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Abstract: Chondroitin sulfates are linear anionic sulfated polysaccharides found in biological tissues,
mainly within the extracellular matrix, which are degraded and altered by specific lyases depending
on specific time points. These polysaccharides have recently acquired relevance in the pharmaceutical
industry due to their interesting therapeutic applications. As a consequence, chondroitin sulfate (CS)
lyases have been widely investigated as tools for the development of new pharmaceuticals based on
these polysaccharides. This review focuses on the major breakthrough represented by chondroitin
sulfate-degrading enzymes and their structures and mechanisms of function in addition to their
major applications.
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1. Introduction

Proteoglycans consist of a central protein core with O-linked glycosaminoglycan (GAG)
side-chains. They can be categorized into four main groups based on differences between the repeating
disaccharide units comprising GAGs: heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate
(DS) and hyaluronic acid (HA) (Figure 1A).

CSs are a family of highly sulfated polysaccharides that have recently acquired relevance
in the pharmaceutical industry due to their interesting therapeutic applications [1]. Structurally,
these are linear polysaccharides and their basic unit is a disaccharide composed of a
D-glucopyranosyluronic acid (♦) or L-idopyranosiduronic acid (♦) glycosidically linked (β (1→3)) to
an N-acetyl-D-galactosamine residue (�) in which the hydroxyl groups undergo sulfation at one or
more positions. The disaccharide subunits found in natural CSs are shown in Figure 1B.
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Figure 1. (A) The general structure of proteoglycans. The chemical structures of glycosaminoglycans 
(GAGs) are shown. (B) The natural sulfation patterns of the chondroitin sulfates (CSs). 
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been proposed [5]. Table 1 summarizes the physiological functions of CSs in animal cells and tissues 
and their potential medical/pharmacological applications. 
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Wound healing [27] 

Figure 1. (A) The general structure of proteoglycans. The chemical structures of glycosaminoglycans
(GAGs) are shown. (B) The natural sulfation patterns of the chondroitin sulfates (CSs).

Their ubiquity in the human body and their essential functions for life have aroused great interest
in their medical applications [2]. In addition to their well-known applications in the treatment
of osteoarthritis [3] and thrombosis [4], other potential pharmaceutical applications have been
proposed [5]. Table 1 summarizes the physiological functions of CSs in animal cells and tissues
and their potential medical/pharmacological applications.

Table 1. Physiological functions in animal cells and tissues and potential medical/pharmacological
applications of CSs.

Physiological Function Reference

Cell–cell/cell–matrix interactions [6]

Immune modulation [7,8]

Host–pathogen interactions [9,10]

Anticoagulant activities [11,12]

Potential Therapeutic Application

Anti-inflammatory [13,14]

Antiviral [15,16]

Antimalarial vaccine [17,18]

Anticancer [19,20]

Antiparasitic [21]

Biomarker [22]

Liver regeneration [23]

Repair of the central
nervous system [24,25]

Neuroprotective [26]

Wound healing [27]
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Additionally, CSs are widely used in other pharmacological applications such as coating materials
for implants, hydrogels in controlled release applications, components of 3D-constructs such as tissue
engineering scaffolds and even as biosensors in diagnostic devices [8,28]. Table 2 summarizes these
applications of CS.

Table 2. Applications of CS in 2D and 3D systems.

Glycosaminoglycan Conjugate Type of Application Target Tissue/Application Method Reference

Biotinylated Hyaluronic Acid(HA)CS Material coating In vitro biosensor [29]

Collagen/CS Implant coating Osseointegration [30,31]

Gelatin methaclylate/CS methacrylate Hydrogel Cartilage regeneration [32]

Cross-linked thiolated HA, CS,
Heparine, gelatin Biodegradable hydrogel Drug/Growth factor (GF) delivery,

tissue regeneration [33–35]

Cross-linked CS–tyramine Hydrogel Drug delivery [36,37]

Chemically cross-linked HA/CS Hydrogel
matrix/particles Wound dressing, skin regeneration [38–41]

Photochemically cross-linked HA/CS Hydrogel Cell encapsulation, cartilage repair [42]

Collagen-CS Porous scaffold Neovascularization, tissue (bone)
regeneration [43,44]

Genipin cross-linked HA, CS Porous scaffold Cartilage regeneration [45]

Carbodiimide-cross-linked HA, CS,
Dermatan sulfate (DS), Chitosan gelatin Porous scaffold Cartilage regeneration [46,47]

Electrospun collagen–CS Porous mesh Artificial extracellular matrix(ECM),
cartilage regeneration [48–50]

Chitosan–CS Nanoparticles GF delivery, bone regeneration [51]

However, CSs present not only positive outcomes with regard to their pharmaceutical
applications—numerous downsides have also been pointed out. On the one hand, CSs extracted from
natural sources have a high structural diversity in terms of their molecular weight (Mw) and degree
of sulfation. On the other hand, the preservation of the functionality of CSs while maintaining their
biocompatibility is a challenging task and must be addressed depending on the specific application.

