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General 

1H and 13C{1H} NMR spectra were recorded on JEOL ECX‐500 and ECS‐400 spectrometers (JEOL 

Ltd., Tokyo, Japan). Gas chromatography (GC) analyses were performed on a GL‐Sciences GC353B gas 

chromatograph (GL Sciences Inc., Tokyo, Japan) with a capillary column (GL‐Sciences and InertCap 

Pure WAX (GL Sciences Inc., Tokyo, Japan)). Silica‐gel column chromatography was carried out by 

using Wako‐gel C‐200 (FUJIFILM Wako Pure Chemical Corp., Osaka, Japan). Ketones and aldehydes 

were purchased from FUJIFILM Wako Pure Chemical Corp. (Osaka, Japan), Tokyo Chemical Industry 

Co., Ltd. (Tokyo, Japan) or nacalai tesque (Kyoto, Japan). Distilled water and 

N,N‐dimethylacetamide(super dehydrated) were purchased from FUJIFILM Wako Pure Chemical 

Corp. (Osaka, Japan). The compounds, [Cp*IrCl2]2 (Cp* = ‐pentamethylcyclopentadienyl) [1] and 

iridium complexes 1‐4 were prepared according to the literature methods [2, 3, 4, 5]. 

General procedure for transfer hydrogenation of acetophenone to 1-phenylethanol using glucose (Table 1) 

In a 5 mL stainless‐steel reactor under argon atmosphere, catalyst (0.1 mol% Ir), acetophenone (2.0 

mmol), glucose (4.0 mmol), base (5.0 or 10.0 mol%) and degassed distilled water (3.0 mL) were placed. 

Then, the reactor was sealed with a stainless‐steel stopper, and the mixture was stirred at 100 °C for 20 

hours. After cooling to room temperature, the mixture was diluted with toluene (50 mL). The 

conversion of acetophenone and the yield of 1‐phenylethanol were determined by GC analysis using 

biphenyl as an internal standard. 

General procedure for transfer hydrogenation of ketones to corresponding the corresponding secondary alcohols 

using glucose (Table 2) 

Conditions A 

In a 5 mL stainless‐steel reactor under argon atmosphere, catalyst 1 (10.6 mg, 0.020 mmol, 1.0 

mol%), ketone (2.0 mmol), glucose (720.6 mg, 4.0 mmol, 2.0 equiv.), Na2CO3 (10.6 mg, 0.10 mmol, 5.0 

mol%) and degassed distilled water (3.0 mL) were placed. Then, the reactor was sealed with a 

stainless‐steel stopper, and the mixture was stirred at 100 °C for 20 hours. After cooling to room 

temperature, the products were extracted with dichloromethane (20 mL x 3). After evaporation of the 

solvent, the yield was determined by 1H NMR analysis using 1,3,5‐trimethoxybenzene as an internal 

standard. The products were isolated by column chromatography (eluent = ethyl acetate/hexane). 

1-Phenylethanol (6a) [6]: 1H NMR (500 MHz, CDCl3) δ 7.40‐7.33 (m, 4H, aromatic), 7.31‐7.25 (m, 1H, 

aromatic), 4.91 (qd, J = 6.5, 3.5 Hz, 1H, CHOH), 1.85 (d, 3.5 Hz, 1H, CHOH), 1.50 (d, J = 6.0 Hz, 3H, 

CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 145.9, 128.6, 127.5, 125.5, 70.4, 25.2. 

1-(3’-Methylphenyl)ethanol (6b) [7]: 1H NMR (400 MHz, CDCl3) δ 7.25 (t, J = 8.0 Hz, 1H, aromatic), 

7.23‐7.15 (m, 2H, aromatic), 7.09 (d, J = 7.2 Hz, 1H, aromatic), 4.87 (qd, J = 6.4, 2.8 Hz, 1H, CH(OH)CH3), 

2.36 (s, 3H, ArCH3), 1.80 (br, 1H, OH), 1.49 (d, J = 6.4 Hz, 3H, CH(OH)CH3 ). 13C{1H} NMR (100 MHz, 

CDCl3) δ 145.9, 138.3, 128.6, 128.4, 126.2, 122.6, 70.6, 25.3, 21.6. 

