibration
bonds between carbon and nitrogen were found in the N2 region. The N3 region contains only a
medium intensive band at 815 cm−1, which is due to the breathing mode of the triazine unit. Moreover,
the spectra of samples g-C3N4/ZnO (3:1), g-C3N4/ZnO (2:1), and g-C3N4/ZnO (0.45:1) also contain
bands of complex cyanide compounds at 2085 and 2045 cm−1 [25]. The bands have a medium or
weak intensity (see region CN). The relative red shifts of the complex cyanide compounds compared
with the normal wavenumber of 2250 cm−1 are due to the conjugation effect of the extended C-N
aromatic system [21]. The spectra of samples g-C3N4/ZnO (0.05:1) and ZnO only contain medium
or weak bands of carbonates (see region C1 and C2) and a broad band of zinc oxide (see region Z).
The carbonate bands can be assigned to asymmetric stretching vibration of carbonate (1450 cm−1) and
symmetric deformation vibration of carbonate (885 cm−1), respectively [25]. The band of vibration
of zinc oxide [26] is seen at 480 cm−1. This band is seen also in the spectrum of sample g-C3N4/ZnO
(0.45:1).
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The Raman spectra are seen in Figure 5. The spectra are in the “full-scale” mode, thus the
presented spectra have different scales of intensity axes. The spectra of samples g-C3N4, g-C3N4/ZnO
(3:1), g-C3N4/ZnO (2:1), and g-C3N4/ZnO (0.45:1) only contain the bands characteristic for graphitic
carbon nitride (i.e., [22,24,27]) in the regions labelled N1, N2, N3, N4, and N5. The N1 region contains
strong bands at 1230 and 1215 cm−1 and weak bands at 1150 and 1115 cm−1. The N2 region contains
a medium band at 770 cm−1 and a strong band at 705 cm−1. The N3 region contains two medium
bands at 485 and 470 cm−1 and one weak band at 455 cm−1. Medium bands at 355 and 210 cm−1

are in the N4 and N5 regions, respectively. The assignment of the above-mentioned Raman bands
of graphitic carbon nitride has not been published yet. We can suppose the bands are related to
vibration of the tri-s-triazine ring (i.e., [27]). The spectra of samples g-C3N4/ZnO (0.05:1) and ZnO
contain two bands of carbonate (see region C1 and C2) and three bands of zinc oxide (see region Z1,
Z2, and Z3). The carbonate bands are presented at 1080 cm−1 (symmetric stretching vibration) and at
700 cm−1 (symmetric deformation vibration), respectively [25]. The bands characteristic for zinc oxide
are presented at 435, 330, and 185 cm−1.
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Figure 6a–d demonstrate the TEM images of pure ZnO, g-C3N4, and g-C3N4/ZnO (3:1)
photocatalysts, respectively. The ZnO nanoparticles (Figure 6a) have hexagonal shapes and the
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particle size is about 50 nm while pure g-C3N4 (Figure 6b) shows a 2D lamellar structure. The TEM
micrographs of g-C3N4/ZnO (3:1) (Figure 6c) testify that the ZnO nanoparticles were not supported
well on the surface of g-C3N4. It is possible to infer that the salt (from preparation) can be observed in
the g-C3N4/ZnO samples (Figure 6d). It is also evident from the results of the EDS analysis (Figure 6e),
which confirmed not only the presence of Zn, C, O, and N elements but also Na element. The presence
of the salt was also confirmed by Raman and infrared spectroscopy.
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Figure 6. TEM images of ZnO (a), g-C3N4 (b), and g-C3N4/ZnO (3:1) (c,d) and EDS analysis of g-
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Figure 6. TEM images of ZnO (a), g-C3N4 (b), and g-C3N4/ZnO (3:1) (c,d) and EDS analysis of
g-C3N4/ZnO (3:1) (e).
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Photoelectrochemical measurements of all photocatalysts are shown in Figure 7. It is evident that
the magnitude of the generated current decreased with an increasing amount of g-C3N4 presented
at the photocatalysts until the g-C3N4 was in the majority. Higher photocurrents measured in the
presence of the ZnO sample show that there are significantly more charge carriers produced in ZnO
compared to g-C3N4. The photocurrent decreased with an increasing amount of g-C3N4, which formed
a significantly smaller photocurrent.
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2.2. Photocatalytic Decomposition of N2O

