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Abstract: In this study, we reported on a novel mimetic peroxidase, deuterohemin–Ala–His–Glu,
(Dh–A–H–E). The kinetic parameters of Dh–A–H–E suggested that it was a mimetic peroxidase and
followed the ping–pong mechanism. Compared to horseradish peroxidase, Dh–A–H–E exhibited
excellent stability when tested at different pH and temperatures, and using different organic solvents.
Based on our above results, a new method using Dh–A–H–E has successfully been developed for the
fast and quantitative detection of trace amounts of glucose.
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1. Introduction

Horseradish peroxidase (HRP) is a naturally occurring enzyme that has been widely applied
in organic synthesis and biotransformation [1]. For example, it has been successfully used as a
bleaching detergent. It can activate hydrogen peroxide and convert the nonluminescent substrate,
3,3′,5,5′–tetramethylbenzidine (TMB), into a luminescent product, oxidized TMB (oxTMB). This
application of HRP has been used for analytical diagnostics [2,3]. Furthermore, HRP can be used in
many small–scale organic reactions, including oxidative coupling [4], selective hydroxylation [5], and
oxygen–transfer reactions [6]. However, high temperatures, harsh pH conditions, and a number of
chemical compounds can denature HRP easily, which severely limits its extensive application [7–9].
Owing to the limitations on reaction conditions, many efforts have been made to find, or design, a new
artificial enzyme to mimic HRP. In the past decades, many small molecule analogs (fluorescein [10],
ferrocene [11], etc.), and nanomaterials (Au nanoclusters [12], cobalt incorporated mesoporous silica
nanomaterials [13], etc.) have been reported to have peroxidase–like activity. However, the majority of
these reported enzyme mimics possess only poor peroxidase activity.

As a kind of peroxidase mimic, Heme–peptide has been researched for years because it is highly
stable and can be easily synthesized. Heme–peptides are produced by covalently linking peptides to
ferriporphyrin and have shown great potential for use in medical detection, as biocatalysts, sensitive
sensors, and in other applications [14–16]. Microperoxidases (MPs) have been the most effective
peroxidases among these heme–peptides. Several MPs have been previously characterized, such as
microperoxidase–11 (MP–11), microperoxidase–9 (MP–9), and microperoxidase–8 (MP–8). Owing to
their high peroxidase activity, external stability, and structural consistency, MPs have been used in
many applications. However, the chemical synthesis of MP–11 has proven difficult [17].
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We chemically synthesized the catalytically active center, comprising of deuterohemin (Dh) linked
to alanine and histidine, according to a published method [18,19]. When glutamic acid (E) was linked
to the catalytically active center to generate Dh–A–H–E, it was found that this new heme–peptide
could efficiently catalyze TMB in the presence of H2O2 (Scheme 1). In addition, the catalytic properties
of Dh–A–H–E were investigated. Another important advantage of Dh–A–H–E is that its optimal pH is
7.4 and it can exhibit high peroxidase activity at pH 7.0, which can dramatically simplify the procedure
of glucose detection [20–22]. Thus, an improved method for detecting trace amounts of glucose using
Dh–A–H–E was developed.
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Figure 1. UV absorption of (1) Dh–A–H–E + 3,3’,5,5’–tetramethylbenzidine (TMB), (2) TMB + H2O2, 
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Scheme 1. Catalytic reaction of deuterohemin–Ala–His–Glu (Dh–A–H–E).

2. Results and Discussion

2.1. The Peroxidase Activity of Deuterohemin–Ala–His–Glu (Dh–A–H–E)

To evaluate the catalytic activity of Dh–A–H–E as a mimetic peroxidase, TMB was mixed with
Dh–A–H–E in the presence of H2O2. As shown in Figure 1, solutions containing TMB and low
concentrations of Dh–A–H–E were almost colorless, while the solution of TMB and H2O2 was slightly
blue. When we mixed Dh–A–H–E, TMB, and H2O2 together for 5 min, a blue solution was obtained,
and a strong characteristic absorption peak of oxidized TMB (oxTMB) was observed at 652 nm. These
results indicated that Dh–A–H–E had peroxidase activity.
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2.2. Optimizing the Reaction Conditions