1-(4’-Trifluoromethylphenyl)ethanol (6c) [7]: 1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8.0 Hz, 2H, 

aromatic), 7.42 (d, J = 8.4 Hz, 2H, aromatic), 4.88 (q, J = 2.4 Hz, 1H, ‐CH(OH)CH3), 2.93 (br, 1H, OH), 

1.44 (d, J = 6.4 Hz, 3H, CH3). 13C{1H} NMR (100 MHz, CDCl3) δ 149.8, 129.6 (q, JCF3 = 31.7 Hz), 125.7, 

125.4 (q, JCF3 = 3.9 Hz), 124.3 (q, JCF3 = 271.2 Hz), 69.8, 25.3. 
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1-(4’-Nitrophenyl)ethanol (6d) [6]: 1H NMR (500 MHz, CDCl3) δ 8.20 (dt, J = 9.0, 2.0 Hz, 2H, 

aromatic), 7.55 (ddt, J = 8.5, 2.0, 0.5 Hz, 2H, aromatic), 5.03 (q, J = 6.5 Hz, 1H, CH(OH)CH3), 2.16 (br, 1H, 

OH), 1.52 (d, J = 6.5 Hz, CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 153.2, 147.3, 126.2, 123.9, 69.6, 25.6. 

1-(4’-Cyanophenyl)ethanol (6e) [8]: 1H NMR (500 MHz, CDCl3) δ 7.65 (dd, J = 8.5, 1.0 Hz, 2H, 

aromatic), 7.49 (d, J = 8.0 Hz, 2H, aromatic), 4.97 (ddd, J = 13.0, 4.0, 2.5 Hz, CH(OH)CH3), 1.92 (d, J = 4.0 

Hz, OH), 1.50 (d, J = 6.0 Hz, 3H, CH3). 13C{1H} NMR (100 MHz, CDCl3) δ 151.4, 132.2, 126.1, 118.9, 110.5, 

69.3, 25.2. 

Methyl-4-(1-hydroxyethyl)benzoate (6f) [9]: 1H NMR (500 MHz, CDCl3) δ. 8.00 (dt, J = 8.0, 2.0 Hz, 2H, 

aromatic), 7.43 (d, J = 8.0 Hz, 2H, aromatic), 4.95 (q, J = 5.5 Hz, 1H, CH(OH)CH3), 3.90 (s, 3H, 

C(O)OCH3), 2.19 (br, 1H, OH), 1.49 (d, J = 6.5 Hz, 3H, CH(OH)CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 

167.1, 151.1, 130.0, 129.3, 125.4, 70.1, 52.2, 25.4. 

2,2,2-Trifluoro-1-phenylethanol (6g) [10]: 1H NMR (400 MHz, CDCl3) δ 7.52‐7.45 (m, 2H, aromatic), 

7.45‐7.37 (m, 3H, aromatic), 5.03 (m, 1H, CHOHCF3), 2.60‐2.58 (br, 1H, OH). 13C{1H} NMR (100 MHz, 

CDCl3) δ .134.0, 129.7, 128.8, 127.6, 124.3 (q, JCF3 = 280.1 Hz), 72.9 (q, JCF3 = 32.1 Hz). 

1-Phenyl-1-propanol (6h) [11]: 1H NMR (500 MHz, CDCl3) δ 7.40‐7.31 (m, 4H, aromatic), 7.29‐7.23 

(m, 1H, aromatic), 4.58 (t, J = 6.5 Hz, 1H, CH(OH)CH2CH3), 1.96‐1.98 (br, 1H, OH), 1.86‐1.70 (m, 2H, 

CH(OH)CH2CH3), 0.91 (t, J = 7.5 Hz, CH(OH)CH2CH3). 13C{1H} NMR (125 MHz, CDCl3) δ. 144.7, 128.5, 

127.6, 126.1, 76.1, 32.0, 10.3. 