To provide solutions to these drawbacks, new approximations have been described during the
last decade, with the enzymatic modification of CSs being one of the most widely employed [52,53].
In this context, glycosaminoglycan lyases (GAGLs) can be combined with separation methods for the
preparation of CS oligosaccharides for biological evaluations as well as for disaccharide analysis and
polysaccharide sequencing [54].

These enzymes have important therapeutic value for the treatment of diseases related to GAGs [55].
Hence, chondroitinase ABC, for example, is being tested in clinical trials for the treatment of spinal
cord injury [56]. The same CSase inhibits melanoma invasion, proliferation and angiogenesis [57],
and has also been applied as a subretinal injection [58] and for the treatment of intervertebral disc
protrusion [59]. On the other hand, HAase has been successfully used as an adjuvant for infiltration
anesthesia due to the increased membrane permeability induced by the hydrolysis of HA [60]. Finally,
some GAG-degrading enzymes are used as an adjuvant therapy in cancer, in which their administration
to reduce the progression of metastatic breast cancer is well tolerated without adverse events [61,62].

Despite the great interest in these direct medical applications, in this review we focused only on
the GAG-degrading enzymes, specifically CSases as biocatalytic tools for the development of new
pharmaceuticals based on GAGs.

2. Types, Mechanism and Structure of CS Lyases

GAG-degrading enzymes are widely distributed in nature and are structurally diverse depending
on whether they are produced by eukaryotic or prokaryotic organisms. These enzymes catalyze the
depolymerization of GAGs and are classified according to their enzymatic mechanism in two categories;
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hydrolases and lyases. They act with an extremely high degree of stereospecificity. Additionally, a
classification based on amino acid sequence similarities has been proposed (http:www.cazy.org).

Mammalian enzymes are hydrolases and their mechanism is the same as glucosidases in which
the glycosyl–oxygen (C1–O) bond is hydrolyzed by the addition of a water molecule [63], affording
saturated oligosaccharide products. In contrast, bacterial enzymes degrade GAGs either through
hydrolysis or by a β-elimination reaction (lyases). The latter degrades GAGs by cleaving the
oxygen–aglycone (O–C4) linkages on the non-reducing side of uronic acids yielding unsaturated
C4–C5 products [64–66]. The mechanism of action of these enzymes is shown in Figure 2. In the first
step, the negative charge on the C5 carboxylate group is neutralized presumably by interaction with a
positively charged arginine or calcium ion, thereby reducing the acidity of the C5 proton. Next, the
proton at C5 of the GlcA is abstracted by a His residue, leading to the elimination of the 4-O–glycosidic
bond and the formation of a double bond between C4–C5 of the uronic acid. Finally, an acidic residue
of the protein (Tyr) donates a proton to the O-leaving group of the glucosamine, reconstituting the
hydroxyl functional group at the reducing end of the cleaved bond and releasing the products.
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These enzymes catalyze reactions with an extremely high degree of stereospecificity, with
extensive variation in specificity among lyases for different GAG classes [54]. Accordingly,
these enzymes can be divided into three groups depending on the composition of the repeating
disaccharide unit: GlcA-β(1-4)-GlcNAc for heparinases (Hsases) and hyaluronidases (HAases), and
GlcA-β(1-3)-GlcNAc for chondroitinases (CSases) [67]. In this review we focused on those that degrade
polysaccharides in which the uronic acids are β(1→3) linked to N-acetyl-D-galactosamine (CS/DS) or
to N-acetyl-D-glucosamine (HA) (Figure 3). Some exceptions have been found to this stereospecificity.
Hence, an HSase isolated from Erpobdellidae (Nephelopsis obscura and Erpobdella punctata), for example,