The influence of prepared nanocomposites on the photocatalytic decomposition of nitrous oxide
was studied from 0 to 22 h (Figure 8). The photolysis was also conducted in order to confirm the
photocatalytic activity of the prepared samples. The time dependences of the nitrous oxide conversion
of all g-C3N4/ZnO nanocomposites, including pure ZnO and g-C3N4 photocatalysts, are depicted in
Figure 8. It is evident that each prepared photocatalyst proved to be much more effective in comparison
with photolysis. The g-C3N4/ZnO (0.05:1) and pure g-C3N4 and ZnO showed a significantly higher
efficiency than other photocatalysts.
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The highest N2O conversion under UVA irradiation was reached over the g-C3N4/ZnO (0.05:1)
photocatalyst. The N2O conversion in the presence of this photocatalyst was 11% after 22 h of UVA
irradiation. For comparison, the N2O conversion without photocatalyst was only 6% after 22 h of UVA
irradiation. The same foam with photocatalyst was used for repeated tests three times. This confirms
the stability and ability to reuse these materials without losing photocatalytic activity.

It is hard to compare the observed photocatalytic results with the literature, as it is usually measured
under different reaction conditions (geometry of photoreactor, irradiation source, concentration of
N2O, amount of photocatalyst, whether it is immobilized, and also the irradiation time). Each of these
conditions influences the photocatalytic decomposition of N2O in a different way and therefore accurate
comparison is impossible. Also, not many research groups have investigated the photocatalytic
decomposition of N2O. Therefore, the obtained results were compared with our previous works.
N2O conversion for the g-C3N4/BiVO4 and g-C3N4/WO3 composites after 20 h of irradiation was 12.5%
and 14.5%, respectively. However, both previous sets of photocatalysts were measured in a different
photoreactor (different geometry) and therefore, from that point of view, the observed N2O conversion
of approximately 10% after 20 h of irradiation seems to be comparable to the previous results.

2.3. Proposed Mechanism for Photocatalytic Activity Enhancement

When g-C3N4 is combined with ZnO, the generated electrons (e−) and holes (h+) can migrate by
two possible mechanisms: Type II heterojunction and the Z-scheme system. In the case of the type II
heterojunction of g-C3N4/ZnO, the generated e- in the conduction band (CB) of g-C3N4 can transfer
to the CB of ZnO and simultaneously, the h+ in the valence band (VB) of ZnO can migrate to the
VB of g-C3N4. In the case of the Z-scheme system of g-C3N4/ZnO, e− in the CB of ZnO are directly
recombined with the h+ in the VB of g-C3N4 at the heterojunction interface, and so the recombination
of e− and h+ in ZnO and g-C3N4 is inhibited. In this case, the e- are accumulated in the CB of g-C3N4

and h+ in the VB of ZnO. Due to these two mechanisms, a prolonged lifetime of electrons and holes is
gained [14].

The band edge positions of materials were calculated via Equations (2) and (3) [28]:

EVB = χ− E0 + 0.5Eg, (2)

ECB = EVB − Eg, (3)

where χ is the electronegativity of the material, EVB is the VB potential, ECB is the CB potential, Eg is
the band gap energy of a material, and E0 is the energy of free electrons (4.5 V vs. NHE). The χ values
for g-C3N4 and ZnO are 4.72 and 5.95 eV, respectively [28]. The EVB of g-C3N4 and ZnO were 1.75 and
3.05 eV, respectively. The ECB of g-C3N4 and ZnO were −1.31 and −0.15 V, respectively.

