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Abstract: The present study is a follow-up to a recent authors contribution which describes the
effect of the C/O (catalyst/oil) ratio on catalytic cracking activity and catalyst deactivation. This
study, while valuable, was limited to one fluidized catalytic cracking (FCC) catalyst. The aim of
the present study is to consider the C/O effect using three FCC catalysts with different activities
and acidities. Catalysts were characterized in terms of crystallinity, total acidity, specific surface
Area (SSA), temperature programmed ammonia desorption (NH3-TPD), and pyridine chemisorption.
1,3,5-TIPB (1,3,5-tri-isopropyl benzene) catalytic cracking runs were carried out in a bench-scale
mini-fluidized batch unit CREC (chemical reactor engineering centre) riser simulator. All data were
taken at 550 ◦C with a contact time of 7 s. Every experiment involved 0.2 g of 1,3,5-TIPB with the
amount of catalyst changing in the 0.12–1 g range. The resulting 0.6–5 g oil/g cat ratios showed
a consistent 1,3,5-TIPB conversion increasing first, then stabilizing, and finally decreasing modestly.
On the other hand, coke formation and undesirable benzene selectivity always rose. Thus, the
reported results show that catalyst density affects both catalyst coking and deactivation, displaying
an optimum C/O ratio, achieving maximum hydrocarbon conversions in FCC units.
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1. Introduction

The FCC process is one of the most important feedstock conversion units in the oil refinery industry.
FCC is a major contributor to the production of gasoline [1–5]. Catalytic cracking endothermic reactions
are accompanied with coke formation. Coke leads to catalytic activity decay and product selectivity
changes [6–8]. Furthermore, catalyst regeneration via coke combustion involves an exothermic reaction,
which is a critical contributor to the thermal balance of the refinery [9,10].

The optimization of FCC riser and downer unit operation may enhance product selectivity,
minimizing coke formation and reducing operational costs [11–13]. With this end in mind, kinetic
descriptions of catalytic cracking reactions with different degrees of simplifications have been considered
for the cracking of both VGO (vacuum gas oil) and model compounds [14–18]. Micro activity units
(MAT), confined fluid bed reactors (CFBRs) (e.g., advanced cracking evaluation (ACE)), and pilot plant
riser units [19,20] have also been employed in these studies. This has led to kinetic models with kinetic
parameters accounting for feedstock type, catalyst usage, and reactor type [15,17].

In 1992, an experimental device, invented by de Lasa [21] and designated as the CREC riser
simulator, was used to simulate catalytic cracking [22,23]. This mini-fluidized CREC riser simulator
reactor operates as a batch unit. Conditions such as temperatures, contact times, and partial pressures
are close to the ones of an industrial FCC unit. Additionally, the needed constitutive chemical species
balance equations for data analysis, resembling the ones of a continuous FCC [24]. In recent years,
the application of the CREC riser simulator has allowed researchers in various laboratories around
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the world [24] to obtain kinetic data under short contact times (less than 10 s), for a diversity of
catalytic reactions.

In spite of the reported progress in catalytic cracking kinetics, there is still a lack of understanding of
the C/O ratio influence on FCC performance. There is a need for a fundamentally-based understanding
of the processes affecting coke formation [25–27]. Issues with coke are particularly relevant for FCC
riser operation and for the implementation of downflow reactors, where there are claims that higher
catalyst/oil ratios (C/O) lead to enhanced unit performance [28–30].

To address this issue, the authors of this manuscript established in a recent article [31] the effect
of the C/O on one FCC catalyst. Even if these findings are valuable, it was decided to reconsider
the C/O ratio effect in a much broader context, using several FCC catalyst samples. To accomplish
this, systematic runs of 1,3,5-TIPB catalytic cracking were developed in the CREC riser simulator.
Experimental runs were adequately combined with catalyst characterization following cracking runs
and catalyst regeneration using: XRD (X-ray diffraction), NH3-TPD (ammonia-temperature programmed
desorption), pyridine-FTIR (Fourier transform infrared), and BET (Brunauer–Emmett–Teller) method.

Based on the results obtained, this study supports the view that the C/O effect is a condition likely
to be encountered in different FCC units. This is in spite of the potential differences of the properties of
the FCC catalysts used.