http:www.cazy.org
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degrades HA by hydrolysis [68,69] while HAase lyase from Streptococcus pneumoniae degrades HA/CS
by β-elimination [66].
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In addition to the GAG-class specificity, the majority of these enzymes degrade glycosidic bonds
with absolute uronic acid epimer specificity towards either GlcA or IdoA, as well as being dependent
on their sulfation pattern. Thus, CSase AC specifically degrades the glucoronic acid-containing
glycosidic bonds present in CS-A (chondroitin 4-sulfate) and CS-C(chondroitin 6-sulfate). In fact, the
nomenclature for the CSases has been established based on this sulfation pattern specificity. Hence,
CSase AC, for instance, cleaves CS-A and CS-C but not DS (chondroitin 2,4-Disulfate, CS-B).

Finally, the GAG-degrading enzymes can present endolytic or exolytic modes of action. In the
former, the cleavage occurs in the middle of the GAG chain, yielding a mixture of disaccharides,
tetrasaccharides and longer oligosaccharides. In the latter, the enzyme degrades the chain from the
end, releasing only disaccharide products.

Table 3 and the following text summarize the findings regarding the classes, mechanisms and
structures of the CS-specific lyases.

Table 3. CS-degrading enzymes (lyases).

Lyase Substrate PDB Species Catalytic tetrad Ref.

CSase ABC II
(exo)

CSase ABC II
(exo)

CSase ABC I
(endo)

CS, DS, HA
Tetra-CS,
Tetra-DS

CS, DS, HA

2Q1F
1HNO

Bacteroides
thetaiotaomicron
Proteus vulgaris
Proteus vulgaris

Glu628–Tyr461–His454– Arg514

His453–Tyr 460

His501–Tyr508–Arg560– Glu653
[70–74]

CSase AC II
(Exo)

CSase AC I
(Endo)

CSase ACY253A

CS, HA
CS, HA

1RWF;1RWG;1RWH;1RW9;1RWA;1RWC
2WA; 2XO3

1CB8
1HMW;1HM2;1HM3;1HMU

Arthrobacter
aurescens

Streptomyces
coelicor A3

Flavobacterium
heparinum
Pedobacter
heparinus

His225–Tyr234–Arg288–Glu371 [75–78]

CSase B
(Endo) DS 1DBO;1DBG;1OFL;1OFM Flavobacterium

heparinum Lys250–Arg271–His272 [79,80]

HAase HA, CS 1OJO;1OJM;
1OJN;1OJP

Streptococcus
pneumoniae [81]

2.1. Chondriotinases ABC

Chondriotinases ABC (EC 4.2.2.4) with endo activity (CSase ABC I) [73] or exo activity (CSase ABC
II D) [70] are catalysts with a high degree of stereospecificity. CSases ABC can degrade chondroitin, CS
(A and C), DS and HA independent of their sulfation pattern by β-elimination, producing unsaturated
disaccharides and tetrasaccharides. They are not active against keratan sulfate, HS and heparin. In rare
cases, a single enzyme is able to degrade both uronic acid isomers (IdoA and GlcA) efficiently.
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2.1.1. CSase ABC I Endolyase

CSase ABC I endolyase from Proteus vulgaris (EC:4.4.4.20) presents three domains (ID:1HNO); an
N-terminal domain with a fold similar to that of carbohydrate-binding domains, a middle domain
with an (α/α)5 fold (typical for CSase AC) and a C-terminal domain with β-sheet folding (typical for
CSase B) (Figure 4). The substrate-binding site is in the middle domain, a wide-open cleft with two
structural folds that evolved to perform these reactions in an epimer-specific fashion [70–73] (Figure 4).
The putative catalytic residues of CSase ABC I from P. vulgaris are His501, Tyr508, Arg560 and Glu653,
which were identified by site-directed mutagenesis [74]. The His501 residue plays the critical role of the
proton abstraction of C5 from the IdoA/GlcA moiety during catalysis, the Glu653 residue is involved in
a hydrogen bonding network in the active site, the Tyr508 residue is essential in the protonation of the
leaving group in the GAG and the Arg560 residue near the IdoA/GlcA is able to stabilize the carbanion
intermediate formed during catalysis, making the C5 proton more labile (Figure 4). This enzyme
presents a shared identity of over 90% in the following species: Shigella sp. FC1655, Proteus mirabilis,
Klebsiella pneumoniae, Proteus hauseri and Proteus penneri. This enzyme is able to promote functional
recovery in the injured central nervous system via its role in the disruption of the normal organization
of the extracellular matrix.
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Figure 4. CSase ABC I from P. vulgaris. The N-terminal domain is colored green, the middle (catalytic)
domain is in blue and the C-terminal domain is in yellow. The Ca2+ ion is shown as a red sphere. The
catalytic tetrad is shown by the stick (His501, Tyr508 and Arg560).