4-Phenylbutan-2-ol (6i) [11]: 1H NMR (500 MHz, CDCl3) δ 7.31‐7.26 (m, 2H, aromatic), 7.23‐7.17 (m, 

3H, aromatic), 3.84 (sep, J = 6.0 Hz, 1H, CH(OH)), 2.80‐2.64 (m, 2H, CH2CH3), 1.85‐1.72 (m, 2H, CH2), 

1.34 (br, 1H, OH), 1.23 (d, J = 6.5 Hz, 3H, CH3) . 13C{1H} NMR (125 MHz, CDCl3) δ 142.2, 128.5, 125.9, 

67.5, 40.9, 32.2, 23.7. 

Cyclohexanol (6j) [11]: 1H NMR (500 MHz, CDCl3) δ 3.61 (m, 1H, CH2CHOHCH2), 1.92‐1.88 (m. 2H, 

CH2), 1.78‐1.68 (m, 2H, CH2), 1.59‐1.51 (m, 1H, CH2), 1.37 (s, 1H, CH2), 1.35‐1.24 (m, 4H, CH2), 1.22‐1.12 

(m, 1H, CH2). 13C{1H} NMR (125 MHz, CDCl3) δ 70.4, 35.6, 25.5, 24.3. 

Cycloheptanol (6k) [12]: 1H NMR (500 MHz, CDCl3) δ 3.85 (m, 1H, CH2CHOHCH2), 1.92 (m. 2H, 

CH2), 1.65 (m, 2H, CH2), 1.61‐1.50 (m, 6H, CH2), 1.40 (m, 2H, CH2), 1.30 (br, 1H, OH). 13C{1H} NMR (100 

MHz, CDCl3) δ 72.9, 37.7, 28.2, 22.7. 

Conditions B 

In a 5 mL stainless‐steel reactor under argon atmosphere, catalyst 1 (10.6 mg, 0.020 mmol, 1.0 

mol%), ketone (2.0 mmol), glucose (720.6 mg, 4.0 mmol, 2.0 equiv.), Na2CO3 (10.6 mg, 0.10 mmol, 5.0 

mol%) and N,N‐dimethylacetamide (3.0 mL) were placed. Then, the reactor was sealed with a 

stainless‐steel stopper, and the mixture was stirred at 100 °C for 20 hours. After cooling to room 

temperature, the reaction mixture was poured into water (50 mL) and the products were extracted 

with a mixed solvent having a volume ratio of hexane : AcOEt of 1 : 1 (20 mL x 3). After evaporation of 

the solvent, the yield was determined by 1H NMR analysis using 1,3,5‐trimethoxybenzene as an 

internal standard. The products were isolated by column chromatography (eluent = ethyl 

acetate/hexane). 

1-(4’-Methoxyphenyl)ethanol (6l) [6]: 1H NMR (500 MHz, CDCl3) δ 7.31 (dt, J = 8.5, 2.0 Hz, 2H, 

aromatic), 6.89 (dt, J = 9.0, 2.0 Hz, 2H, aromatic), 4.86 (q, J = 6.0 Hz, 1H, CHOH), 3.81 (s, 3H, OMe), 

1.78‐1.75 (br, 1H, OH), 1.48 (d, J = 6.5 Hz, 3H, CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 159.1, 138.1, 

126.8, 113.9, 70.1, 55.4, 25.2. 

1-(2’-Methoxyphenyl)ethanol (6m) [12]: 1H NMR (500 MHz, CDCl3) δ 7.34 (dd, J = 7.5, 1.5 Hz, 1H, 

aromatic), 7.28‐7.22 (m, 1H, aromatic), 6.97 (td, J = 7.5, 1.0 Hz, 1H, aromatic), 6.88 (d, J = 8.0 Hz, 1H, 

aromatic), 5.09 (quint, J = 6.5 Hz, CH(OH)CH3), 3.87 (s, 3H, OMe), 2.69 (d, J = 5.0 Hz, OH), 1.51 (d, J = 7.0 

Hz, CH(OH)CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 156.7, 133.5, 128.4, 126.2, 120.9, 110.5, 66.7, 55.4, 

22.9. 

