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1. Reactive flow modeling

Our starting point are the governing equations for stationary reactive gas flows in the Low Mach
Number Approximation (LMNA)[1]. We neglect the (typically small) Dafour and Soret effects as well
as gas phase chemical reactions. The governing partial differential equations then read

∇ · ρvvv = 0 (1)

∇ · (ρvvv⊗ vvv + phIII − τττ) = ρggg (2)

ρcpvvv · ∇T −∇ · κ∇T +
Nspec.

∑
i=1

cp,ijjji · ∇T = 0 (3)

ρvvv · ∇Yi +∇ · jjji = 0 (4)

ρ =
pref.

kBT ∑i Yi/mi
(5)

τττ = µ(∇vvv +∇vvvT)− 2
3

µ∇ · vvvIII (6)

jjji = −
Nspec.

∑
j=1

Dij∇Yj (7)

where eqn. 1 to 4 are the mass, momentum, energy and species balance equations, governing the
fields of velocity vvv, hydrodynamic pressure ph, temperature T and mass fractions Yi of the different
gaseous species. Due to the LMNA the mass density ρ is determined by the ideal gas law 5 from the
(spatially) constant reference pressure pref. (at the inlet), T, the Boltzmann constant kB and Yi (and
corresponding molecular masses mi). The equations are closed by the constitutive relation 6 for the
viscous stress τττ, with the viscosity µ, and the generalized Fick’s law 7 for the diffusive mass fluxes jjji,
with the diffusion coefficients Dij. The species’ heat capacities cp,i can depend on the temperature and

by the relation cp =
Nspec.

∑
i=1

cp,iYi the mixtures heat capacity cp depends on T and the composition. In

general, the transport coefficients µ, λ, Dij and κ (the heat conductivity) depend on ρ, T and Yi. For the
specific formulas for cp,i, µ, Dij and κ, we refer to our previous work [2] and references therein.

For the following, we consider Dirichlet boundary conditions (BC) (imposed fields) at the inlet
for velocity vvv, temperature T and mass fraction Yi, where the only restriction is that mass fractions
and temperature show no lateral variation on the inlet boundary. For the catalytic surface, we assume
non-slip BC for the velocity and that we know the temperature Tcat.. The BC for the mass fractions
follow from the species balances for singular surfaces[3]. The BC for the catalytic surface read

vvv = 0, (8)

T = Tcat. (9)

−
Nspec.

∑
j=1

Dijnnn · ∇Y = νimiTOF (10)
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where we consider only a single overall surface reaction. Here νi is the stoichiometric coefficient and
TOF is the turnover frequency, which, in the general case, can assume different values at different
positions on the catalysts. The normal vector nnn on the catalytic surface is assumed to point into the
gas phase. In the experiment, we measure the temperature Tcat. not at the sample but close to it at
the heater. The temperature gradient between the point of measurement and the sample surface has
been accounted for by using a calibration created using thermographic phosphors. Hence, we can
omit modeling the heat conduction in the solid parts of the setup and instead employ BC 9, with a
constant temperature Tcat. for the small samples considered in this study. For remaining solid surfaces,
we assume that they are inert and mass balance is obeyed. For the solution of eqn. 1 to 7, detailed
BC for temperature and velocity would be needed. However, we target at a reduced model and this
detailed information is not important for this.

The first step for the reduced model is to decouple the process of finding the mass fractions from
those for the other fields. For this we note, that we are working in large excess of one species. Given
the temperature field, the density as well as the thermochemical and transport coefficients will only
depend very little on the changes of the mass fractions due to the chemical reactions. Additionally,
there is no explicit heat source due to the surface chemical reactions in the governing equations,
because we control the temperature of the sample. The equations 1 to 3 will therefor largely decouple
from the species balance 4 and, with quite some precision, we can determine ρ, vvv, T and Dij using the
solution for zero reactivity (TOF = 0). Given this solution, we arrive at the boundary value problem

ρ0vvv0 · ∇Y1,i −
Nspec.

∑
j=1
∇ · D0,ij∇Y1,j = 0 (11)

with the boundary conditions:

Y1,i = 0, at the inlet (12)

−
Nspec.