2.1.2. CSase ABC II Exolyase from Bacteroides thetaiotaomicron

CSase ABC II exolyase from Bacteroides thetaiotaomicron (gene BT_3324) is a broad-specificity lyase
which degrades CSs and DS to yield only disaccharide products. This enzyme has a preference for
CS-A over CS-C and exhibits low activity against HA. The enzyme presents three structural domains;
an N-t domain which adopts a β-jellyroll fold (carbohydrate binding), a central domain which adopts
an (α/α)5 incomplete toroid and a C-t domain which contains four antiparallel β-sheets. Glu628,
Tyr461, His454 and Arg514 contribute to the catalytic tetrad and one structural Ca2+ ion is located in the
N-t domain [70]. Tyr461 in a deprotonated state acts as the catalytic base abstracting the C5-bound
proton from glucuronic acid, His454 serves as a catalytic base and Glu628 plays a part in positioning
both His454 and Arg514 in the precise orientation necessary for effective CS/DS degradation, but is
not directly involved in catalysis. Similar proteins with a shared identity of 90% are found in other
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species, including: Bacteroides faecis CAG:32, Bacteroides thetaiotaomicron CAG:40, Bacteriodes sp. AR20
and Klebsiella oxytoca.

2.1.3. CSase ABC II Exolyase from Proteus vulgaris

CSase ABC II exolyase from Proteus vulgaris has a broad specificity of GAG activity which
preferentially degrades the tetra- and hexasaccharide derivatives of CS and DS produced by the CS
ABC endolyase, to yield the respective disaccharides. This enzyme is inhibited by Ni2+. The catalytic
residues are His453 (proton acceptor) and Tyr 460 (proton donor).

2.1.4. Other CSases

Recently, CSase ABC from Acinetobacter sp. C26 has been described, with the finding that its
activity increases in the presence of a number of different ions (Na+, K+, Mn2+) and is strongly inhibited
by other kinds of ions (Cu2+, Hg2+, Al3+) [82].

CSase ABC displays a more open cleft in the central domain (substrate binding), which is different
from the other lyases.

2.2. CSases AC

CSases AC with endo activity (from Flavobacterium heparinum) [83] or exo activity (from
Arthrobacter aurescens) [83] degrade CS (CS-A or CS-C) and HA, generating unsaturated disaccharides.
These enzymes show a low level of homology with several hyaluronate lyases, although they share
its fold. CSase AC from Flavobacterium heparinum is composed of two domains; an α-helical domain
(N-t) within enzymatic activity residues and a β-sheet domain (C-t). These enzymes are sensitive
to the 5-epimerization of the GlcA moiety, so they can only degrade CSs containing a domain with
an (α/α)5 toroid fold. The crystal structures of the lyase–GAG complex showed that His225 is the
candidate for the catalysis and the Tyr–His–Glu–Arg residues are present in the catalytic center. Four
residues—His225, Tyr234, Arg288 and Glu371—are near the catalytic site of chondroitin AC lyase from
Flavobacterium heparinium (Figure 5) [78]. The His225 residue is a candidate for the general base and
the removes the proton attached to C5 of the glucuronic acid, the Tyr234 residue is able to protonate
the leaving group and the Arg288 residue contributes to charge neutralization and stabilization of the
enolate anion intermediate. These enzymes could have endolytic or exolytic activity depending on
the microorganism (Table 3), while the activity itself is independent of metal ions [78]. The structural
alignment of CSases AC and CSase ABC shows that the Tyr–His–Arg–Glu catalytic tetrads of CSases
AC have counterparts in CSase ABC [78].
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2.3. CSase B