2. Results of the Catalyst Characterization

2.1. X-Ray Diffraction Analysis

X-ray diffraction was used to identify the Y zeolite crystal structure and to determine zeolite unit
cell size and crystallinity. One example of XRD diffractograms is reported for Catalyst B in Figure 1.
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Figure 1. XRD diffractograms for a CAT-B sample of the present study mixed with pure silicon.
Characteristic peaks for silicon are shown at 28.47, 47.47, and 56.12 degrees in the 2θ scale and identified
with the symbol x.

Figure 1 shows the characteristic XRD peaks for the Y-zeolites at 27.52, 31.12, and 36.2 degrees in
the 2θ scale. These peaks are identified with crosses. These peaks were considered to establish both
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the unit cell size and crystallinity following the ASTM D-3942.85. Table 1 reports both the relative
crystallinity and unit cell size observed for the three catalysts of the present study.

Table 1. Properties of the studied catalysts.

Sample Particle SiO2/Al2O3(mol/mol) Unit Cell Size (A◦ ) Crystallinity

CAT-A 0.86 24.30 0.094

CAT-B 0.72 24.30 0.077

CAT-C 0.92 24.29 0.078

2.2. NH3-TPD (Temperature Programmed Desorption)

The NH3-TPD spectrum were determined for CAT-A, CAT-B, and CAT-C. Figure 2 reports the
NH3-TPD for the CAT-B sample. Figure 2 reports that increasing the C/O ratio leads to a consistent
reduction of the total acidity, pointing towards a progressive catalyst deactivation [30]. The NH3-TPD
for the CAT-A sample was already reported in [31] while NH3-TPD for CAT-C is given in [32].
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Figure 2. NH3-TPD analyses for CAT-B. Notes: Continuous black line: FCC catalyst free of coke;
continuous red line: C/O = 1.25; continuous blue line: C/O = 2.5; continuous violet line: C/O = 3.75;
continuous green line: C/O = 5; continuous blue line: experiment baseline. Samples with coke were
analyzed following catalytic cracking runs at 550 ◦C and 7 s.

Table 2 shows that CAT-A displays the highest acidity as measured by ammonia TPD at conditions
free of coke: 3.37 cm3 NH3 STP/g in comparison with 1.73 cm3 NH3 STP/g and 1.47 cm3 NH3 STP/g for
CAT-B and CAT-C, respectively. Thus, and on this basis, one can anticipate similar trends in 1,3,5-TIPB
conversion and in coke formation.

Table 2. NH3-TPD for CAT-A, CAT-B, and CAT-C catalyst samples.

CAT-A CAT-B CAT-C

Sample NH3 uptake
(cm3 STP/g)

NH3 uptake
(cm3 STP/g)

NH3 uptake
(cm3 STP/g)

Free of Coke 3.36 1.73 1.47
Catoil = 1.25 2.48 1.24 1.14
Catoil = 2.5 2.31 1.24 1.13
Catoil = 3.75 2.24 1.04 0.94

Catoil = 5 2.23 0.95 0.84



Catalysts 2019, 9, 542 4 of 15

Table 2 also shows a consistent behavior for the three catalysts with higher C/Os leading to a steady
reduction in acidity as shown by NH3-TPD. These findings are in line with a progressive reduction of
catalyst acidity with increased coke deposition, as will be later reported in the upcoming sections of
this article.

2.3. Pyridine-FTIR

FTIR analysis of chemisorbed pyridine was used to assess both Brönsted and Lewis acidities for
the catalysts studied, under free of coke conditions. Figure 3 displays the pyridine FTIR for CAT-A,
CAT-B, and CAT-C, with the characteristic Brönsted and Lewis acid site peaks identified at 1445 cm−1

and 1545 cm−1 wavenumbers. On this basis, Brönsted/Lewis acid strength ratios were calculated, with
Table 3 showing that CAT-B displays the highest ratio, followed by CAT-C and CAT-A.
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Figure 3. FTIR spectra shows IR band peaks for the catalysts A, B, and C studied. The black solid line
represents pyridine adsorbed on CAT-A; the red solid line denotes pyridine adsorbed on CAT-B; and
the blue solid line shows the pyridine adsorbed on CAT-C.

Table 3. Brönsted /Lewis acid site ratios using pyridine FTIR.