∑
j=1

D0,ijnnn · ∇Y1,j = νimiTOF, at the catalytic surface (13)

nnn · ∇Y1,i = 0 else (14)

where Y1,i = Yi − Yinl.,i with the mass fraction Yinl.,i at the inlet. The index zero indicates that the
respective field, i.e. density, velocity or diffusivity, has be evaluated using the zero reactivity solution.
The last BC 14 results from our requirement of inert surfaces (other than the catalyst) and the
assumption that we can neglect concentration gradients at the outlet. An alternative way to arrive at
the above equations is to perform a formal expansion in the turnover frequency and to truncate after
the first order.

For deriving the reduced model, we place the origin of the coordinate system (x, y, z) at the center
of the catalyst’s surface with the z-axis pointing in the normal direction towards the inlet. A schematic
view on the geometry and the flow is shown in figure S1. The PLIF images from the experiment (see
main text) reveal that, close to the z-axis, we have concentration variations only along the z-axis. In
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Figure S1. Schematic view of the flow between catalyst and inlet.

other words, first and second derivatives of Y1,j with respect to to x and y vanish in that domain. Thus,
we can replace the 3-dimensional problem 11 to 14 with the way simpler problem

ρ0v0,z
∂

∂z
Y1,i −

Nspec.

∑
j=1

∂

∂z
D0,ij

∂

∂z
Y1,j = 0 (15)

with the boundary conditions:

Y1,i = 0, for z = L (16)
Nspec.

∑
j=1

D0,ij
∂

∂z
Y1,j = −νimiTOF, for z = 0 (17)

where L is the distance between the inlet and the surface. This is now a linear ordinary differential
equation boundary value problem with one homogeneous and one inhomogeneous BC. For any two
values of the TOF, TOFa and TOFb, the respective solutions, Ya1,i and Yb1,i, obey the relation

Ya1,i

Yb1,i
=

TOFa

TOFb
(18)

at any value of z. If we now have obtained a numerical solution Yref.,1,i for a reference value TOFref., we
can construct the solution for any other value of the TOF by a simple rescaling of our reference solution.
Or, if we have a given concentration profile for one species Ygiven,1,i, e.g. from a PLIF measurement, we
can estimate the TOF from

TOF = TOFref. ×

L∫
0

Ygiven,1,idz

L∫
0

Yref.,1,idz
. (19)

Since we have the relation pi = YiρkBT/mi, the same equation holds for the partial pressures pi. In
practice, we choose the limits in the above integrals such that we omit integration over the domain
very close to the catalyst and the inlet, because the PLIF signal is biased there.

The above equation 19 is, of course, of only little help, if we do not know v0,z and T0 (for
determining ρ0 and D0,ij). The canonical approach would be to determine these by solving the
non-reactive equations numerically for the whole reaction chamber. But, this is a huge computational
burden, since due to the combination of PLIF with a flat faced single crystal sample, a highly symmetric
setup is impossible and we would need full 3D Computational Fluid Dynamics simulations. Further,
this would require the temperature distribution at the reactor walls as BC, which might have a
huge impact not only on the temperature field within the chamber but also on the velocity field due
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to thermoconvection. Determining the temperature distribution is now a major task as well as the
construction of an isothermal chamber, again due to the limitations of the combined single crystal/PLIF
approach.

Instead of trying to address the problem with computationally expensive simulations, which
additionally carry large uncertainties, we will derive a model which is only valid for the boundary
layer above the central part of the catalyst surface. This will then require to fix some parameters
and we will use the information in the PLIF signal to determine them. First we notice, that we can,
in principle, invert equation 15 to obtain v0,z within the boundary layer, where we have significant
concentration gradients, i.e.

v0,z =

Nspec.