CSase B from Flavobacterium heparinum [83] cleaves endolytically on the GAG DS, generating
oligosaccharides, tetrasaccharides and unsaturated 4-sulfate-disaccharides. This enzyme is often used
in studies to assess the structural characterization and antithrombin activity of DS by chromatographic
techniques. The first crystallographic study of this enzyme with DS facilitated the identification of the
subsites in the active site [79,80]. Later, establishing the structure of the lyase–CS complex provided
a more complete picture of the active site of the enzyme including the identification of the catalytic
residues Lys250, Arg271 and His272 [79,84]. Mutation of the amino acid Lys resulted in the inactivation
of the enzyme, which is attributed to the role of the residue in stabilizing the carbanion of C5 formed
during catalysis. The 3D X-ray structure revealed the presence of a divalent ion coordinated by
conserved acidic residues (one asparagine and two glutamates) and utilized for charge neutralization
of the acidic group of iduronic acid [84] (Figure 6). The activity of this enzyme is inhibited by Co2+, Fe2+

and Ba2+ ions. CSase B adopts a β-helical fold, typical of several polysaccharide lyases and hydrolases
(Figure 6).
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2.4. HAases

HAases from Streptococcus pneumoniae degrade hyaluronan and chondroitin/CSs only in four
positions of the sulfate group based on the β-elimination mechanism [85]. These lyases show low
levels of homology with chondroitinases of type AC. The enzymatic activity residues are within the
N-terminal domain. The enzyme molecule is composed of two domains, the catalytic domain having a
(α/α)5 barrel fold (N-t) and the C-t domain comprising an antiparallel β-sandwich (Figure 7). The
function of the C-t domain is the modulation of the oligosaccharide substrate access to the catalytic
cleft present in the N-t domain. Any changes in the binding mode of the protein were detected when
used as disaccharides of CS-O, CS-A and CS-C.
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The HAase from Vibrio sp. FC509 degrades hyaluronan and CS variants except CS-E
(GlcA-GalNAc(4,6S)), while the desulfation of the GalNAc unit abrogates its activity on the β(1-4)
linkage between the disaccharide units. This protein uses a general acid–base catalysis mechanism as
with the other lyases [62].

3. Applications of CSases

3.1. Synthetic Applications: Preparation of Low Molecular Weight Chondroitin Sulphate (LMWCS) as
Therapeutic Agents

The preparation of low molecular weight chondroitin sulphate (LMWCS) has mainly been
accomplished through acidic, basic or oxidative treatment or by enzymatic depolymerization,
allowing oligosaccharides with different molecular weights and degrees of polydispersity to be
obtained depending on the employed degradation conditions [86] (Table 4). In the case of the
chemical procedures, fairly drastic conditions can cause undesirable reactions and partial or total
desulfation of the obtained oligosaccharides, modifying the biological properties of the resulting
oligosaccharides [87].

Table 4. The Mw of natural and depolymerized CS.

SAMPLE a

MOLECULAR WEIGHT (Da)

Natural
Depolymerized CS/Low Molecular Weight of CS

HCl/H20/60 ◦C NaOH/MAOS b/60 ◦C Enzymatic H2O2(30%)

CS-B 18.150 1.826 8.085 2.583 1.561
CS-S 31.300 1.217 4.269 1.994 1.511
CS-P 10.070 2.690 3.663 2.920 2.191

a CS-B, from bovine cartilage; CS-S, from shark cartilage; CS-P, from porcine cartilage. b Microwave-assisted
organic synthesis.

On the contrary, enzymatic depolymerizations are more specific and allow better control of the
processes, as well as being environmentally friendly. Additionally, the polysaccharide substrates and
enzymes are relatively inexpensive, meaning the oligosaccharides can be prepared in large quantities at
a low cost. For this reason, several specific (CSase AC I, CSase AC II and CSase ABC) and non-specific
enzymes (HAases) have been employed in the preparation of LMWCS.

These oligosaccharides have therapeutic applications, the depolymerization of natural CSs being
a strategy that can be used to remove their main limitations in many medical applications. It is well
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understood that CSs of natural origin have high polydispersity, varying significantly in chain length
even when isolated from a single source [88,89]. Furthermore, their high molecular weights preclude
their use in many medical uses, impacting not only their biological activities but also their equally
important pharmacological properties [90]. For these reasons, their degradation products (LMWCS)
have been found to be much more useful than native CSs.