Sample Catalyst Brönsted/Lewis Acid Sites Ratio

CAT-A 0.298
CAT-B 0.334
CAT-C 0.321

2.4. N2 Adsorption-Desorption Isotherms

Figure 4 reports the N2 adsorption-desorption isotherms for CAT-B at various C/O ratios (0.8,
1.25, 2.5, 3.75, 5) and compares them with those of the free of coke catalyst. N2 adsorption-desorption
isotherms for CAT-A were already reported in [31] while the N2 adsorption isotherms for CAT-C are
given in Supplementary materials. One can then see that there is a significant isotherm shape change
with increased C/O ratios. This is consistent with an increased coke amount, as will be reported later in
this manuscript.

Table 4 summarizes the specific surface areas (SSA) for CAT-A, CAT-B, and CAT-C, which were
established using the BET method. Table 4 also gives the total pore volume (PV) showing the differences
between mesopores and micropores.

Figure 5 and Table 5 also show the influence of the C/O ratio on the micropores of CAT-B. Similar
results were already reported in [31]. For CAT-C, results are given in Supplementary materials. One
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can thus see that the micropore volume after every run is reduced, with this being more pronounced at
the higher C/O ratios.
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Figure 5. Differential pore volume (dV/dD) as a function of the pore diameter (D) using the
N2-adsorption isotherms. (�) CAT-B free of coke; (�) CAT-B at C/O = 0.6 g/g; (N) CAT-B at C/O
= 0.8 g/g; (H) CAT-B at C/O = 1.25 g/g; (�) CAT-B at C/O = 2.5 g/g; and (J) CAT-B at C/O = 3.75 g/g. All
samples were analyzed following catalytic cracking runs at 550 ◦C and 7 s.
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Table 5. Specific surface areas (SSA) (m2/g) and pore volumes (PV) (cm3/g). Mesopore volumes (cm3/g)
for CAT-B are determined following catalytic cracking runs at 550 ◦C and 7 s, using different C/O ratios.
SD on repeats: +/− 3 m2/g.

CAT-B Catalyst Samples
Free Coke C/O = 0.6 C/O = 0.8 C/O = 1.25 C/O = 2.5 C/O = 3.75

BET (Specific Surface Area) 102 93.37 91.88 89.18 88.92 81.56

Pore Volume (PV)
cm3/g 0.140 0.129 0.137 0.121 0.122 0.120

Mesopores-Macropores Volume,
cm3/g 0.0916 0.0864 0.0936 0.0785 0.0795 0.0815

Micropores Volume
cm3/g 0.0491 0.0435 0.0439 0.0430 0.0425 0.0390

Based on the above observations, the following conclusions for CAT-A, CAT-B, and CAT-C
catalysts of this study were reached:

(a) FCC catalysts, when used together with cracking products, form coke. Coke alters both the
structure and physicochemical properties of the catalyst: specific surface area, micropore volume, and
acidity. Thus, catalyst regeneration with air is needed for the FCC catalysts to regain catalytic activity.

(b) However, changes of the catalyst structural and physicochemical properties increase at higher
C/O ratios. This is the case given that higher C/O ratios lead to higher amounts of coke deposited, as is
shown in the upcoming sections of this manuscript.

3. Thermal Cracking Runs

A series of 1,3,5-TIPB runs with the CREC riser simulator without catalyst were developed at
different reaction times and temperatures. These runs allowed evaluating the effect of TIPB thermal
cracking on the overall TIPB conversion. It was found that the thermal cracking effect on 1,3,5-TIPB
catalytic conversion was limited to a 2% maximum. Seven seconds was the longest anticipated reaction
time and 550 ◦C was the highest predicted temperature. Thus, the thermal cracking influence on the
catalytic cracking runs was considered negligible. Additional details of the TIPB thermal cracking in
the CREC riser simulator have been reported in a previous manuscript [31].

4. Catalytic Cracking Runs

A total number of 135 catalytic runs were conducted in the CREC riser simulator including at
least five repeats per run. This allowed establishing conversions and selectivities with the required
statistical indicators. Furthermore, and based on the detected propylene, DIPB, cumene, and benzene
product species and their changes with reaction time, a series-parallel network was established as
suggested by [31] and as further analyzed in Section 4.3.

Regarding catalytic cracking studies, a first series of systematic runs was developed with the
CAT-A loaded in the CREC riser simulator and for a set C/O ratio of 2.5. Figure 6 reports that for 3 s,
5 s, and 7 s, there is a progressive increase of 1,3,5-TIPB conversion with temperature. These results are
in line with the ones already reported in the technical literature by others [5,22,33,34] using the CREC
riser simulator.
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Figure 6. Effect of temperature and reaction time on the conversion of 1,3,5-TIPB using CAT-A. The
C/O ratio was set to 2.5. Reported data and standard deviations (vertical bars) represent experimental
data for at least five repeats.