Temperature and pH can influence the catalytic activity of peroxidases, including HRP and other
peroxidase mimics [23,24]. Thus, to determine the optimal reaction conditions for the peroxidase
activity of Dh–A–H–E, we tested a variety of experimental conditions. The relationship between the
temperature and catalytic activity of Dh–A–H–E is shown in Figure 2a, with the optimal temperature
for Dh–A–H–E activity occurring at 25 ◦C. The optimal pH for Dh–A–H–E catalytic activity was 7.4
and the effect of pH on activity is shown in Figure 2b.
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Figure 2. Effect of temperature and pH on the catalytic activity of Dh–A–H–E. (a) The reaction was
carried out at different temperatures (5–75 ◦C) and the peroxidase activity of Dh–A–H–E was measured
according to the standard assay in Section 3.3. (b) The reaction was carried out under various pH
levels (4–9) and the peroxidase activity of Dh–A–H–E was measured according to the standard assay
in Section 3.3. The catalytic activity at pH 7.4 and 25 ◦C is taken as 100%, and experiments were
performed in triplicate to obtain the mean value.

2.3. Kinetics

To further characterize the catalytic ability of Dh–A–H–E, the reaction rates under
different conditions were measured across various substrate concentrations corresponding to the
Michaelis–Menten curves for both H2O2 (Figure 3a) and TMB (Figure 3b). Double–reciprocal plots
were generated to analyze the kinetic parameters with H2O2 and TMB (Figure 3c,d). From Table 1,
the Km (the Michaelis constant, representing the affinity of the enzyme for the substrate) of Dh–A–H–E
was calculated to be 0.27 mM for H2O2 and 0.20 mM for TMB. The Kcat (the turn number) of Dh–A–H–E
was calculated to be 2.37 s−1 for H2O2 and 2.10 s−1 for TMB. The catalytic efficiency (Kcat/Km) of
Dh–A–H–E was measured to be 8.78 × 102 s−1·M−1 for H2O2 and 1.05 × 103 s−1·M−1 for TMB. These
data indicated that Dh–A–H–E had both a high affinity and a high catalytic activity.

Table 1. The catalytic efficiency of Dh–A–H–E.

Catalyst
Substrate (TMB) Substrate (H2O2)

Km
(mM)

Kcat
(s−1)

Kcat/Km
(s−1·M−1)

Km
(mM)

Kcat
(s−1)

Kcat/Km
(s−1·M−1)

Dh–A–H–E 0.20 2.10 1.05 × 103 0.27 2.37 8.78 × 102
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Figure 3. Kinetics assay of Dh–A–H–E. (a) Michaelis–Menten curves against H2O2 concentration,
in which the concentration of TMB was fixed at 2.0 mM; (b) Michaelis–Menten curves against TMB
concentration, in which the concentration of H2O2 was fixed at 1.0 mM; (c) double–reciprocal curves
against H2O2, in which the concentration of TMB was fixed at 2.0 mM; and (d) double–reciprocal
curves against TMB, in which the concentration of H2O2 was fixed at 1.0 mM. Experiments were
performed in triplicate to obtain the mean value.

2.4. Catalytic Mechanism

Analysis of the reaction mechanism was conducted by varying the concentrations of H2O2 and
TMB (Figure 4a,b). A set of fixed TMB concentrations was chosen, and the concentration of H2O2

was varied at each TMB concentration. The data were plotted in double–reciprocal form, which
provided a series of apparently parallel lines. A series of parallel lines could also be observed by
re–plotting the data with TMB as the variable substrate. Just like the natural HRP [25], the linearity
of the double–reciprocal plots for both the H2O2 and TMB preparations strongly supported a
ping–pong mechanism.Catalysts 2019, 9, 168 5 of 9 
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2.5. Stability of Dh–A–H–E

