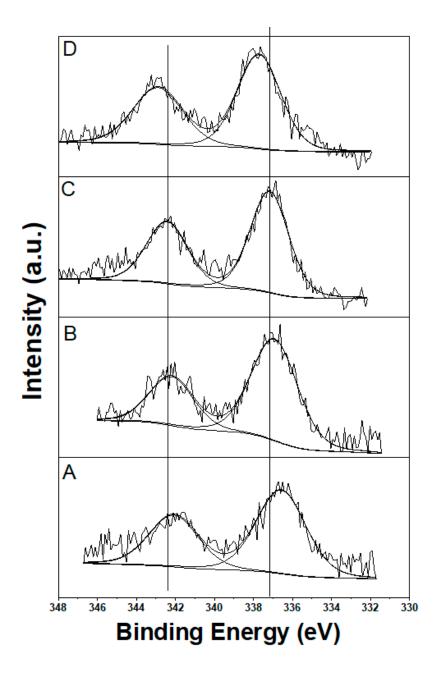

The Impact of CeO₂ Loading on the Activity and Stability of PdO/γ-AlOOH/γ-Al₂O₃ Monolith Catalysts

for CH₄ Oxidation


Hamad Almohamadi and Kevin J. Smith*

Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada

* email: kjs@mail.ubc.ca

Figure S1: XPS Pd 3d spectra measured for catalysts: A – Pd0Ce; B- Pd1Ce; C: Pd2Ce; D:Pd4Ce.

Figure S2: XPS Pd 3d spectra measured for catalysts: A - Pd0Ce; B - Pd0Ce-used; C - Pd2Ce; D - Pd2Ce-used.

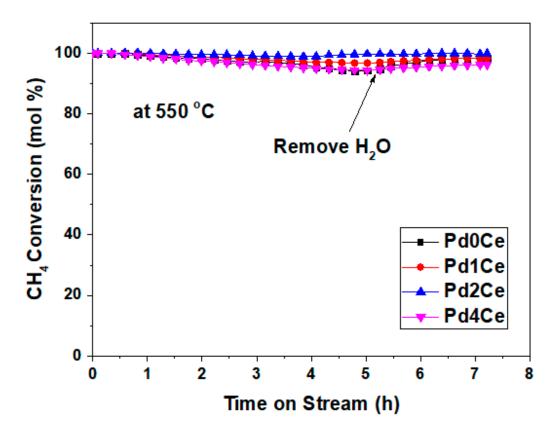
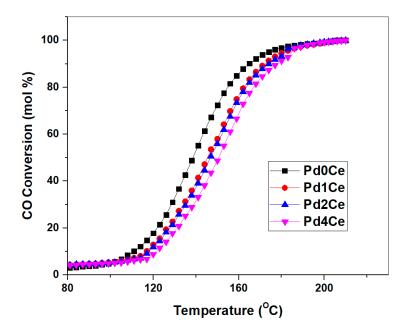



Figure S3: TOS results after adding 10 vol % H_2O to the dry feed gas. Reaction conditions: Total feed gas flow = $1025 \text{ cm}^3(\text{STP}) \cdot \text{min}^{-1}$, $GHSV = 36000 \text{ h}^{-1}$, Feed gas composition: 0.07 vol % CH_4 , 8.5 vol % O_2 , 0.06 vol % CO, 8 vol% CO_2 and 10 vol % H_2O in N_2 and He at 550 °C.

Figure S4: Temperature-programmed oxidation profile for CO conversion as function of temperature for the catalysts. Reaction conditions: Total feed gas flow = $1025 \text{ cm}^3(\text{STP}) \cdot \text{min}^{-1}$, GHSV of 36000 h^{-1} , Feed gas composition: $0.07 \text{ vol } \% \text{ CH}_4$, $8.5 \text{ vol } \% \text{ O}_2$, 0.06 vol % CO, and $8 \text{ vol } \% \text{ CO}_2 \text{ in } N_2 \text{ and He}$.

