Supporting information

Solvothermally Doping NiS₂ Nanoparticles on Carbons with Ferric Ions for Efficient Oxygen Evolution Catalysis

Lihong Xie,^{1, #} Dengke Zhao,^{1, #} Jiale Dai,^{1, #} Zexing Wu,² Ligui Li,^{1, 3,*}

¹ Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China. E-mail: esguili@scut.edu.cn (L. Li).

² State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042, Qingdao, China.

³ Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

**These authors contributed equally to this work.*

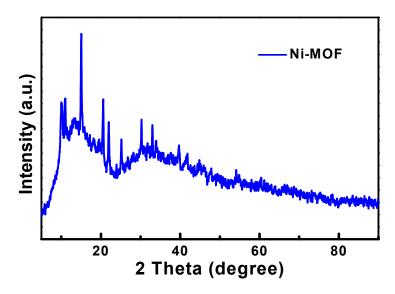


Figure S1. XRD profile of Ni-MOF.

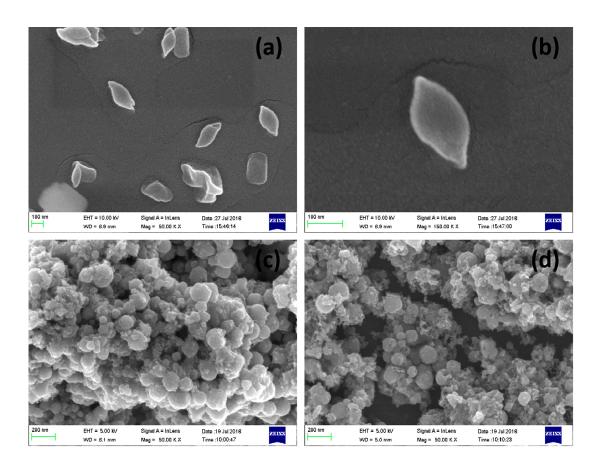


Figure S2. SEM images of (a,b) Ni-MOFs, (c) Fe-NiS₂/C-10, and (d) Fe-NiS₂/C-50.

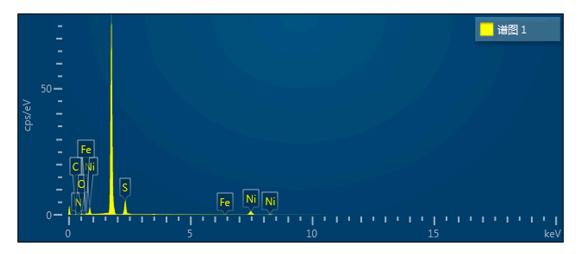


Figure S3. The EDS of Fe-NiS₂/C-30 sample.

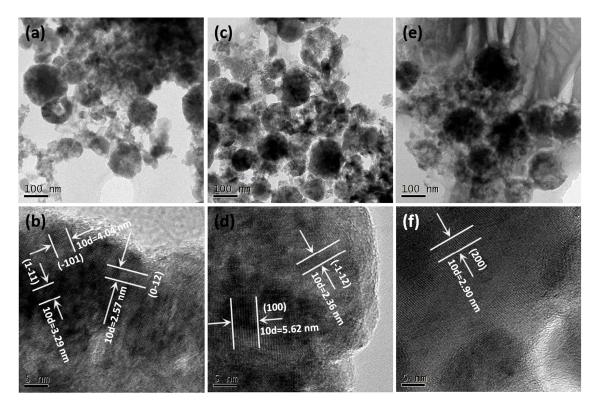
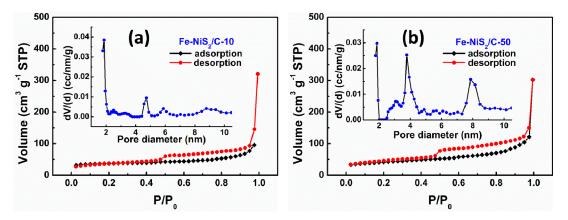



Figure S4. TEM images for (a, b) NiS₂/C, (c, d) Fe-NiS₂/C-10 and (e, f) Fe-NiS₂/C-50

Figure S5. N₂ adsorption-desorption isotherms for (a) Fe-NiS₂/C-10, and (b) Fe-NiS₂/C-50. Inset in each panel is the corresponding pore diameter distribution plot.

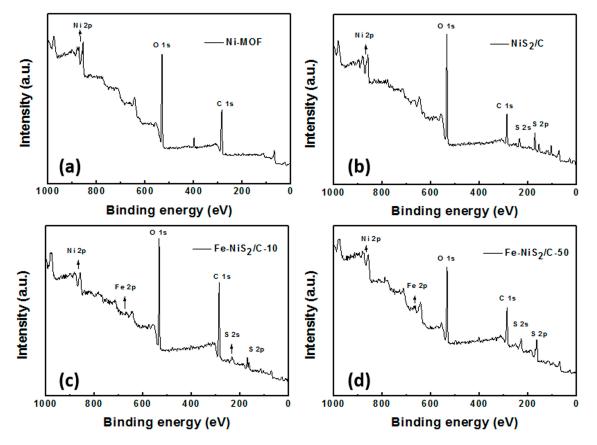


Figure S6. XPS spectra of (a) Ni-MOF, (b) NiS₂/C, (c) Fe-NiS₂/C-10 and (d) Fe-NiS₂/C-50.

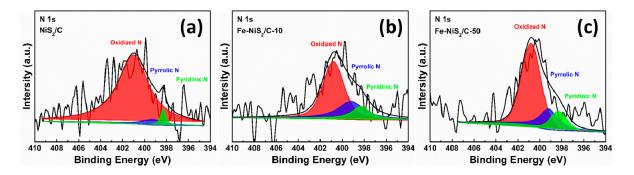


Figure S7. XPS high-resolution spectra of N 1s for (a) NiS₂/C, (b) Fe-NiS₂/C-10 and (c) Fe-NiS₂/C-50

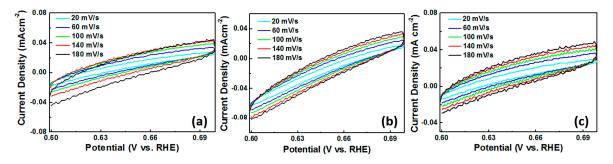


Figure S8. Cyclic voltammograms at different potential scan rates for (a) NiS₂/C, (b) Fe-NiS₂/C-10 and (c) Fe-NiS₂/C-50 samples.

Table S1	Percentages of	different types	of N in th	he series sam	ples in this work.

Catalyst	Pyridinic N (at.%)	Pyrrolic N (at.%)	Oxidized N (at.%)
Fe-NiS ₂ /C-10	14.3	27.5	58.2
Fe-NiS ₂ /C-30	7.1	9.8	83.1
Fe-NiS ₂ /C-50	13.9	20.4	65.7
NiS ₂ /C	3.3	5.0	91.7