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Abstract: A hierarchical SBUY-MCM-41 catalyst was prepared by sacrificing USY (a microporous
molecular sieve) to synthesize the MCM-41 zeolite via a hydrothermal method. The hydroconversion
of waste cooking oil into hydrocarbon fuel over a NiMo/SBUY-MCM-41 catalyst was investigated.
The micropores of the Y building units were inherited by the SBUY-MCM-41 zeolite, in
which a special hierarchical structure was formed and the accessibility of reactants to the
micropore active sites was improved. The hierarchical SBUY-MCM-41 showed high acidity and
hydrothermal stability. Compared with mesoporous Al-MCM-41 and microporous USY zeolites,
the SBUY-MCM-41-supported NiMo catalyst significantly enhanced the selective cracking of waste
cooking oil for the production of jet-fuel-range hydrocarbons (37.3%), with the highest selectivity for
the formation of C10–C14 hydrocarbons and a satisfactory selectivity for the formation of jet-fuel-range
aromatics (7.6%), as well as a few cyclic compounds. The improved selectivity is the result of the
special hierarchical structure and acid distribution of SBUY-MCM-41. This work provides a new
strategy to synthesize a hierarchical catalyst for producing alternative jet fuel from waste cooking oil
and vegetable oils.
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1. Introduction

The increasing volume of fossil fuels expended and the resulting carbon emissions continue to
exacerbate climate change. In light of this, the production of aviation fuel from renewable energy
sources has been extensively studied [1–5]. Accordingly, the hydroconversion of plant oils into bio-jet
fuel is a promising strategy to reduce the use of fossil fuels. Haldor Topsoe's HydroFlex™ technology
and the UOP (Universal Oil Products Company) Renewable Jet Fuel ProcessTM were developed to
convert plant oil (jatropha oil, animal fats and oils, palm oil, etc.) into bio-jet fuel in two-step processes.
Many researchers have also focused on developing a one-step process to obtain bio-jet fuel from plant
oils [6–9]. These processes are important for their potential industrial application. Recently, waste
cooking oil (WCO) has emerged as a promising feedstock for biofuel production [10–12] because it
is 2–3 times cheaper than plant oils [13]. The deoxygenation mechanism and the selectivity for the
formation of jet fuel have been the focus of WCO research [14,15].

Screening hydroconversion catalysts to find those with a high selectivity of jet fuel and suitable
hydrocarbon formation from WCO is a critical step. Micro-/mesoporous composite hierarchical zeolite
has been considered a promising material for such catalysts because it combines the advantages of
microporous zeolite’s strong acidity and mesoporous zeolite’s suitable pores [9,14]. USY zeolite has
strong acidity and plentiful micropores and has been widely used as a hydrocracking catalyst. MCM-41
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has been extensively applied in catalysis because of its large pore size, which allows the effective
diffusion of macromolecules. However, compared with microporous zeolites, MCM-41 has weak
acidity and relatively low hydrothermal stability because of the highly amorphous nature of its pore
walls. Consequently, significant research efforts have been dedicated to improving the acidity and
hydrothermal stability of MCM-41 [16,17].

In this context, zeolite Y building units were used in this work to assemble an MCM-41 structure
with increased acidity and hydrothermal stability. The resulting catalyst composed of Ni and Mo
supported on the composite hierarchical molecular sieve was used in the hydroconversion of WCO
into renewable jet fuel. The aim of using these two materials is to leverage both of their advantages
(i.e., enhanced diffusion from the mesoporous material and strong acid sites from USY) to carry out
the special reaction. For comparison, pure microporous USY zeolites and pure mesoporous acidic
MCM-41 zeolites modified by aluminum were also investigated. The reaction pathways over these
catalysts are discussed in this paper. The results could provide an economic route for generating bio-jet
fuel from renewable resources and give some insight into the practical design of hierarchical zeolites
for the catalytic hydrodeoxygenation of WCO.