1-(4’-Chlorophenyl)ethanol (6n) [6]: 1H NMR (500 MHz, CDCl3) δ 7.35‐7.27 (m, 4H, aromatic), 4.89 

(m, 1H, CHOH), 1.91‐1.84 (br, 1H, CHOH), 1.47 (d, J = 6.5 Hz, 3H, CH3). 13C{1H} NMR (125 MHz, 

CDCl3) δ 144.3, 133.2, 128.7, 126.9, 69.9, 25.4. 
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1-(3’-Chlorophenyl)ethanol (6o) [7]: 1H NMR (500 MHz, CDCl3) δ 7.37 (t, J = 2.0 Hz, 1H, aromatic), 

7.30‐7.22 (m, 3H, aromatic), 4.88 (qd, J = 6.5, 3.5 Hz, CH(OH)CH3), 1.92 (d, J = 3.5 Hz, 1H, OH), 1.48 (d, J 

= 6.5 Hz, 3H, CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 148.0, 134.5, 129.9, 127.7, 125.8, 123.7, 70.0, 25.4. 

1-(2’-Chlorophenyl)ethanol (6p) [13]: 1H NMR (500 MHz, CDCl3) δ 7.58 (dd, J = 8.0, 2.0 Hz, 1H, 

aromatic), 7.33‐7.27 (m, 2H, aromatic), 7.20 (td, J = 8.0, 2.0 Hz, 1H, aromatic), 5.28 (qd, 6.5, 3.5 Hz, 1H, 

CH(OH)CH3), 2.13 (d, J = 4.0 Hz, 1H, OH), 1.48 (d, J = 6.5 Hz, CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 

143.2, 131.7, 129.5, 128.5, 127.3, 126.4, 67.1, 23.6. 

1-(4’-Bromophenyl)ethanol (6q) [6]: 1H NMR (500 MHz, CDCl3) δ 7.46 (dt, J = 8.5, 2.5, 1.5 Hz, 2H, 

aromatic), 7.24 (d, J = 8.5 Hz, 2H, aromatic), 4.85 (q, J = 6.5 Hz, 1H, CH(OH)CH3), 1.98 (br, 1H, OH), 1.46 

(d, J = 6.5 Hz, 3H, CH(OH)CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 144.9, 131.7, 127.3, 121.3, 69.9, 25.4. 

General procedure for transfer hydrogenation of aldehydes to the corresponding primary alcohols using 

glucose (Table 3) 

Conditions A 

In a 5 mL stainless‐steel reactor under argon atmosphere, catalyst 1 (10.6 mg, 0.020 mmol, 1.0 

mol%), aldehyde (2.0 mmol), glucose (720.6mg, 4.0 mmol, 2.0 equiv.), Na2CO3 (10.6 mg, 0.10 mmol, 5.0 

mol%) and degassed distilled water (3.0 mL) were placed. Then, the reactor was sealed with a 

stainless‐steel stopper, and the mixture was stirred at 100 °C for 20 hours. After cooling to room 

temperature, the products were extracted with dichloromethane (20 mL x 3). After evaporation of the 

solvent, the yields were determined by 1H NMR analysis using 1,3,5‐trimethoxybenzene as an internal 

standard. The products were isolated by column chromatography (eluent = ethyl acetate/hexane). 