The formation of the Z-scheme system of g-C3N4/ZnO can be confirmed by the hydroxyl
radical (•OH) trapping test using modified photoluminescence (PL) measurements [29]. After the
photoexcitation, the h+ with sufficient oxidation potential can be either directly involved in the
photocatalytic degradation reactions or generate active species. The reaction between terephthalic acid
(TA) and hydroxyl radicals (•OH) can generate hydroxyterephthalic acid (HTA), which is detectable
by the PL spectrometer (signal with maximal intensity centered at 425 nm) [30]. The PL peak intensity
of the HTA is in proportion to the amount of produced •OH.

Since the photoluminescence intensity increased in the presence of each photocatalyst over time,
with the exception of pure g-C3N4, the presence of hydroxyl radicals was confirmed (Figure 9a).
According to the band structures of ZnO and g-C3N4, the photoinduced h+ on g-C3N4 cannot oxidize
the adsorbed H2O molecules to •OH because the VB potential of g-C3N4 (+1.75 V vs. NHE) is less
positive than the standard redox potential of •OH/OH− (2.4 V vs. NHE). In the case of Z-scheme
formation, the photogenerated h+ remain on the ZnO. The h+ accumulation on ZnO is in accordance
with the migration mechanism of the direct Z-scheme. The creation of the Z-scheme system was
observed by Wang et al. [14], Liu et al. [31], and Yu et. al. [21]. In our case, it was not confirmed that
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g-C3N4/ZnO nanocomposite had contact with the Z-scheme system because the nanocomposites were
not proven to have a higher PL intensity than pure ZnO. The PL intensity decreased with an increasing
content of ZnO, which can produce hydroxyl radical.
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According to the literature, the standard reduction potential of N2O/N2 is +1.355 V [32].
The conduction bands’ potentials of both pure and prepared photocatalysts (g-C3N4 and ZnO)
are more negative (−1.19 and −0.17 V, respectively) than the standard reduction potential of N2O/N2.
Therefore, both pure photocatalysts showed similar photocatalytic activity.

The photocatalytic activity of g-C3N4/ZnO, with the exception of g-C3N4/ZnO (0.05:1), was lower
with regard to pure photocatalysts. These three nanocomposites (g-C3N4/ZnO (0.45:1), g-C3N4/ZnO
(2:1), and g-C3N4/ZnO (3:1)) had not only similar photocatalytic activity but also band gap
energy. The photocatalytic activity of nanocomposites (g-C3N4/ZnO (0.45:1), g-C3N4/ZnO (2:1), and
g-C3N4/ZnO (3:1)) decreased both by the presence of cyanide compounds formed during preparation
(Figure 4) and by the imperfect contact of g-C3N4 and ZnO, which is visible in Figure 6c. The detection
of cyanide compounds in g-C3N4/ZnO indicates that simultaneous ZnO crystallization could interfere
with the thermal polymerization of melamine to generate a well-defined g-C3N4 phase. Based on the
previous discussion about XRD patterns and infrared spectra, such interference in ZnO crystallization
can result in relatively poor crystallinity and give rise to defect states within the g-C3N4 phase [21].
These defect states can catch generated charge carriers; however, they are not accessible for the adsorbed
molecule of nitrous oxide, which consequently leads to a decrease in photoactivity.

A slightly different situation is the case of g-C3N4/ZnO (0.05:1), which proved to have the highest
photocatalytic activity. This nanocomposite contained only 4% of g-C3N4, which means most of
the holes in VB of g-C3N4 probably recombined with some of the electrons from the CB of ZnO.
In the meantime, the photogenerated electrons in the CB of g-C3N4 and a big part of the electrons
in the CB of ZnO, which was not used for recombination with holes of g-C3N4, reduced N2O to
N2 and •O−. The photoexcited holes in the VB of ZnO oxidized •O− to O2 [19]. This result shows
that only a small loading of g-C3N4 in g-C3N4/ZnO can increase the effectiveness of photogenerated
electron–hole separation.