2. Results and Discussion

2.1. Textural Structures of Zeolites

Figure 1 shows the X-ray diffraction (XRD) patterns of the zeolites considered in this study.
The wide-angle XRD pattern of the SBUY-MCM-41 zeolite (Figure 1b) shows that USY loses its crystal
structure and decomposes into secondary building units in an acidic medium. From the low-angle
XRD pattern (Figure 1a), two distinct reflections for SBUY-MCM-41 are observed: an intense one at
2.239◦ and a weak one at 4.2◦, which can be indexed to the (100) and (110) planes, respectively [18].
The characteristic peak for Al-MCM-41 is only observed at a higher angle of diffraction (2.4◦). This
indicates that the unit cell structure of SBUY-MCM-41 is larger than that of Al-MCM-41 because the
stiffness and space volume of the secondary USY building units of SBUY-MCM-41 are higher than
those of the silicate condensation polymer of Al-MCM-41.
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Figure 1. (a) Low-angle and (b) wide-angle XRD patterns of USY, SBUY-MCM-41, and Al-MCM-41.

The porosity properties of SBUY-MCM-41 and Al-MCM-4 are summarized in Table 1. Table 1
shows that the pore diameter of SBUY-MCM-41 is approximately 2.6 nm, which is smaller than that of
Al-MCM-41 (2.8 nm). The wall thickness of SBUY-MCM-41 (1.95 nm) is larger than that of Al-MCM-41
(1.29 nm) owing to the USY secondary building units’ larger space volume, which improves the
thermal stability of MCM-41 [18,19]. Although the mesopore volume of SBUY-MCM-41 is reduced, the
micropore volume of SBUY-MCM-41 (0.06 cm3 g−1) is considerably increased compared with that of
Al-MCM-41 (0 cm3 g−1). The greater micropore volume improves the accessibility of the reactant to the
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active micropore sites and is conducive to the rapid diffusion of the products from the micropores
through the mesopores [18].

Table 1. Surface area and pore volume data for Al-MCM-41 and SBUY-MCM-41.

Samples SBET
(m2 g−1)

Vtotal
(cm3 g−1)

Unit Cell
(nm)

Mesopore Size
(nm)

Tpore wall
(nm)

USY 658 0.35 - - -
Al-MCM-41 885 0.83 4.09 2.8 1.29

SBUY-MCM-41 820 0.64 4.55 2.6 1.95

Vtotal is the total pore volume at p/p0 = 0.99. Tpore wall is the thickness of the pore wall.

2.2. Acidity Distributions of Al-MCM-41 and SBUY-MCM-41

The acidity properties of the samples were investigated by ammonia temperature programmed
desorption (NH3-TPD) and Py-FTIR. All the samples presented NH3 desorption peaks in the ranges of
150–350 ◦C, 350–450 ◦C, and 450–550 ◦C, which are associated with weak, medium, and strong acidity,
respectively. The acidity distribution was calculated according to the amounts of desorbed NH3 and is
summarized in Table 2. Table 2 shows that the strong acidity of SBUY-MCM-41 is much higher than
that of Al-MCM-41 owing to the contribution of the microstructure of the pore walls in SBUY-MCM-41.
The Brønsted/Lewis (B/L) ratio (2.9) of USY is high, indicating that USY is dominated by Brønsted
acidity [15]. Compared with USY, SBUY-MCM-41 displays fewer acid sites, especially Brønsted
acid sites, because USY was decomposed into secondary building units. The Brønsted acid density
of SBUY-MCM-41 is much higher than that of Al-MCM-41, suggesting that the framework Al (the
Brønsted acid site) is introduced more easily and with more stability than Al-MCM-41 [18]. The Lewis
acidity of SBUY-MCM-41 is also higher than that of Al-MCM-41 because more non-framework Al is
formed during the preparation process.

Table 2. Acidity properties of USY, SBUY-MCM-41, and Al-MCM-41 (µmol g−1).