Benzyl alcohol (8a) [14]: 1H NMR (500 MHz, CDCl3) δ 7.41‐7.35 (m, 4H, aromatic), 7.33‐7.28 (m, 1H, 

aromatic), 4.70 (d, J = 6.0 Hz, 2H, CH2(OH)), 1.75 (t, J = 6.0 Hz, 1H, OH).13C{1H} NMR (125 MHz, CDCl3) 

δ 141.0, 128.6, 127.7, 127.1, 65.2. 

p-Methylbenzyl alcohol (8b) [14]: 1H NMR (500 MHz, CDCl3) δ 7.21 (d, J = 8.0 Hz, 2H, aromatic), 7.14 

(d, J = 8.0 Hz, 2H, aromatic), 4.57 (d, J = 3.5 Hz, 2H, ArCH2OH), 2.33 (s, 3H, Me), 2.23‐2.12 (br, 1H, 

OH).13C{1H} NMR (125 MHz, CDCl3) δ 138.0, 137.4, 129.3, 127.2, 65.2, 21.2. 

p-Cyanobenzyl alcohol (8c) [12]: 1H NMR (500 MHz, CDCl3) δ 7.62‐7.57 (m, 2H, aromatic), 7.46‐7.41 

(m, 2H, aromatic), 4.73 (s, 2H, CH2), 2.61 (br, 1H, OH). 13C{1H} NMR (125 MHz, CDCl3) δ 146.5, 132.3, 

127.1, 119.0, 110.9, 64.1. 

m-Nitrobenzyl alcohol (8d) [15]: 1H NMR (500 MHz, CDCl3) δ 8.26 (s, 1H, aromatic), 8.16 (dd, J = 8.5, 

1.0 Hz, 1H, aromatic), 7.71 (dd, J = 8.0, 1.0 Hz, 1H, aromatic), 7.54 (t, J = 8.0 Hz, 1H, aromatic), 4.84 (s, 

2H, CH2), 1.95 (br, 1H, OH). 13C{1H} NMR (125 MHz, CDCl3) δ 148.4, 143.0, 132.8, 129.6, 122.6, 121.6, 

64.0. 

o-Nitrobenzyl alcohol (8e) [15]: 1H NMR (500 MHz, CDCl3) δ 8.12 (dd, J = 8.0, 1.0 Hz, 1H, aromatic), 

7.75 (d, J = 7.0 Hz, 1H, aromatic), 7.69 (td, J = 7.5, 1.0 Hz, 1H, aromatic), 7.49 (td, J = 8.0, 1.0 Hz, 1H, 

aromatic), 4.99 (d, J = 6.0 Hz, 2H, ‐CH(OH)‐), 2.53 (t, J = 7.0 Hz, 1H, OH).13C{1H} NMR (125 MHz, 

CDCl3) δ 147.7, 136.9, 134.3, 130.2, 128.7, 125.2, 62.7. 

Methyl-4-(hydroxymethyl)benzoate (8f) [16]: 1H NMR (500 MHz, CDCl3) δ 7.95 (d, J = 8.0 Hz, 2H, 

aromatic), 7.37 (d, J = 8.0 Hz, 2H, aromatic), 4.69 (s, 2H, CH2(OH)), 3.88 (s, 3H, OCH3), 3.21 (br, 1H, OH). 
13C{1H} NMR (125 MHz, CDCl3) δ 167.2, 146.3, 129.8, 129.0, 126.4, 64.4, 52.2. 

Conditions B 

In a 5 mL stainless‐steel reactor under argon atmosphere, catalyst 1 (10.6 mg, 0.020 mmol, 1.0 

mol%), aldehyde (2.0 mmol), glucose (720.6 mg, 4.0 mmol, 2.0 equiv.), Na2CO3 (10.6 mg, 0.10 mmol, 5.0 

mol%) and N,N‐dimethylacetamide (3.0 mL) were placed. Then, the reactor was sealed with a 

stainless‐steel stopper, and the mixture was stirred at 100 °C for 20 hours. After cooling to room 

temperature, the reaction mixture was poured into water (50 mL) and the products were extracted 

with a mixed solvent having a volume ratio of hexane : AcOEt of 1 : 1 (20 mL x 3). After evaporation of 

the solvent, the yield was determined by 1H NMR analysis using 1,3,5‐trimethoxybenzene as an 
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internal standard. The products were isolated by column chromatography (eluent = ethyl 

acetate/hexane). 

