The Impact of CeO₂ Loading on the Activity and Stability of PdO/γ-AlOOH/γ-Al₂O₃ Monolith Catalysts ## for CH₄ Oxidation Hamad Almohamadi and Kevin J. Smith* Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada * email: kjs@mail.ubc.ca **Figure S1**: XPS Pd 3d spectra measured for catalysts: A – Pd0Ce; B- Pd1Ce; C: Pd2Ce; D:Pd4Ce. **Figure S2**: XPS Pd 3d spectra measured for catalysts: A - Pd0Ce; B - Pd0Ce-used; C - Pd2Ce; D - Pd2Ce-used. Figure S3: TOS results after adding 10 vol % H_2O to the dry feed gas. Reaction conditions: Total feed gas flow = $1025 \text{ cm}^3(\text{STP}) \cdot \text{min}^{-1}$, $GHSV = 36000 \text{ h}^{-1}$, Feed gas composition: 0.07 vol % CH_4 , 8.5 vol % O_2 , 0.06 vol % CO, 8 vol% CO_2 and 10 vol % H_2O in N_2 and He at 550 °C. **Figure S4**: Temperature-programmed oxidation profile for CO conversion as function of temperature for the catalysts. Reaction conditions: Total feed gas flow = $1025 \text{ cm}^3(\text{STP}) \cdot \text{min}^{-1}$, GHSV of 36000 h^{-1} , Feed gas composition: $0.07 \text{ vol } \% \text{ CH}_4$, $8.5 \text{ vol } \% \text{ O}_2$, 0.06 vol % CO, and $8 \text{ vol } \% \text{ CO}_2 \text{ in } N_2 \text{ and He}$. ## Heat and Mass transfer effects: The maximum temperature inside the washcoat is calculated using equation S1 to make sure the assumption of the isothermal condition is valid. $$T_{max} = T_s - \frac{\Delta H_r D_{eff} C_{CH_4}}{k_p}$$ S1 Table S1 Calculation of the maximum temperature inside the washcoat | Parameter | Definition | Value | |-----------------------------|---|------------| | T_s | Surface temperature (K) | 523 | | ΔH_r | Heat of reaction at 298 K, (kJ mol ⁻¹) | -891 | | $\mathrm{D}_{\mathrm{eff}}$ | Effective diffusivity, (m ² s ⁻¹) | 1.67E-07 | | C_{CH_4} | CH ₄ concentration, (mol m ⁻³) | 0.029 | | k_p | Thermal conductivity of washcoat, (kJ m ⁻¹ s ⁻¹ K ⁻¹) | 0.025 | | T_{max} | Reaction temperature (K) | 523+1.7e-4 | From the results T_{max} is equal to T_{S} ; thus, the temperature gradient in the washcoat layer will be small due to the low CH_4 concentration and the thin layer of washcoat. External Mass Transfer Calculation: Open Frontal Area (OFA) = $$\frac{(l-t_w)^2}{l^2}$$ Geometric Surface Area (GSA) = $$\frac{4(l-t_w)}{l^2}$$ S3 where l =width of channel in inches and $t_w =$ thickness of the wall in inches $$Hydraulic\ diameter\ (d_h) = \frac{4\ OFA}{GSA}$$ S4 Washcoat Reynolds number is calculated as follows: $$Re = \frac{d_h u \rho_g}{\mu}$$ Where L_c is the washcoat thickness, μ is the dynamic gas viscosity, and ϵ_d is the washcoat porosity, ρ_g the gas density and u_s the superficial gas velocity are defined as: $$\rho_g = \frac{PM_{wfeed}}{RT}$$ S6 $$u = \frac{v_0}{A}$$ Schmidt number is given by: $$Sc = \frac{\mu}{\rho_g D_{CH_4, He}}$$ S8 In a gas phase system with Re < 2000 and 0.4 < ϵ_d < 0.79, j_D factor is calculated $$j_D \epsilon_d = 0.35 Re^{-0.359}$$ S9 The Sherwood number is calculated as follows $$Sh = j_D Re S c^{\frac{1}{3}}$$ S10 The external mass transfer coefficient (k_c) is calculated as follows: $$k_c = \frac{D_{CH_4,He}Sh}{L_c}$$ S11 Mears criterion is calculated as follows $$C_M = \frac{r_{CH_4}^m \rho_{wash} L_c}{k_c C_{CH_4}}$$ S12 The mass transfer from the bulk gas phase to the surface of the washcoat is negligible if C_M is < 0.15. C_M is obtained as 0.0002 in this study which indicates the absence of external heat transfer limitations since C_M is < 0.15 Table Error! No text of specified style in document.1 Details of calculations for Mears criterion factor for Pd0Ce at 523 K | Parameter | Definition | Value | |------------------|---|----------| | T | Reaction temperature (K) | 523 | | P | Total pressure (Pa) | 101325 | | R | Gas constant (Pa.m ³ .mol ⁻¹ .K ⁻¹) | 8.314 | | M_{wfeed} | Feed molecular weight (kg.kmol ⁻¹) | 34 | | $F^o_{CH_4}$ | Feed CH ₄ molar flow (mol.s ⁻¹ (STP)) | 5.35e-7 | | OFA | Open frontal area (m ² / m ²) | 0.75 | | GSA | Geometric surface area (m/ m²) | 3.04 | | d_{h} | Hydraulic diameter (m) | 0.98 | | r_{t} | Radius of reactor (m) | 4.6e-3 | | A_c | Cross sectional area of the reactor (m ²) | 6.4e-5 | | $u_{\rm s}$ | Superficial gas velocity (m.s ⁻¹) | 0.26 | | E _b | Washcoat porosity | 0.67 | | $D_{CH_4,He}$ | Binary bulk diffusivity, (m ² s ⁻¹) | 1.04e-04 | | $\rho_{\rm g}$ | Gas density (kg.m ³) | 0.78 | | μ | Gas dynamic viscosity (kg.m ⁻¹ .s ⁻¹) | 3.87e-5 | | Re | Reynolds Number | 5.13 | | Sc | Schmidt Number | 0.5 | | j_{D} | j_D factor | 0.29 | | S_h | Sherwood number | 1.15 | | k_c | External mass transfer coefficient, (m s ⁻¹) | 3.43 | | C_{CH_4} | CH ₄ concentration, (mol m ⁻³) | 0.029 | | $-r_{CH_4}^m$ | CH ₄ oxidation reaction rate (mol.kgcat ⁻¹ .s ⁻¹) | 3.06E-04 | | ρ_{wash} | Washcoat density (kg.m³) | 1340 | | C_{M} | Mears criterion factor | 0.0002 |