Sample B L B/L Weak Medium Strong
Acidity Acidity Acidity

USY 1851 634 2.9 158 530 598
Al-MCM-41 158 212 0.7 78 184 52

SBUY-MCM-41 442 558 0.8 71 224 198

2.3. Reduction Behavior

The hydrogen temperature-programmed reduction (H2-TPR) results for the different catalysts are
shown in Figure 2. The NiMo/USY catalyst shows principal reduction peaks at 505 ◦C, 572 ◦C, and
744 ◦C, which are assigned to the reduction of Mo6+ to Mo4+ in polymeric octahedral Mo species, the
reduction of Ni2+ species, and the reduction of tetrahedrally coordinated Mo species in the zeolite
cavities, respectively [20,21]. NiMo/SBUY-MCM-41 shows similar reduction behavior, but the peaks
are shifted to lower temperatures (481 ◦C, 540 ◦C, and 739 ◦C), indicating an increase in the active
phase cluster size [22]. This weakens the active metal–support interaction [22,23]. The peaks of
NiMo/Al-MCM-41 are shifted to much lower temperatures (424 ◦C, 480 ◦C, and 709 ◦C). This suggests
that there are much weaker interactions between the metal species and the support. Mojet et al.
reported that the active metal–support interaction increased as the acidity of the support increased [24].
Table 2 shows that NiMo/Al-MCM-41 has the lowest acidity and that the metal–support interaction is
also the weakest, which is in accord with the literatures [24,25].
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Figure 2. H2-TPR profiles for NiMo catalysts supported on USY and SBUY-MCM-41.

The CO chemisorption data for the different catalysts are shown in Table 3. The amount of CO
adsorbed on NiMo/SBUY-MCM-41 and NiMo/Al-MCM-41 increases dramatically compared with
that on NiMo/USY because the specific surface areas of the former two species are higher (Table 1).
The amount of adsorbed CO on NiMo/SBUY-MCM-41 is also higher than that on NiMo/Al-MCM-41;
this is probably because the latter has a smaller active phase cluster size (Figure 2) [23]. This indicates
that the SBUY-MCM-41 support provides better dispersion of the active metals—Ni and Mo—and
affords more active sites than the USY and Al-MCM-41 supports.

Table 3. Adsorbed CO determined by TPD characterization.

Sample Adsorbed CO (µmol g−1)

NiMo/USY 1.33
NiMo/Al-MCM-41 3.03

NiMo/SBUY-MCM-41 3.25

2.4. Hydrotreatment of WCO

The hydroconversion of WCO over the three catalysts was also investigated. Approximately 100%
conversions were obtained under the given conditions. Figure 3a demonstrates that the organic liquid
product (OLP) yield for NiMo/SBUY-MCM-41 reaches 82.1%, which is the highest yield among the three
catalysts. This indicates that the use of NiMo/SBUY-MCM-41 does not result in excessive cracking.

There are three reaction pathways for the conversion of triglycerides into alkanes:
hydrodeoxygenation (HDO), decarboxylation (DCO2), and decarbonylation (DCO). In the reported
literature and our previous work [8,14,15,26], the C17/C18 ratio was used as an index for
DCOx/HDO selectivity. Moreover, the CO2/CO ratio can be used to distinguish decarboxylation
from decarbonylation. For NiMo/USY, the ratio of C17/C18 hydrocarbons is 1.60 and the CO2/CO
ratio is 0.17 (Figure 3b). This indicates that DCOx reactions, especially the DCO reaction, are the
primary reaction pathways. For the NiMo/Al-MCM-41 catalyst, the ratio of C17/C18 hydrocarbons
is much lower (1.0). Furthermore, the NiMo/SBUY-MCM-41 catalyst provides a higher ratio of
C17/C18 hydrocarbons (1.1) and the highest CO2/CO ratio (1.21), indicating that the DCO2 reaction
dominates the hydrodeoxygenation process. It has been reported that high acidity favors DCOx

reactions [27,28]. Table 2 shows that the acid density decreases gradually in the order USY >

SBUY-MCM-41 > Al-MCM-41. Therefore, the activity for DCOx reactions over these catalysts decreases
in the same order (Figure 3). However, the selectivity of DCO2 behaved differently over these catalysts.
The as-synthesized hierarchical SBUY-MCM-41 is more favorable for carrying out hydrodeoxygenation
via the DCO2 reaction.
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Figure 3. (a) Hydrocarbon distribution and (b) distribution of H2O, CO, and CO2 products over
different catalysts. Reaction conditions: 380 ◦C, 3 MPa, 500 mL/mL.