p-Methoxybenzyl alcohol (8g) [14]: 1H NMR (500 MHz, CDCl3) δ 7.28 (dt, J = 9.0, 3.0, 2.0 Hz, 2H, 

aromatic), 6.89 (dt, J = 8.5, 3.0, 2.0 Hz, 2H, aromatic), 4.60 (s, 2H, CH2), 3.80 (s, 3H, OMe), 1.87 (br, 1H, 

OH). 13C{1H} NMR (125 MHz, CDCl3) δ 159.2, 133.2, 128.8, 114.0, 65.1, 55.4. 

p-Chlorobenzyl alcohol (8h) [14]: 1H NMR (500 MHz, CDCl3) δ 7.34‐7.23 (m, 4H, aromatic), 4.62 (s, 

2H, ArCH2OH), 2.21 (br, 1H, ArCH2OH). 13C{1H} NMR (125 MHz, CDCl3) δ 139.3, 133.4, 128.8, 128.4, 

64.6. 

p-Bromobenzyl alcohol (8i) [12]: 1H NMR (500 MHz, CDCl3) δ 7.48 (dt, J = 8.5, 2.0 Hz, 2H, aromatic), 

7.23 (d, J = 8.5 Hz, 2H, aromatic), 4.65 (s, 2H, CH2), 1.87 (br, 1H, OH). 13C{1H} NMR (125 MHz, CDCl3) δ 

139.8, 131.7, 128.7, 121.6, 64.7. 

p-tert-Butylbenzyl alcohol (8j) [17]: 1H NMR (500 MHz, CDCl3) δ 7.39 (d, J = 8.0 Hz, 2H, aromatic), 

7.30 (d, J = 8.5 Hz, 2H, aromatic), 4.64 (d, J = 1.5 Hz, 2H, CH2), 1.32 (d, J = 2.0 Hz, 9H, C(CH3)3). 13C{1H} 

NMR (125 MHz, CDCl3) δ 150.8, 138.0, 127.0, 125.6, 65.2, 34.6, 31.5. 

2,6-Dichlorobenzyl alcohol (8k) [18]: 1H NMR (500 MHz, CDCl3) δ 7.34‐7.28 (m, 2H, aromatic), 7.18 

(m, 1H, aromatic), 4.95 (d, J = 3.5 Hz, CH2OH), 2.31 (br, 1H, OH). 13C{1H} NMR (125 MHz, CDCl3) δ 

136.0, 135.7, 129.9, 128.5, 60.2. 

2-Naphthalenemethanol (8l) [19]: 1H NMR (500 MHz, CDCl3) δ 7.83‐7.75 (m, 3H, aromatic), 7.72 (s, 

1H, aromatic), 7.49‐7.38 (m, 3H, aromatic), 4.76 (s, 2H, CH2), 2.33 (br, 1H, OH). 13C{1H} NMR (125 MHz, 

CDCl3) δ 138.3, 133.4, 133.0, 128.3, 128.0, 127.8, 126.2, 126.0, 125.5, 125.3, 65.4. 

1-Naphthalenemethanol (8m) [15]: 1H NMR (500 MHz, CDCl3) δ 8.04 (d J = 8.0 Hz, 1H, aromatic), 

7.88‐7.74 (m, 2H, aromatic), 7.54‐7.36 (m, 4H, aromatic), 5.05 (s, 2H, CH2), 2.30‐2.10 (br, 1H, OH). 13C{1H} 

NMR (125 MHz, CDCl3) δ 136.3, 133.8, 131.3, 128.7, 128.6, 126.4, 126.0, 125.5, 125.4, 123.7, 63.6. 