The stability of Dh–A–H–E is crucial for extending its potential applications. In this study,
Dh–A–H–E was pre–incubated for 2 h at different pH and temperatures, and using different organic
solvents. Then, we examined the residual activity of Dh–A–H–E to evaluate its stability. Dh–A–H–E
retained over 70% of its activity following a 2 h incubation at pH 4.4–9.4 for 2 h, as shown in Figure 5a.
After a 2 h incubation at different temperatures, Dh–A–H–E retained >95% of its baseline activity
(Figure 5b). The residual activity of Dh–A–H–E after a 2 h incubation with organic solvents (DMSO,
acetone, and acetonitrile) was >38% of the baseline activity (Figure 5c). By contrast, HRP had little
catalytic activity in organic solvents or at high temperatures [26]. Another important advantage of
Dh–A–H–E is that it retains its catalytic activity even after storage in an aqueous solution for 3 months
(Figure 5d). These results demonstrated that Dh–A–H–E had excellent stability and was very suitable
for real–life applications.
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(b) Dh–A–H–E was incubated at a range of temperature values from 5 to 75 ◦C for 2 h, and then the
residual activity was measured according to the standard assay in Section 3.3; (c) Dh–A–H–E was
incubated with different organic solvents (DMSO, acetone, and acetonitrile), and then the residual
activity was measured according to the standard assay in Section 3.3; and (d) Dh–A–H–E was stored in
an aqueous solution for a certain number of days, then the residual activity was measured according to
the standard assay in Section 3.3. Experiments were performed in triplicate to obtain the mean value.

2.6. Application of Dh–A–H–E for H2O2 and Glucose Detection

On the basis of the above results, we developed a sensitive and simple system for detecting the
trace amounts of H2O2 glucose by Dh–A–H–E (Figure 6a). A good linear relationship between the
absorbance at 652 nm and the concentration of H2O2 can be observed in Figure 6a. The detection
limit was in the range of 2.0–75 µM, and the linear regression equation was A = 0.0160C + 0.0706
(R2 = 0.9820). The detection limit was 0.5 µM. Compared to other peroxidases [27–30] (Table S1),
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the excellent sensitivity of Dh–A–H–E makes it well–suited for H2O2–mediated glucose detection.
First, glucose was oxidized by glucose oxidase (GOx) in NaH2PO4–Na2HPO4 buffer (pH 7.0) for 30 min
to produce H2O2. Then, Dh–A–H–E and TMB were directly added to this solution for another 5 min.
A typical glucose concentration–response curve was obtained and plotted in Figure 6b, with a linear
regression equation of A = 0.0073C + 0.2553 (R2 = 0.9601). The linear range of glucose detection for the
assay was between 10 µM and 0.18 mM, with a detection limit of 2 µM. These parameters were more
sensitive than other similar peroxidase mimic–based methods, as in [27–30] (detailed in Table S2).
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3. Materials and Methods

3.1. Materials

Rink amide resin, Fmoc amino acids, 1–hydroxybenzotriazole (HOBT), and benzotriazol–1–yl–
oxytripyrrolidinophosphonium hexafluorophosphate (PYBOP) were purchased from Gl Biochem
(Shanghai, China). N,N–Dimethylformamide (DMF) and dichloromethane (DCM) were purchased
from Beijing Beihua Fine Chemicals Co., Ltd. (Beijing, China). Acetonitrile (HPLC grade, ≥99%)
was purchased from Oceanpak Alexative Chemicals Co., Ltd. (Gothenburg, Sweden). TMB, H2O2

(30%), and glucose oxidase (GOx, 200 U/mg) were purchased from Dalian Meilun Biotechnology Co.,
Ltd. (Dalian, China). Ultrapure water was prepared using an ultrapure water purification system
(Sichuan, China).