Different distributions of alkanes were formed via selective hydrocracking over the bifunctional
catalysts. C9-15 hydrocarbons and C16-18 hydrocarbons represent jet fuel and diesel fractions, respectively.
The gasoline fraction (C4-8 hydrocarbons) dominates the products obtained with the NiMo/USY catalyst
because of the high values of the medium/strong acidity of the support (Table 2). The Al-MCM-41
zeolite exhibits the lowest values of medium/strong acidity; thus, deep cracking is inhibited, which
leads to an increased selectivity for the formation of jet fuel (33.6%). Although the medium/strong
acidity and Brønsted acid values of the SBUY-MCM-41 support are higher than those of Al-MCM-41,
the selectivity of SBUY-MCM-41 for the formation of C9-15 hydrocarbons is significantly increased (up
to 37.3%), and its selectivity for the formation of C4-8 hydrocarbons is further restricted (to 28.3%).
These results indicate that SBUY-MCM-41 significantly enhances the selective cracking to jet-fuel-range
hydrocarbons. This is probably because the hierarchical porous structure improves the accessibility of
the reactant to the active micropore sites and increases the diffusion of the products from the micropores
through the mesopores.

Figure 4 shows the product distributions of C9–C15 hydrocarbons (jet-fuel fraction) produced over
different catalysts. Of the three catalysts shown in Figure 4a, NiMo/SBUY-MCM-41 has the highest
selectivity for the formation of C10–C14, the optimal jet-fuel fraction. NiMo/USY exhibits the highest
selectivity for the formation of aromatic hydrocarbons (29.8%). The hydrocarbon distributions and
aromatic selectivity of NiMo/Al-MCM-41 are similar to those of NiMo/SBUY-MCM-41. However,
some cyclic compounds (the ideal jet-fuel fraction) and more useable aromatic content are obtained
over the NiMo/SBUY-MCM-41 catalyst. Chen et al. [8] reported that cracking reactions (olefins
formed), Diels–Alder cyclization reactions (cycloalkanes formed), and dehydrogenation–aromatization
(aromatics formed) occur at Brønsted acid sites, Lewis acid sites, and Brønsted acid sites, respectively.
They also concluded that the formation of aromatics is jointly influenced by Brønsted and Lewis
acidity [8]. The selectivity for the formation of aromatics and cycloalkanes over the Al-MCM-41
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catalyst is the lowest, and it is probably because it has the fewest Brønsted acid sites (158 µmol g−1)
and the lowest B/L value (0.7). In addition, the density of strong acid sites in Al-MCM-41 is the lowest
(52 µmol g−1), which is not beneficial to the dealkylation of the higher aromatics into jet fuel [29].
USY exhibits the highest yield of aromatics because it has the highest density of Brønsted acid sites
(1851 µmol g−1) and the highest B/L value (2.9). The SBUY-MCM-41 catalyst has a higher and more
satisfactory selectivity for the formation of aromatics because of its moderate density of Brønsted acid
sites (442 µmol g−1), suitable B/L value (0.8), and moderate density of strong acid sites (198 µmol g−1).
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during cooking).  

Figure 4. (a) Selectivity for the formation of hydrocarbons with different carbon numbers over different
catalysts. (b) Selectivity for the formation of various jet-fuel-range hydrocarbons using different
catalysts. Reaction conditions: 380 ◦C, 3 MPa, 500 mL/mL.

From the above discussion, the SBUY-MCM-41 structure appears to benefit from both USY and
MCM-41. Cracking products escape quickly from MCM-41 with weak acidity and avoid being cracked
excessively. Then, the small cracking products form cycloalkanes and aromatics on the dealuminated
Y building units with strong acidity, and the higher cycloalkanes and aromatics compose the jet
fuel fraction.