Preparation of 2,3,4,6-tetra-O-methyl-D-glucopyranose (10). (Equation 2) [20] 

 

In a two‐necked round‐bottomed flask, aqueous NaOH (50 wt%, 4.0 mL), methyl 

α‐D‐glucopyranoside (9) (1.94 g, 10.0 mmol) and DMSO (35 mL) were placed. After stirring the 

mixture at room temperature for 5 minutes, iodomethane (3.3 mL, 50 mmol) was added. The mixture 

was stirred at room temperature for 4 hours. The reaction mixture was poured into water (100 mL) and 

extracted with Et2O. An intermediate product was obtained after evaporation of the organic layer. 

(colorless oil, 1.64 g, 6.5 mmol, 65% yield).  

In a round‐bottomed flask, above intermediate product (1.64 g, 6.5 mmol) and aqueous HCl (9.6 

M, 25 mL) were placed. The mixture was stirred at 60 °C for 16 hours. After cooling to room 

temperature, the crude product was obtained by evaporation of the reaction mixture. After purifying 

by column chromatography (eluent = EtOH/CH2Cl2), the product 10 was obtained(653.5 mg, 2.8 mmol, 

43% yield).  

2,3,4,6-tetra-O-methyl-D-glucopyranose (10) 1H NMR (500 MHz, CDCl3) δ 5.31 (d, J = 3.5 Hz, 1H), 

4.56 (d, J =7.5 Hz, 0.5H), 3.91 (dt, J =10.5 Hz, 2.5 Hz, 1H), 3.70 (q, J = 7.0 Hz, 1H), 3.66‐3.60 (m, 6H), 

3.59‐3.5 (m, 6H), 3.53‐3.50 (m, 4H), 3.42‐3.30 (m, 5H,), 3.22‐3.05 (m, 3H), 2.97 (dd, J = 9.0, 8.0 Hz, 0.5 H). 
13C NMR (125 MHz, CDCl3) δ 96.9, 90.5, 86.4, 84.7, 83.1, 81.9, 79.7, 79.7, 74.1, 71.6, 71.4, 69.6, 60.9, 60.8, 

60.5, 60.4, 59.1, 58.7. 

Reaction of acetophenone using α-D-glucopyranoside (9) (equation 1) 

In a 5 mL stainless‐steel reactor under argon atmosphere, catalyst 1 (1.0 mg, 0.002 mmol, 0.1 

mol%Ir), acetophenone (240.5 mg, 2.0 mmol), α‐D‐glucopyranoside (777.3 mg, 4.0 mmol, 2.0 equiv.), 

Na2CO3 (10.5 mg, 0.1 mmol, 5.0 mol%) and degassed distilled water (3.0 mL) were placed. Then, the 

reactor was sealed with a stainless‐steel stopper, and the mixture was stirred at 100 °C for 20 hours. 
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After cooling to room temperature, the mixture was diluted with toluene (50 mL). The conversion 

of acetophenone and the yield of 1‐phenylethanol were determined by GC analysis using biphenyl 

as an internal standard. No reaction occurred. 

Reaction of acetophenone using 2,3,4,6-tetra-O-methyl-D-glucopyranose (10) (equation 2) 

In a 5 mL stainless‐steel reactor under argon atmosphere, catalyst 1 (1.1 mg, 0.002 mmol, 0.2 

mol%Ir), acetophenone (120.6 mg, 1.0 mmol), 2,3,4,6‐tetra‐O‐methyl‐D‐glucopyranose (472.4 mg, 2.0 

mmol, 2.0 equiv.), Na2CO3 (5.4 mg, 0.05 mmol, 5 mol%) and degassed distilled water (1.5 mL) were 

placed. Then, the reactor was sealed with a stainless‐steel stopper, and the mixture was stirred at 

100 °C for 20 hours. After cooling to room temperature, the mixture was diluted with toluene (25 

mL). The conversion of acetophenone and the yield of 1‐phenylethanol were determined by GC 

analysis using biphenyl as an internal standard. The conversion and the yield were 97% and 97%, 

respectively. 
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