Several studies have demonstrated that changes in the Mw cause different immune responses and
that the use of long-chain CSs can even result in the cancellation of the anti-inflammatory activity [91,92].
In a similar way, LMWCS has demonstrated a superior effect on collagen-induced arthritis as compared
to that of intact CSs [93]. To this must be added that even though the Mw is similar, the biological effect
is further augmented in the case of CSs with a narrow range of molecular weights, i.e., polysaccharides
with low polydispersity [94]. An explanation for these results is that only LMWC derivatives reach the
bloodstream, as absorption through the gastrointestinal tract is a Mw-dependent process [95,96]. In fact,
it has been reported that LMWCS administered orally for osteoarthritis treatment is more readily
absorbed and hence arrives at the joint and is distributed into the cartilage more effectively than native
CSs [97]. Finally, the Mw also has an important effect on the elimination of exogenously administered
CSs. The use of LMWCS prevents its hepatic accumulation and improves its renal filtration [98,99].

Accordingly, the preparation of LMWCS for osteoarthritis treatment has attracted much attention
in recent years, especially with the cloning, expression and characterization of new GAG lyases such
as chondroitin lyase AC II from Arthrobacter aurescens [100] and the chondroitinase ABC I from Proteus
vulgaris with a maltose-binding protein [101] or with glyceraldehyde-3-phosphate dehydrogenase [102]
as fusion proteins.

LMWCS 4-sulfated polysaccharides have been prepared by the degradation of CS-A from
bovine trachea tissue using a bovine testicular hyaluronidase [103]. These 4-sulfated polysaccharides
(CS-A) are known for their antioxidant activity, a capacity that is closely related to the treatment of
diseases such as cancer, cardiovascular and cerebrovascular diseases and ischemia, as well as aging
processes [104]. In a similar way, the digestion of CS-A from cow cartilage with an extracellular
chondroitinase ABC produced by Sphingomonas paucimobilis afforded CS-A oligosaccharides. These
promote in vitro cardiocytoprotection, decreasing the well-known damage induced by isoproterenol
and accelerating the recovery of myocardial cells [105].

Recently, the preparation of low molecular weight fucosylated chondroitin sulfates (LMWfCSs)
has attracted much attention [106] (Figure 8). Fucosylated CSs (fCSs) are CSs with fucose branches
invariably extending from the 3-O-position of the GlcA. These have demonstrated anticoagulant and
antithrombotic activities as substitutes for heparin [107] and have attracted considerable attention as
potential antitumor drugs [108,109] and for their application as a treatment of hyperlipidemia [110,111].
Unfortunately, native fCSs can also cause side effects such as the activation of FXII, platelet
aggregation [112], hypertension and spontaneous bleeding in humans [87], limiting their therapeutic
applications. However, LMWfCSs have demonstrated that in addition to the retention or even
enhancement of biological activities in comparison with native fCS, depolymerized polysaccharides
exhibit negligible adverse effects [113].
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3.2. Analytical Applications

3.2.1. Oligosaccharide Mapping

Knowledge of the oligosaccharide sequences that contain GAGs is an important prerequisite for a
better understanding of their biological roles and the development of pharmaceuticals based on them.
Oligosaccharide mapping is an approach comparable to the peptide mapping of proteins that has
been applied to GAGs in order to provide information on which oligosaccharide sequences are the
bioactive domains.

The mapping technique involves specific enzymatic scission of polysaccharide chains, followed
by high-resolution separation of the degradation products by chromatographic methods and the final
analysis of the obtained oligosaccharides [114]. In this context, the use of enzymes that can specifically
isolate certain domains through the selective digestion of other domains has been reported. Hence
for example, a lyase from the marine bacterium Vibrio sp. FC509 has been used to isolate several CS-E
oligosaccharides and their interaction with herpes simplex virus receptors has been analyzed [115].
As such, the bioactive domain in the binding to the virus has been established [115], opening the door
to the development of new antiviral drugs (Figure 9).
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In a similar way, CS from shark fin cartilage has been digested with chondroitinase AC-I from
Flavobacterium heparinum, an enzyme which cannot act on the galactosaminidic linkages bound to
GlcA(2-O-sulfate)-GalNAc(6-O-sulfate) disaccharides (CS-D units) (Figure 10A) [116]. This digestion
afforded five novel hexasaccharide sequences in addition to three previously reported sequences
containing D-D-tetrasaccharide motifs (Figure 10B), which might be useful for the establishment of
useful structure–function relationships in neuroglycobiological fields with regard to novel biomarkers.
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3.2.2. Compositional Analysis of GAGs

Another important application of GAG lyases is the compositional analysis of polysaccharides,
both from natural sources and semi-synthetic products. Normally, a small quantity of the
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polysaccharide is exhaustively depolymerized using the proper lyase; then, the CS disaccharides
obtained from this process are analyzed by High Perfermance Liquid Chromatograpgy (HPLC) and
quantified by calculating the total peak areas of the disaccharides derived from a CS calibration curve.