4.1. Effect of Catalyst-to-Oil Ratio (Catoil C/O Ratio) (g cat g feed
−1)

Given the value of the results for FCC reported in a previous article [31] regarding the influence of
the C/O ratios, or the equivalent of the apparent catalyst bed density (mass of catalyst per unit reactor
volume), two additional catalysts (CAT-B and CAT-C) were studied. In every run, the 1,3,5-TIPB
conversion, the coke formed, and the selectivity for the various product chemical species formed
were determined. With this end in mind, runs were developed at set amounts of 0.2 g of feedstock,
by changing the catalyst load from 0.12 g to 1 g. Thus, the catalyst-to-oil ratio (C/O) employed was set
at 0.6, 0.8, 1.25, 2.5, 3.75, and 5 during the runs.

Figures 7–9 report the changes in 1,3,5-TIPB conversion, hydrocarbon product, and coke selectivities
using CAT-A, CAT-B, and CAT-C catalysts at various C/Os. In particular, Figure 7 shows a comparison
of 1,3,5 TIPB conversions at various C/O ratios. It is apparent that CAT-A, with the higher acidity
and crystallinity, showed the highest 1,3,5-TIPB conversions. CAT-B and CAT-C, on the other hand,
displayed comparable lower levels of 1,3,5-TIPB conversion. These differences in catalytic activity
are consistent with differences in crystallinity, total acidity, as well as density of stronger acid sites,
as reported in Sections 2.1–2.3.

In spite of these differences and as shown in Figure 7, a common trend emerges when the changes
in the 1,3,5-TIPB conversion with C/O ratio are examined. The 1,3,5-TIPB conversion increases first
when C/Os are at 0.6−1.25. It levels off at the 2.5 intermediate C/O level, and decreases later at the
higher 3.75−5 C/O values.

In order to be able to explain this behavior, one should consider coke formation at various
conditions, including C/O changes as it is reported in the upcoming section.
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4.2. Coke Selectivity

Figure 8 reports a comparison of coke selectivity-W (g coke/g of 1,3,5-TIPB converted) for the
three catalysts (CAT-A, CAT-B, and CAT-C) at various C/O ratios. Figure 8 shows how coke selectivity
augments steadily with the C/O ratio, with this being true in all cases and for the three catalyst samples.
One can thus see the differences in coke formation with increasing C/O ratios versus the 1,3,5-TIPB
conversion trends reported in Figure 7.
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Thus, and to be able to explain these consistent trends applicable to the three catalysts studied,
one can claim a reaction mechanism as advanced in our previous paper [31]. Increases in C/Os
lead to higher catalyst density and, as a result, an increased interaction of particles with adsorbed
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hydrocarbon species. It is thus speculated that higher C/Os provide improved opportunities for
bimolecular condensation reactions and, as a result, enhanced coke formation [4,12].

4.3. Hydrocarbon Product Selectivity

Given the value of establishing the influence of C/O ratios on FCC, one should also consider
their effect on hydrocarbon product selectivity (product selectivity-M = moles of “i” product/ moles of
1,3,5-TIPB converted). Figure 9 reports the changes of hydrocarbon product hydrocarbon selectivity
for the main gas phase chemical species. In this figure, product selectivity is quantified as a function of
1,3,5-TIPB conversion and C/O over CAT-B at 550 ◦C and 7 s. One should notice that the increasing
C/O ratios for various runs, in the 0.6–5 range, is represented with “arrows”.Catalysts 2019, 9, x FOR PEER REVIEW 10 of 16 

 

 
Figure 9. Effect of C/O on the product selectivity using TIPB on selected catalyst Cat-B. The 
temperature and contact time were kept constant at 550 °C and 7 s, respectively. Notes: a) direction 
of the “arrows” represent increasing C/O ratios; and b) reported data and standard deviations 
(vertical bars) represent average values for 4–7 repeat runs. 

Thus, Figure 9 shows that 1,3 di-isopropyl benzene, cumene, and benzene selectivities always 
consistently increase with the C/O ratio. In contrast, propylene remains at essentially constant levels. 
Thus, aromatic product species display a consistent maximum at the highest C/O of 5. This trend is 
especially noticeable for benzene, which is a non-desirable terminal catalytic cracking product. In this 
respect, one can see that the product selectivity for the CAT-B catalyst is consistent with the data 
published in a previous contribution [31], and in agreement with the data reported in Appendix B 
for CAT-C.  