In heterogeneous photocatalysis, on the contrary to catalysis, the specific surface (SBET) is not
the most crucial parameter. It is obvious in this work, where g-C3N4/ZnO (0.05:1) and g-C3N4 had a
similarly high photoactivity though the SBET of g-C3N4 was more than 10 times higher than in the case
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of g-C3N4/ZnO (0.05:1). Many authors have quoted the band gap energy as one of the most important
parameters. The photoelectrochemical measurements validated the capability of all nanocomposites
to absorb UVA. Moreover, both pure photocatalysts, which had similar photoactivity, have different
band gap energy. Consequently, the band gap energy is not the most decisive parameter. The most
significant factor, which is valid in photocatalytic reactions generally, is the position and potential of
the valence and conduction band.

3. Materials and Methods

3.1. Preparation of ZnO, g-C3N4, and g-C3N4/ZnO Nanocomposites

ZnO was prepared by precipitation [33]. G-C3N4 was formed by heating of melamine [18,34]. In a
synthesis procedure of g-C3N4/ZnO, the determined amounts of ZnO and g-C3N4 were dispersed in
deionized water and evenly mixed (4 h). Subsequently, the mixture was dried (at 60 ◦C in air) and
calcined [18]. The weight ratios of prepared g-C3N4/ZnO photocatalysts were set at 0.05:1, 0.45:1, 2:1,
and 3:1, respectively. The prepared nanocomposites (0.1 g) were anchored on a commercial support
VUKOPOR (Lanik Ltd., Boskovice, Czech Republic) [35,36]. For detailed preparation information,
see the Supplementary Materials.

3.2. Characterization of g-C3N4/ZnO Nanocomposite and Photocatalytic Decomposition of N2O

The products were characterized in detail by N2 physisorption (Micromeritics), X-ray powder
diffraction (XRD, Rigaku, Tokyo, Japan), UV–Vis diffuse reflectance spectra (DRS, IRS-2600Plus),
transmission electron microscopy (TEM, JEOL 2100 equipped with an EDS detector, Tokyo, Japan),
Fourier transform infrared spectroscopy (FT-IR, Nexus 470 ThermoScientific, Waltham, MA, USA),
Raman spectroscopy (DXR SmartRaman (ThermoScientific), photoluminescence (PL) measurements
(FLSP920 Series, Edinburgh Instruments, Livingston, UK), and photoelectrochemical measurements
(Instytut Fotonowy, Krakow, Poland), and their photocatalytic activity was studied for the photocatalytic
decomposition of N2O according to the reported method [18,29]. The photocatalytic inactivity of the
bare foam was confirmed via blank tests and compared to the blank test without foam.

4. Conclusions

g-C3N4/ZnO nanocomposites with different ratios of components as well as pure ZnO and g-C3N4

were prepared with success. Each photocatalyst was coated on commercial Al2O3 foam. The prepared
nanocomposites were investigated for N2O photocatalytic decomposition for the first time. g-C3N4

addition positively affects the properties of the photocatalysts’ porous structure, significantly enhancing
its specific surface area as well as the net pore volume. In all mixtures with higher contents of g-C3N4,
two phases based on zinc were observed, -zinc oxide (markedly more significant) and zinc cyanamide.
ZnO nanoparticles have hexagonal shapes and pure g-C3N4 shows a 2D lamellar structure. Based on
the experimental and characterization results, N2O conversion in the presence of photocatalysts was
higher in comparison with photolysis; in the case of the best photocatalysts, g-C3N4/ZnO (0.05:1) was
almost twice higher. FT-IR characterization showed that samples of the g-C3N4/ZnO (3:1), g-C3N4/ZnO
(2:1), and g-C3N4/ZnO (0.45:1) photocatalysts also contained cyanide compounds, which together with
an imperfect contact of g-C3N4 and ZnO caused a decrease of photocatalytic activity. The key role
played in photocatalytic activity was the electron–hole separation and the position and potential of
the valence and conduction band. On the other hand, the specific surface area and band gap energy
were not significant factors in N2O photocatalytic decomposition. The immobilization on commercial
Al2O3 foam proved to be promising. A short-term test confirmed the photocatalysts’ stability and
reproducible activity. Immobilization might be an efficient way to bring photocatalysis closer to an
application, since the powder form is not usable for several reasons, such as filtration from the liquid
phase or blowing off by the gas stream. No such drawbacks exist with the immobilized photocatalyst
on the foam.
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