As an example of the analysis of CS from natural sources, very recently a comprehensive
disaccharide analysis of polysaccharides from different shellfish was performed to better understand
the GAG structures in marine organisms [117]. According to the obtained results, the degree of sulfation
in CSs depends on the species and, surprisingly, ∆Di-diSE is present in most shellfish (Figure 11).
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Finally, enzymatic digestion followed by disaccharide analysis using HPLC is a very useful
procedure for evaluation of the composition of semi-synthetic CSs. For example, we employed this
method to determine the composition of a library of polysaccharides recently prepared in order to
establish novel structure–function relationships [118] (Figure 12). Concretely, we showed that the
particular sulfate distribution within the disaccharide repeating-unit plays a key role in the binding
of growth factors, modulating the surface charge of the helical structure that, interestingly, has a
significant influence on the binding capacity of CSs with several Grow Factors [119]. These findings
provide additional strategies in the development of new CSs as growth factor binders for a broad
range of therapeutically relevant applications [120].
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4. Conclusions and Future Perspectives

The types, structure and activity of CS-degrading enzymes were the focus of this review.
These lyases can be employed as tools for the development of new pharmaceuticals based on CS
structures. During the last decades, these structures have been demonstrated to be involved not only in
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structural functions, but also in modulating numerous biological processes, such as angiogenesis, cell
differentiation, growth and migration. These findings provide a promising avenue in the development
of new pharmaceuticals based on CSs for a broad range of therapeutically relevant applications,
including new drugs, drug carriers and medical implants.

However, it should be note that their development still faces challenges, which includes the
discovery of more efficient and universal methods to synthesize LMWCSs with precisely controllable
structures. Moreover, their interactions with growth factors and cells as well as their biological
processes still need to be studied further. Thus, among other things, deep insight into CSs sequences
as well as their relation to biological functions is required.

In our opinion, chondroitin sulfate-degrading enzymes will gradually become more present in
the pharmaceutical industry in the next years, not only as excellent drug candidates [55–62] but also as
important tools for the sustainable development of CS-based pharmaceutical products.
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120. Pudełko, A.; Wisowski, G.; Olczyk, K.; Koźma, E.M. The dual role of the glycosaminoglycan
chondroitin-6-sulfate in the development, progression and metastasis of cancer. FEBS J. 2019. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.bbagen.2013.01.001
http://www.ncbi.nlm.nih.gov/pubmed/23313164
http://dx.doi.org/10.1182/blood-2005-07-3043
http://www.ncbi.nlm.nih.gov/pubmed/16672689
http://dx.doi.org/10.1016/j.ab.2009.09.031
http://www.ncbi.nlm.nih.gov/pubmed/19769936
http://dx.doi.org/10.1074/jbc.RA117.001238
http://www.ncbi.nlm.nih.gov/pubmed/29414785
http://dx.doi.org/10.1093/glycob/cws137
http://www.ncbi.nlm.nih.gov/pubmed/23019154
http://dx.doi.org/10.1016/j.carbpol.2017.12.076
http://dx.doi.org/10.1016/j.carbpol.2018.08.120
http://www.ncbi.nlm.nih.gov/pubmed/30286994
http://dx.doi.org/10.1016/j.carbpol.2018.03.036
http://www.ncbi.nlm.nih.gov/pubmed/29661313
http://dx.doi.org/10.1111/febs.14748
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Types, Mechanism and Structure of CS Lyases 
	Chondriotinases ABC 
	CSase ABC I Endolyase 
	CSase ABC II Exolyase from Bacteroides thetaiotaomicron 
	CSase ABC II Exolyase from Proteus vulgaris 
	Other CSases 

	CSases AC 
	CSase B 
	HAases 

	Applications of CSases 
	Synthetic Applications: Preparation of Low Molecular Weight Chondroitin Sulphate (LMWCS) as Therapeutic Agents 
	Analytical Applications 
	Oligosaccharide Mapping 
	Compositional Analysis of GAGs 


	Conclusions and Future Perspectives 
	References