Therefore, and on this basis, one can consider a reaction mechanism as outlined in Figure 10. 
The catalytic conversion of 1,3,5-TIPB encompasses a number of dealkylation steps, involving 
chemical and radical adsorbed species. 

  
Figure 10. Schematic description of the catalytic 1,3,5-TIPB conversion showing the hypothesized 
cracking steps. Notes: a) Sites 1 sites are sites located in the same particle; and b) Sites 1 and 2 are sites 
placed in different particles. 

20 22 24 26 28 30 32
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
od

uc
t S

el
ec

tiv
ity

 - 
M

 

1, 3, 5 TIPB Conversion (%)

 Propylene

 Benzene

 Cumene

 1, 3 DIPB

CAT-B

Figure 9. Effect of C/O on the product selectivity using TIPB on selected catalyst CAT-B. The temperature
and contact time were kept constant at 550 ◦C and 7 s, respectively. Notes: a) direction of the “arrows”
represent increasing C/O ratios; and b) reported data and standard deviations (vertical bars) represent
average values for 4–7 repeat runs.

Thus, Figure 9 shows that 1,3 di-isopropyl benzene, cumene, and benzene selectivities always
consistently increase with the C/O ratio. In contrast, propylene remains at essentially constant levels.
Thus, aromatic product species display a consistent maximum at the highest C/O of 5. This trend is
especially noticeable for benzene, which is a non-desirable terminal catalytic cracking product. In this
respect, one can see that the product selectivity for the CAT-B catalyst is consistent with the data
published in a previous contribution [31], and in agreement with the data reported in Supplementary
materials for CAT-C.

Therefore, and on this basis, one can consider a reaction mechanism as outlined in Figure 10. The
catalytic conversion of 1,3,5-TIPB encompasses a number of dealkylation steps, involving chemical
and radical adsorbed species.
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Figure 10. Schematic description of the catalytic 1,3,5-TIPB conversion showing the hypothesized
cracking steps. Notes: (a) Sites 1 sites are sites located in the same particle; and (b) Sites 1 and 2 are
sites placed in different particles.

Thus, one can postulate, as in Figure 10, that catalytic cracking of 1,3,5-TIPB leads to the progressive
removal of propyl radicals with: step (1) involving the removal of a first propyl radical; step (2)
encompassing the abstraction of a second propyl; and step (3) including the subtraction of the last
propyl radical left in the aromatic ring. Therefore, one can see that every reaction step also leads to the
formation of an aromatic radical. Aromatic radicals may, however, be stabilized via catalyst H-transfer
forming DIPB, cumene, and benzene with the potential of evolving later in the gas phase. Additionally,
aromatic radicals may alternatively condense with other aromatic radicals forming coke.

Therefore, while the 1,3,5-TIPB catalytic cracking is a single site-driven reaction with the rate of
change being proportional to catalyst density, coke formation involves, instead, at least two catalyst
sites located in either the same, or a close but different, particle. Thus, a higher C/O proportionally
increases coke formation and this is the case when a given C/O (e.g., C/O = 2.5) value is surpassed.

As a result, the catalytic cracking of 1,3,5-TIPB with higher C/Os or higher catalyst densities in the
CREC riser simulator, consistently displays as shown for three FCC catalysts, the following: (a) it leads
to higher coke selectivities; (b) it promotes the formation of undesirable final cracking products, such
as benzene; and (c) it yields 1,3,5-TIPB conversions increasing first, and later decreasing at the higher
C/Os. This sets optimum C/O ratios for FCC unit operation.

5. Materials and Methods

5.1. Feedstock and Catalysts

In this study, 1,3,5-TIPB was chosen as a feedstock to evaluate the catalytic cracking of catalysts.
The 1,3,5-TIPB was selected as a model compound, given its special combination of aromatic and
iso-paraffin functionalities [35]. Additionally, the 1,3,5-TIPB used is considered a valuable model
species given its 9.4 A◦ critical molecular diameter, which allows combined diffusional and catalytic
effects in Y zeolites [36–39]. All products from 1,3,5-TIPB conversion were identified and quantified
using GC-MS analyses. Three commercial equilibrium FCC Y-zeolite fluidizable catalysts with a 60−70
micron average particle size were selected for this study. These catalysts are designated in the present
study as CAT-A, CAT-B, and CAT-C, with their properties reported in Table 1.

