
catalysts

Editorial

Catalytic Processes for The Valorization of Biomass
Derived Molecules

Claudia Espro 1,* and Francesco Mauriello 2,*
1 Dipartimento di Ingegneria, Università di Messina, Contrada di Dio–Vill. S. Agata, I-98166 Messina, Italy
2 Dipartimento DICEAM, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito,

I-89122 Reggio Calabria, Italy
* Correspondence: espro@unime.it (C.E.); francesco.mauriello@unirc.it (F.M.); Tel.: +39-090-6765264 (C.E.);

+39-0965-1692278 (F.M.)

Received: 30 July 2019; Accepted: 6 August 2019; Published: 8 August 2019
����������
�������

1. Introduction

Industrial chemistry is changing its fossil distinctiveness into a new green identity by using
renewable resources. Biomasses, produced and used in a cyclical way, constitute an important
environmentally friendly resource for the production of energy, chemicals, and biofuels [1,2]. To this
regard, abundant and inedible lignocellulosic biomasses have attracted a lot of attention being not
in competition with agricultural land and food production and, therefore, representing renewable
feedstocks for modern biorefineries. The three main components of lignocellulosic biomasses are
cellulose, hemicellulose, and lignin, which can be converted into energy (biogas and H2), liquid biofuels,
and into a pool of platform molecules including sugars, polyols, alcohols, aldehydes, ketones, ethers,
esters, acids, and aromatics compounds [3–7]. However, in order to develop efficient catalytic processes
for the selective production of desired products from lignocellulose, a deep understanding of the
molecular aspects of the basic chemistry and reactivity of biomass derived molecules is still necessary.

This Special Issue aims to cover recent progresses in the catalytic valorization of cellulose,
hemicellulose and lignin model molecules promoted by novel heterogeneous systems for the production
of energy, fuels and chemicals. In this context, it is worth to highlight some recent research advances.
Among many, hydrogenation/hydrogenolysis [8,9] and transfer hydrogenolysis [10–12] of cellulose,
hemicellulose, lignin, C6-C3 polyols, furan derivatives and aromatic ethers represent a core technology
of modern biorefineries. Glycerol (C3 polyol) and glycidol (2,3-epoxy-1-propanol) can be converted into
hydrogen (via APR process), C3-C1 alcohols, as well as to cyclic acetals and ketals [13–16]. Accordingly,
reforming processes are surely a new way for the production of H2 and liquid hydrocarbons from
lignocellulosic biomasses or their derived molecules [17–20]. At the same time, biomasses can be
directly converted into liquid fuels and bio-oils via pyrolysis (thermal degradation process in absence of
added oxygen) [21] or used as starting materials for the production of vegetable oils that are efficiently
used in several energetic application [22,23]. Finally, a recent trend is surely the production of aromatics,
including BTX compounds (benzene-toluene-xylene), starting from lignin, sugars and aromatic ethers,
and esters in the framework of the so-called “lignin-first biorefinery” [24–28].

2. The Contents of the Special Issue

In this special issue, several fields of research on the catalytic valorization of biomasses and
their relative molecules are covered. Therefore, we would like to sincerely thank all the authors who
contributed with their excellent contributions to this special issue that includes six articles (three reviews
among them).

Martín et al. propose a natural zeolite (Chilean) as an innovative catalyst for bio-oil upgrade
processes [29]. The results clearly show that Chilean-zeolites efficiently increase both quality and
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stability of the bio-oil obtained from the catalytic pyrolysis of the Chilean native oak. In particular,
zeolite acid sites allow the decrease of oil viscosity as a consequence of the increase of the concentration
of hydrocarbons, alcohols and aldehydes during the storage practice. At the same time, the presence
of Brønsted acid sites on Chilean-zeolites promotes the reduction of carbonyl and alcoholic groups of
bio-oil, even after storage.

The hydro-isomerization upgrading of vegetable oil-based insulating oil was presented by
Dieu-Phuong Phan and Eun Yeol Lee [30]. In their review, they demonstrated that vegetable oils can
be a valid feedstock of insulating oils for electric transformers presenting the effect of (i) metal phase,
(ii) acid sites, and (iii) pore structure on the catalytic hydroisomerization processes. At the same time,
the influence of blending processes on the physico-chemical properties of these alternative oils are
also presented. Moreover, in their contribution, authors pointed out some of the drawbacks related to
vegetable oil-based insulating oils (e.g., high pour points, minor aging, and higher viscosity).

Prof. Jose A. Lopez-Sanchez and co-workers demonstrated the influence of alkaline treatment
of H-ZSM-5 catalyst for the production of p-xylene and other aromatic compounds starting from
bioderived sugars and ethylene [31]. Authors show that the alkaline treatment allows obtaining a series
of catalysts characterized by a mesoporous structure preserving the typical crystallinity of the H-ZSM-5
based zeolites. The key factor in driving the production of p-xylene from 2,5-dimethylfuran in high
activity/selectivity was found to be the right compromise between acidity and mesoporosity of the
alkaline H-ZSM-5 catalyst.

The use of an acid heterogeneous catalyst (Nafion NR50) for the synthesis of solketal from
bio-glycidol was presented by Cucciniello et al. [32]. The Nafion NR50 system was found to be very
efficient even at a very low catalyst loading, allowing a quantitative acetalization of glycidol into
solketal under relative mild reaction conditions. Moreover, the catalyst can be re-used several times
without any significant decrease in activity/selectivity.

The research group of Prof. Cavani and co-workers contributed a review on the use of mixed-oxide
catalysts for the chemical-loop reforming (CRL) of bioethanol [33]. Authors pointed out how the
different preparation methods drive the reactivity of spinels in the CLR of bioethanol. In particular,
M-Fe2O4 ferrospinels (M = Cu, Co, Mn) were found to be very active in H2 production using several
building block chemicals that can be obtained from ethanol (acetone, acetaldehyde, and C4 compounds)
in the second loop. Furthermore, an easy recovery and reuse of the initial M-Fe2O4 can be done.

In another review, the use of transfer hydrogenolysis approach for the reductive upgrading of
lignocellulosic biomasses is presented [12]. The reductive valorization of cellulose, hemicellulose,
lignin, and their relative derived/model molecules in absence of added H2 allows the production
of several added value chemicals including acids, ethers, esters, aromatics, polyols, and alcohols.
Furthermore, the use of simple organic molecules such as methanol, ethanol, 2-propanol, and formic
acid as an indirect H-source may solve most of the problems related to the classic use of high-pressure
molecular hydrogen (including safety hazards, expensive infrastructures, and costs related to the
transport/storage of pressurized H2).
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