Figure 5 shows the variation in product distribution of the C9-15 hydrocarbons (jet-fuel fraction)
vs. time on stream. The iso-/n-paraffin ratio (i/n) and the selectivity for the formation of aromatics
decrease slightly with time because the acid sites become covered by basic nitrogen compounds (such
as dimethylamine, which is formed after the deterioration of oil and the condiments added to oil
during cooking).
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2.5. Effects of Temperature, Pressure, and Hydrogen-to-Oil Ratio on the Hydrotreatment of WCO

The effect of temperature on hydrocracking performance is shown in Figure 6. The WCO
conversions are 90%, 100%, and 100% at 340, 380, and 400 ◦C, respectively, and the yields of OLPs are
very similar to one another (82.9%, 82.1%, and 80.2%). The selectivity for the formation of gasoline
products dramatically increases with the decrease in diesel and jet-fuel selectivity because the cracking
is enhanced at high temperatures. The selectivity for the formation of iso-paraffin decreases because the
reaction is exothermic, and the selectivity for the formation of jet-fuel-range aromatics also decreases
with increasing temperature. Thus, an optimal temperature of 380 ◦C is obtained for jet-fuel selectivity
and properties.
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temperatures. Reaction conditions: 3 MPa and 500 mL/mL.

The influence of pressures (ranging from 2 to 4 MPa) on the hydroconversion of WCO was also
investigated (Figure 7), and 100% WCO conversions are achieved under these conditions. The yields
of OLPs gradually decrease as the pressure increases (83.9%, 82.1%, and 79.2% at 2, 3, and 4 MPa,
respectively). Furthermore, as the pressure increases, the selectivity for the formation of gasoline
products increases and the selectivity for the formation of diesel decreases. The selectivity for the
formation of jet fuel and iso-paraffin varies little with pressure. Low pressure favors the formation of
aromatics because it promotes cycloalkane dehydrogenation.
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MCM-41, and 4 NiMo/SBUY-MCM-41 are 11, 7, and 4. Figure 9 reveals that the selectivity for the 
formation of jet fuel varies little with the USY content. However, the selectivity for iso-paraffin 
decreases with the increase in USY content owing to the higher density of strong acid sites [30] from 
the secondary Y building units in the pore walls. The selectivity for the formation of cycloalkane 
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The effect of the H2/oil ratio on hydrocracking performance is shown in Figure 8. Approximately
100% WCO conversion is achieved under these conditions. The yields of OLPs at H2/oil ratios of 250,
500, and 750 are 82.5%, 82.1%, and 78.0%, respectively. As the H2/oil ratio increases, the selectivity for
the formation of jet fuel and iso-paraffin increases and then decreases, with an optimum value at an
H2/oil ratio of 500 mL mL−1. A low H2/oil ratio favors the formation of aromatics. A likely reason for
this is that low H2/oil ratios promote the dehydrogenation of alkanes and cycloalkanes.
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ratios. Reaction conditions: 380 ◦C, 3 MPa.

2.6. The Effects of USY Content on the Hydrotreatment of WCO

Figure 9 shows the variation in the product distribution and jet-fuel composition as the USY content
changes. The Na2SiO2·9H2O/USY mass ratios of 11 NiMo/SBUY-MCM-41, NiMo/SBUY-MCM-41, and
4 NiMo/SBUY-MCM-41 are 11, 7, and 4. Figure 9 reveals that the selectivity for the formation of jet fuel
varies little with the USY content. However, the selectivity for iso-paraffin decreases with the increase
in USY content owing to the higher density of strong acid sites [30] from the secondary Y building
units in the pore walls. The selectivity for the formation of cycloalkane increases, and the selectivity
for the formation of aromatics increases and then decreases as the USY content increases. Thus, the
content of USY has little influence on the hydrocarbon distribution, but it affects the hydrocarbon
composition significantly. Therefore, the USY content could be used to adjust product properties.
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3. Experimental

3.1. Materials

Commercial USY zeolite (Si/AlXRD = 4.1, Si/AlXRF = 8.8) was provided by Nankai University
Catalyst Co. (Tianjin, China), (NH4)6Mo7O24 (≥99 wt %, J&K Chemical Ltd., Beijing, China), sodium
hydroxide (NaOH), sodium silicate, and cyclohexane were supplied by Tianjin Guangfu Chemical
Industry (Tianjin, China). WCO was purchased from Tianjin Bihai Environmental Protection Ltd., Co.,
(Tianjin, China). The WCO used in this study contains a mixture of spent cooking oil and was mainly
gathered from local restaurants, after which it was filtered by a regular sieve to remove the remaining
food particles before it was used as feedstock. Table 4 lists the main physical and chemical properties.