5.2. Catalyst Characterization

X-ray diffraction (XRD) patterns of the catalysts were obtained by Ni-filtered Cu Kα radiation
(λ = 0.15406 nm). XRD diffractometry was used from 5–90◦ of the 2θ scale. The crystallinity and unit
cell size per catalyst were determined by using the following ASTM D-3942-85 method. High purity
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silicon powder (99%) was employed as a calibration standard. Table 1 summarizes the unit cell size
and crystallinity calculated.

In addition, and for each catalyst studied, the specific surface area, the pore volume, and the
pore size distribution (PSD) were determined by using an (ASAP 2010 Analyzer BET for nitrogen
adsorption, Norcross, GA, USA) at 77K. Samples were degassed at 200 ◦C for 4 hours, prior to analysis.
The pore size distribution (PSD) was established by plotting the dV/dD, or the differential pore
volume as a function of the pore diameter (D) [40]. The integration of the differential pore volume
function provided the total pore volume (PV). Furthermore, the consideration of the PSD allowed us to
determine micropores (7A-12A) and mesopores (>12A) [41].

NH3-TPD was employed to determine the total acidity of the catalysts studied. This was achieved
by measuring the amount of ammonia desorbed while heating catalyst samples (up to 550 ◦C), using
a 15 ◦C/min heating ramp. For each TPD, 0.1−0.2 g of catalyst sample was first pretreated for 1 h at
650 ◦C while in contact with a 50 mL/min helium carrier. Following this, the catalyst sample was cooled
down to 100 ◦C and was contacted with a 5% NH3/He gas mixture for 1 h. Then, the catalyst sample
was heated progressively at a rate of 15 ◦C/min under 50 mL/min helium flow. Heating continued
until 650 ◦C was reached. Due to the progressive heating, ammonia was gradually desorbed from the
catalyst and measured with a thermal conductivity detector (TCD).

FTIR spectroscopy was also employed in conjunction with pyridine adsorption-desorption to
quantify Brönsted and Lewis acid sites. The pyridine analysis was conducted in a Bruker FTIR (Billerica,
MA, USA). Prior to measurements, the zeolite samples were first dried in a furnace tube under nitrogen
flow, at 550 ◦C for 2 h. Then, a pyridine/nitrogen gas mixture was contacted with the catalyst at 100 ◦C
for 1 h. Following this, with the temperature at 100 ◦C, a nitrogen flow was introduced into the furnace
tube to remove weakly adsorbed pyridine species. After this stage, the catalyst sample was placed on
a sodium chloride wafer with the pyridine FTIR spectrum of adsorbed species being recorded using
a diffuse reflectance Fourier-transform infrared spectrometer (DRIFTS).

5.3. Chemical Species Analytical Methods

An Agilent Varian 6890 gas chromatograph unit (Santa Clara, CA, USA) was used to quantify the
various chemical species. This unit was equipped with a flame ionization detector (FID) and a 0.25 µm
ID and 30 m length HP1 capillary column. During this analysis, the FID detector temperature was set
to 320 ◦C, while the column temperature was augmented at a rate of 5 ◦C/min starting from 35 ◦C,
up to 350 ◦C. The 350 ◦C temperature was maintained for 20 min. Additionally, an Agilent 5973N mass
selective detector (MSD) was employed for the identification of various chemical product species, with
the help of the MSD Chemstation software library.

5.4. Catalytic Cracking Evaluation

Hydrocarbon catalytic cracking runs of 1,3,5-TIPB on three catalysts were performed in a novel
bench-scale mini-fluidized batch unit CREC riser simulator [21,42]. Additional details of the
experimental setup and experimental procedure have been described elsewhere [31]. All data
were collected at 550 ◦C and at 7 s, in the 0.6–5 g-cat/g-oil C/O range, with the 1,3,5-TIPB amount
injected being kept constant and the mass of the catalyst being varied.