∑
j=1

∂
∂z D0,ij

∂
∂z Y1,j

ρ0
∂
∂z Y1,i

, for z ∈ [0, LB.] (20)

given the z-dependent mass fractions and the diffusivities in the layer, where LB. is the boundary
layer thickness. In the isothermal case, D0,ij would be constant and thus v0,z therefore only depends
on z just as the mass fractions. In the non-isothermal case, we would expect that the temperature is
largely independent of x and y if the mass fractions depend only on z. Then both, T0 and v0,z, only
depend on z within the boundary layer and close to the z-axis and, hence, the same holds for ρ and
all thermochemical and transport coefficients. From the continuity equation, it further follows that
the radial velocity component v0,r depends only linearly on r =

√
x2 + y2. Using v0,z = U(z) and

v0,r = rV(z), we arrive at the classical stagnation flow equations for the boundary layer[4]

∂

∂z
ρ0U − 2ρ0V = 0 (21)

ρ0U
∂V
∂z

+ ρ0V2 = −Λ +
∂

∂z
µ0

∂V
∂z

(22)

ρ0cp,0U
∂T0

∂z
− ∂

∂z
κ0

∂T0

∂z
= 0 (23)

∂Λ
∂z

= 0 (24)

ρ0 =
pref.

kBT0 ∑i Yinl.,i/mi
(25)

ρ0U
∂

∂z
Y1,i −

Nspec.

∑
j=1

∂

∂z
D0,ij

∂

∂z
Y1,j = 0 (26)

for z ∈ [0, LB.] and where the last equation is nothing else than eq. 15. These equations are subject to
the BC at the surface:

U(z = 0) = 0, V(z = 0) = 0, T0(z = 0) = Tcat.,

(Nspec.

∑
j=1

D0,ij
∂

∂z
Y1,j

)
(z = 0) = −νimiTOF (27)

where the first BC results from mass conservation, and the second is the non-slip BC. At the onset of
the boundary layer the BC are:

U(z = LB.) = −UB, V(z = LB.) = VB, T0(z = LB.) = Tinl., Y1,i(z = LB.) = 0 (28)

where the last two represent our knowledge that, at the onset of the boundary layer, we still have only
small deviations from the composition and the temperature as at the inlet.

Thus, the problem depends on four parameters: i) the TOF, ii) the boundary layer thickness
LB., and the two velocity boundary values UB and VB. These can now be adjusted to reproduce
the experimentally measured concentration profile. We can drop LB. because the actual thickness
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of the boundary layer is determined by the values of UB and VB. If we choose LB. too large, this
can be compensated by choosing UB and VB such that stagnation flow equations and the (optimal)
boundary conditions at the true boundary layer onset are still fulfilled. Thus we simply choose LB. = L.
Furthermore, we can decouple the determination of the TOF from the the estimation of UB and VB,
since by eq. 18 the normalized mass fractions

Ỹ1,i :=
Y1,i

L∫
0

Y1,idz
(29)

are independent of the actual chosen value of the TOF. The same holds for equivalently defined
normalized partial pressures. In the first step, we thus calculate the normalized mass fraction (partial
pressure) profiles for an arbitrary value of the TOF using eqn. 21 to 28 (with LB. = L) and adjust UB

and VB such that the profiles match the experimentally determined normalized profiles. The value of
the TOF and the profiles of the species for which we have no experimental data are then determined
according to eqn. 19 and 18, respectively. For the solution of the stagnation flow problem, we employ
the same strategy as we have used in ref. [2]. This means the boundary value problem 21-28 is
numerically solved using the COLDAE package[5], which uses piecewise polynomial collocation at
Gaussian points with adaptive mesh refinement. We choose an initial grid of ten equally sized intervals,
a polynomial degree of four and an error tolerance of 10−4 for rescaled versions of the dependent
variables.

In reality, the PLIF signal has a bias close to the inlet and to the surface and thus the integration
limits in eqn. 18, 19 and 29 are chosen such that these regions are left out from the integration. Further,
the experimental profile has some background, which we estimate by averaging the signal over the
region above the onset of the boundary layer (excluding the part close to the inlet, of course). This we
subtract from the original experimental profile because we know that the CO2 concentration must be
(close to) zero there. The integrals over the PLIF signal, required for normalization and estimation of
the TOF, have been obtained using the midpoint rule on basis of the pixel width in the PLIF images
(i.e. equidistant with a spacing of 0.05 mm). We used the same procedure for integrals over the for the
simulation results.
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