Table 4. Chemical and physical properties of waste cooking oil.

Property Waste Cooking Oil

Acid value (mg KOH−1) 65.47
Palmitic acid (C16:0, wt %) 25.02
Linoleic acid (C18:2, wt %) 28.85

Oleic acid (C18:1, wt %) 39.69
Stearic acid (C18:0, wt %) 6.27

Other acid (wt %) 0.17

3.2. Catalyst Preparation

NiMo/SBUY-MCM-41 preparation: In a typical run [31], the cationic surfactant CTAB (10.934 g)
was dissolved in 150 mL of water containing 25 mL of HCl (10 M), and the resulting mixture was added
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to a solution containing 42.64 g of Na2SiO3·9H2O and 6 g of USY in 150 mL of water. The mixture was
stirred for 0.5 h, and then the pH was adjusted to 1.0. The mixture was transferred to an autoclave for
further condensation at a hydrothermal crystallization temperature of 120 ◦C for one day after stirring
at room temperature for 2 h. Next, the catalyst was dried at 120 ◦C for 12 h and then converted into an
H-type catalyst by three ion-exchange processes (10 g of sample in 100 mL of 0.5 M NH4NO3). Ni (4.0
wt %) and Mo (12 wt %) were loaded onto the hierarchical USY by incipient wetness co-impregnation
using aqueous Ni(NO3)2 and (NH4)6Mo7O24. Then, the samples were stored overnight at room
temperature, dried at 120 ◦C for 12 h, and calcinated at 550 ◦C for 5 h. The obtained catalyst was
designated NiMo/SBUY-MCM-41.

NiMo/Al-MCM-41 preparation: The above procedure was repeated without adding USY to
obtain MCM-41. Then, 4 g of the calcinated sample was further modified with 0.68 g of aluminum
isopropoxide in 160 mL of 0.03 M HCl solution. The drying, calcination, and Ni/Mo impregnation
were performed as above to obtain NiMo/Al-MCM-41.

3.3. Characterizations

XRD testing was conducted using a D/MAX-2500 X-ray diffractometer (Tokyo, Japan) with (Cu-Kα)
radiation at 40 kV and 140 mA. The zeolites were measured in the 2θ range from 0◦ to 10◦ and from 5◦

to 60◦, respectively.
A chemisorption physisorption analyzer (AMI-300, Altamira Instruments, Pittsburgh, PA, USA)

equipped with a thermal conductivity detector (TCD) was used to measure ammonia temperature
programmed desorption (NH3-TPD). After pretreatment at 500 ◦C in He for 1 h, the samples were
cooled to 80 ◦C, and NH3 adsorption was then carried out by NH3 in He at 120 ◦C for 30 min. After
removing weakly adsorbed NH3 by blowing with He at 393 K for 2 h, the NH3-TPD profile was
recorded from 120 ◦C to 700 ◦C.

The AMI-300 was also used to conduct H2-TPR experiments. After pretreatment at 450 ◦C in
He for 1 h, the samples were cooled to ambient temperature before measurement. A mixture of 10%
H2 + 90% He was heated at a heating rate of 10 ◦C/min up to 900 ◦C in the reduction step. For CO
chemisorption, after being pretreated in helium at 120 ◦C for 1 h, the sample (100 mg) was reduced in
H2 flow (50 cm3/min) at 450 ◦C for 2 h and then evacuated at 450 ◦C for 2 h. Afterward, the sample
was cooled to 40 ◦C under vacuum, and then the CO adsorption isotherm was recorded.