Heat and Mass transfer effects:

The maximum temperature inside the washcoat is calculated using equation S1 to make sure the assumption of the isothermal condition is valid.

$$T_{max} = T_s - \frac{\Delta H_r D_{eff} C_{CH_4}}{k_p}$$
 S1

Table S1 Calculation of the maximum temperature inside the washcoat

Parameter	Definition	Value
T_s	Surface temperature (K)	523
ΔH_r	Heat of reaction at 298 K, (kJ mol ⁻¹)	-891
$\mathrm{D}_{\mathrm{eff}}$	Effective diffusivity, (m ² s ⁻¹)	1.67E-07
C_{CH_4}	CH ₄ concentration, (mol m ⁻³)	0.029
k_p	Thermal conductivity of washcoat, (kJ m ⁻¹ s ⁻¹ K ⁻¹)	0.025
T_{max}	Reaction temperature (K)	523+1.7e-4

From the results T_{max} is equal to T_{S} ; thus, the temperature gradient in the washcoat layer will be small due to the low CH_4 concentration and the thin layer of washcoat.

External Mass Transfer Calculation:

Open Frontal Area (OFA) =
$$\frac{(l-t_w)^2}{l^2}$$

Geometric Surface Area (GSA) =
$$\frac{4(l-t_w)}{l^2}$$
 S3

where l =width of channel in inches and $t_w =$ thickness of the wall in inches

$$Hydraulic\ diameter\ (d_h) = \frac{4\ OFA}{GSA}$$
 S4

Washcoat Reynolds number is calculated as follows:

$$Re = \frac{d_h u \rho_g}{\mu}$$

Where L_c is the washcoat thickness, μ is the dynamic gas viscosity, and ϵ_d is the washcoat porosity, ρ_g the gas density and u_s the superficial gas velocity are defined as:

$$\rho_g = \frac{PM_{wfeed}}{RT}$$
 S6

$$u = \frac{v_0}{A}$$

Schmidt number is given by:

$$Sc = \frac{\mu}{\rho_g D_{CH_4, He}}$$
 S8

In a gas phase system with Re < 2000 and 0.4 < ϵ_d < 0.79, j_D factor is calculated

$$j_D \epsilon_d = 0.35 Re^{-0.359}$$
 S9

The Sherwood number is calculated as follows

$$Sh = j_D Re S c^{\frac{1}{3}}$$
 S10

The external mass transfer coefficient (k_c) is calculated as follows:

$$k_c = \frac{D_{CH_4,He}Sh}{L_c}$$
 S11

Mears criterion is calculated as follows

$$C_M = \frac{r_{CH_4}^m \rho_{wash} L_c}{k_c C_{CH_4}}$$
 S12

The mass transfer from the bulk gas phase to the surface of the washcoat is negligible if C_M is < 0.15. C_M is obtained as 0.0002 in this study which indicates the absence of external heat transfer limitations since C_M is < 0.15

Table Error! No text of specified style in document.1 Details of calculations for Mears criterion factor for Pd0Ce at 523 K

Parameter	Definition	Value
T	Reaction temperature (K)	523
P	Total pressure (Pa)	101325
R	Gas constant (Pa.m ³ .mol ⁻¹ .K ⁻¹)	8.314
M_{wfeed}	Feed molecular weight (kg.kmol ⁻¹)	34
$F^o_{CH_4}$	Feed CH ₄ molar flow (mol.s ⁻¹ (STP))	5.35e-7
OFA	Open frontal area (m ² / m ²)	0.75
GSA	Geometric surface area (m/ m²)	3.04
d_{h}	Hydraulic diameter (m)	0.98
r_{t}	Radius of reactor (m)	4.6e-3
A_c	Cross sectional area of the reactor (m ²)	6.4e-5
$u_{\rm s}$	Superficial gas velocity (m.s ⁻¹)	0.26
E _b	Washcoat porosity	0.67
$D_{CH_4,He}$	Binary bulk diffusivity, (m ² s ⁻¹)	1.04e-04
$\rho_{\rm g}$	Gas density (kg.m ³)	0.78
μ	Gas dynamic viscosity (kg.m ⁻¹ .s ⁻¹)	3.87e-5
Re	Reynolds Number	5.13
Sc	Schmidt Number	0.5
j_{D}	j_D factor	0.29
S_h	Sherwood number	1.15
k_c	External mass transfer coefficient, (m s ⁻¹)	3.43
C_{CH_4}	CH ₄ concentration, (mol m ⁻³)	0.029
$-r_{CH_4}^m$	CH ₄ oxidation reaction rate (mol.kgcat ⁻¹ .s ⁻¹)	3.06E-04
ρ_{wash}	Washcoat density (kg.m³)	1340
C_{M}	Mears criterion factor	0.0002