While the 1,3,5-TIPB conversion was determined using a GC gas chromatography analysis of
various gas phase products formed, coke on catalyst was measured with a total organic carbon
TOC-VCPH analyzer from Shimadzu (Kyoto, Japan). In the TOC analysis, an infrared detector measured
the total moles of CO2 formed by coke combustion. With this information, the moles of coke formed
were calculated and the coke-on-catalyst (COC) was established as a weight fraction.
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Thus, given the above, the following 1,3,5 TIPB conversion and product selectivity parameters
were calculated using the following equation:

1, 3, 5 TIPB Conversion (%) =

(
Mpropylene + MDIPB + Mcumene + Mbenzene + Mcoke

)
M1,3,5 TIPB. x100

(1)

Product Selectivity−M =
Molesi, product

Moles of 1, 3, 5 TIPB Converted
(2)

Coke Selectivity −W =
Mcoke

M1,3,5 TIPB Converted
(3)

6. Conclusions

(a) It is shown that the 1,3,5-TIPB catalytic cracking displays common activity trends at increasing
C/O ratios. This is shown using three Y-zeolite catalysts with different acidities and crystallinities.

(b) It is proven that the 1,3,5-TIPB catalytic cracking, when using these three catalysts, displays
maximum 1,3,5 TIPB conversions at C/O ratios of 2.5.

(c) It is observed that the 1,3,5-TIPB cracking product selectivity shows the highest coke and the
highest undesirable benzene selectivity at the maximum C/O of 5.

(d) It is thus anticipated that catalyst density, which is a main parameter that determines the C/O
ratio, plays a critical role in achieving the highest 1,3,5-TIPB conversions. This phenomenon is of
significant importance for the operation of scaled FCC units.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/6/542/s1,
Figure S1: BET-Nitrogen Adsorption Plot. N2 adsorption-desorption isotherms obtained from different samples of
CAT-C, after runs at 550 ◦C and a 7 s contact time. Figure S2: Differential Pore Volume (dV/dD) as a Function
of the Pore Diameter (D) using the N2-Adsorption Isotherms. (�) CAT-C free of coke; (�) CAT-C at C/O =
0.6g/g; (N) CAT-C at C/O = 0.8g/g; (H) CAT-C at C/O = 1.25 g/g; (�) CAT-C at C/O = 2.5 g/g (J); CAT-C at C/O =
3.75 g/g; (�) CAT-C at C/O = 5 g/g; All samples were analyzed following catalytic cracking runs at 550 ◦C and
7 s. Table S1: Specific Surface Areas [SSA] (m2/g) and Pore Volumes [PV] (cm3/g). Mesopore Volumes (cm3/g)
for CAT-B are determined following catalytic cracking runs at 550 ◦C and 7 s, using different C/O ratios. SD on
repeats: +/− 3 m2/g. Figure S3: Effect of C/O on the Product Selectivity-M Using TIPB on the Catalyst CAT-C. Run
Conditions: 550 ◦C and 7 s, respectively. Notes: (a) Direction of the arrows represent an increasing C/O ratio,
(b) Reported data and standard deviations (vertical bars) represent average values for 4−7 repeat runs.
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Nomenclature

D Pore diameter (A
◦

)
Mi Number of moles of “i” species (moles) in the gas phase
Mcoke Number of moles of coke collected (moles)
T Reaction temperature, K
t Reaction time, s
Wcat Mass of catalyst (g) loaded in the riser (basket), where catalytic cracking occurs.
Woil Total mass of hydrocarbons injected (g)
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Abreviations

BAS Brönsted acid sites
BET Brunauer–Emmett–Teller
CAT-A Catalyst A
CAT-B Catalyst B
CAT-C Catalyst C
Catoil (C/O) Catalyst-to-oil ratio (g/g)
CREC Chemical Reaction Engineering Center
DRIFTS Diffuse reflectance infrared Fourier transform spectroscopy
FCC Fluidized catalytic cracking
FID Flame ionization detector
FTIR Fourier transform infrared spectroscopy
GC Gas chromatography
LAS Lewis acid sites
MSD Mass spectrometer detector
MAT Micro activity tests units
PSD Pore size distribution
PV Pore volume (cm3/g)
Selectivity-M Moles of product “i” species/moles of 1,3,5-TIPB converted
Selectivity-W Grams of coke/grams of TIPB converted.
SSA Specific surface area (m2/g)
TCD Thermal conductivity detector
1,3,5-TIPB 1,3,5-Tri-isopropyl benzene
TOC Total organic coke (g-coke/g-cat.)
TPD Temperature programmed desorption
VGO Vacuum gas oil
XRD X-ray diffraction
XRF X-ray fluorescence
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