A Bruker Vertex 70 FTIR spectrometer (Karlsruhe, Baden-Württemberg, Germany) with a resolution
of 4 cm−1 was used for Py-FTIR measurements. The sample (10 mg) was pretreated under vacuum at
400 ◦C for 1 h and then cooled to 200 ◦C to record the background prior to adsorption experiments.
Pyridine was injected into the cell and kept for 30 min in flowing N2. Then, the spectra were recorded
between 1300 and 4000 cm−1.

The pore volumes, pore size distribution, and specific surface areas of the samples were measured
by N2 adsorption–desorption isotherms on a Micromeritics ASAP-2020 apparatus (Atlanta, GA, USA).
Before analysis, all samples were pretreated under vacuum at 300 ◦C for 4 h.

3.4. Hydrotreating of Waste Cooking Oil

The hydroconversion of WCO was carried out in a fixed-bed flow reactor (1.2 cm I.D. and 45 cm in
length). The reaction temperature range (from 340 ◦C to 400 ◦C) was dominated by four thermocouples
on the reactor wall and controlled by a thermocouple in the catalyst bed. Hydrogen was supplied at a
rate that ranged from 12 L/h to 36 L/h under an experimental pressure range of 2–4 MPa. SiC was
used to dilute 8 g of the catalyst to obtain a sufficient catalyst-bed length, and the catalyst was then
loaded into the steel reactor. WCO (20 wt %) in cyclohexane was used as the feedstock and supplied
at a flow rate of 0.8 mL/ min. The H2/oil ratio was determined by the hydrogen flow and the total
liquid feed flow. The fundamental reactions were conducted at 380 ◦C and 3 MPa with an H2/oil ratio
(mL/mL) of 500. The catalysts were presulfided in situ at 320 ◦C and 3.0 MPa for 4 h using 3.0 wt %
CS2 in cyclohexane.
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The products were collected and separated into gaseous products, liquid products (OLPs), and
water after the reaction reached stability (at least 5 h). The gaseous products were determined with
an Agilent Micro 3000 gas chromatograph equipped with three columns (molecular sieve, plot U,
and alumina) and TCD detectors. The organic liquid products were qualitatively analyzed with an
Agilent 6890N gas chromatography/5975N mass spectrometry (GC/MS) and quantitatively analyzed
using a gas chromatographs (Bruker 456 GC, Bruker, San Francisco, CA, USA) equipped with a flame
ionization detector (FID) and a commercial column (ZB-5 HT, 60 m × 0.25 mm × 0.25 µm). The water
was weighted. The conversion of WCO and the selectivity for the formation of hydrocarbons were
calculated by Equations (1)–(3):

Conversion = 100% × (FeedG − ProductG)/FeedG (1)

Selectivity(CxHy) = (CH)nproducts/Σ(CH)nproducts (2)

Selectivity for the formation of aromatics = Σ(CH)aromatics/Σ(CH)nproducts (3)

where FeedG and productsG represent the weights of WCO in the feed and the products, respectively;
(CH)nproducts represents the weight of Cn hydrocarbons in the products.

4. Conclusions

The density of strong acid sites and the hydrothermal stability of the SBUY-MCM-41 zeolite
assembled with Y building units were higher than those of Al-MCM-41 prepared by postgrafting with
aluminum isopropoxide. The micropores of the Y building units were inherited by the SBUY-MCM-41
zeolite, in which a special hierarchical structure was formed and the accessibility of reactants to the
micropore active sites was also improved. NiMo/SBUY-MCM-41 significantly enhanced the selective
cracking of waste cooking oil for jet-fuel-range hydrocarbons (37.3%), with the highest selectivity for
the formation of C10–C14 hydrocarbons and a satisfactory selectivity for the formation of jet-fuel-range
aromatics (7.6%) as well as a few cyclic compounds. The improved selectivity is the result of the special
hierarchical structure and acid distribution of SBUY-MCM-41. Thus, a new strategy is provided to
synthesize a hierarchical catalyst for producing alternative jet fuel from WCO.
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