3.2. Synthesis of Dh–A–H–E

Dh–A–H–E was synthesized using solid phase peptide synthesis technology. The reaction was
carried out in a solid phase peptide reactor. Rink amide resin was swelled in the reactor for 1 h with
DCM. The deprotection reagent was then added to the reactor in DMF. Then, a three–fold excess of
the Fmoc group–protected amino acids, HOBT and PYBOP, and a six–fold excess of organic base
were added to the reactor in DMF for 2 h. Then, deuterohemin/HOBT/PYBOP/organic base/rink
amide resin were added in the amount of substance ratio 0.8:1.5:1.2:2:1 to the reactor, in DCM, for at
least 8 h. The peptide was dried in a vacuum dryer. Trifluoroacetic acid was used to cleave the
peptide from the resin. The crude peptide was purified by Reversed–phase high–performance liquid
chromatography (RP–HPLC). Dh–A–H–E was analyzed by RP–HPLC at 387 nm (Figure S1) and
identified by Time–of–flight mass spectrometry (TOF–MS) (Figure S2). The synthesized peptide, with
a purity of more than 95%, was obtained.
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3.3. Standard Peroxidase Activity Assay of Dh–A–H–E

The reaction was carried out in a 1 mL cuvette. NaH2PO4–Na2HPO4 buffer solution (0.7 mL,
0.1 M, pH 7.4), TMB (0.1 mL, 10 mM), Dh–A–H–E (0.1 mL, 10 µM), and H2O2 (0.1 mL, 5 mM) were
added in order. The reaction was carried out at 25 ◦C for 5 min. The oxidation product of TMB was
detected with a UV–VIS recording spectrophotometer (UV–2501PC) at 652 nm. Experiments were
performed in triplicate to obtain the mean value.

3.4. Optimizing the Reaction Conditions

To investigate the effect of temperature, the reaction was carried out at different temperatures
(5, 15, 25, 35, 45, 55, 65, and 75 ◦C). Then, the peroxidase activity assay of Dh–A–H–E was measured
according to the standard assay in Section 3.3.

To investigate the effect of pH, the reaction was carried out at different pH l (4, 5, 6, 7, 7.2, 7.4, 7.6,
8 and 9). Then, the peroxidase activity assay of Dh–A–H–E was measured according to the standard
assay in Section 3.3.

3.5. Kinetics of Dh–A–H–E

The kinetic assays were implemented at 25 ◦C in 1 mL NaH2PO4–Na2HPO4 buffer solution
(0.1 M, pH 7.4), containing 100µL Dh–A–H–E (10 µM) as a peroxidase in the presence of H2O2 and
TMB. The kinetic constant of Dh–A–H–E with H2O2 as a substrate was obtained by adding a certain
concentration (2.0 mM) of TMB and different concentrations (0.1, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0 mM) of
H2O2. The kinetic constant of Dh–A–H–E with TMB as a substrate was obtained by adding a certain
concentration (1.0 mM) of H2O2 and different concentrations (0.05, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2 and
1.5 mM) of TMB.

3.6. Stability of Dh–A–H–E

The stability was tested in this study. Dh–A–H–E was incubated at different pH (4.4, 5.4, 6.4, 7.4,
8.4, and 9.4), temperatures (5, 15, 25, 35, 45, 55, 65, and 75 ◦C), and in different organic solvents (DMSO,
acetone, and acetonitrile) for 2 h. Then, the residual activity was measured according to the standard
assay in Section 3.3.

3.7. Detection of the Trace Concentration of H2O2 and Glucose Using Dh–A–H–E

First, glucose oxidase (GOx, 20 µL, 1.0 mg/mL), 20 µL of glucose at different concentrations, and
NaH2PO4–Na2HPO4 buffer (160 µL, 0.1 M, pH 7.0) were mixed and incubated at 37 ◦C for 30 min.
Then, NaH2PO4–Na2HPO4 buffer (600 µL, 0.1 M, pH 7.4), TMB (100µL, 10 mM), and Dh–A–H–E
(100 µL, 10 µM) were added to the above solution together. The mixture was incubated at 25 ◦C for 5
min, and the absorbance was recorded at 652 nm.

4. Conclusions

In this study, we reported on the synthesis of a novel mimetic peroxidase, Dh–A–H–E. Dh–A–H–E
can be easily synthesized using solid phase peptide synthesis technology. Its high peroxidase activity
towards TMB and its excellent stability in a range of harsh environmental conditions indicates that
Dh–A–H–E is a valid mimetic peroxidase, and that its properties make it ideal in industrial and medical
testing applications.
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