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Abstract: A copper-catalyzed direct sulfoxidation reaction by C(sp3)–H bond activation has
been developed. Starting from sample aromatic methyl thioethers with aryl halides, versatile
biologically-active arylbenzylsulfoxide derivatives were efficiently synthesized in good to high
yields under mild conditions. This new methodology provides an economical approach toward
C(sp3)–C(sp2) bond formation.
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thioethers; arylbenzylsulfoxide derivatives

1. Introduction

Benzylsulfoxide derivatives are the most privileged scaffolds in natural biological products [1],
pharmaceutical chemistry [2], and functionalized materials [3]. In particular, benzylsulfoxide
derivatives exhibit a wide range of biological properties, such as anti-bacterial activity (Scheme 1I) [4],
anti-cancer activity (Scheme 1II) [5], and HIV inhibition (Scheme 1III) [6].
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1. Introduction 

Benzylsulfoxide derivatives are the most privileged scaffolds in natural biological products [1], 
pharmaceutical chemistry [2], and functionalized materials [3]. In particular, benzylsulfoxide 
derivatives exhibit a wide range of biological properties, such as anti-bacterial activity (Scheme 1I) 
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Scheme 1. Important biological benzylsulfoxide derivatives. 

The most common synthetic method for benzylsulfoxide derivatives is sulfide oxidation, as 
illustrated in Scheme 2A [7]. The strong oxidizing agents and reactive organolithium contribute to 
the wide use of this method, although its scope is limited. Benzylsulfoxides have also been 
successfully obtained by Pd-catalyzed Suzuki cross-coupling (Scheme 2B) [8]. In 2013, Walsh et al. 
reported a more efficient synthesis route for benzylsulfoxides with a greater atom economy [9]. This 
is the first example of the direct arylation of methyl sulfoxides. However, these methods lack 
sufficient practicality for the synthesis of benzylsulfoxides because of their high substrate 
requirements and limited catalyst compatibility. Therefore, the development of an efficient and less 
stringent reaction route for the synthesis of benzylsulfoxides remains highly desirable.  

Scheme 1. Important biological benzylsulfoxide derivatives.

The most common synthetic method for benzylsulfoxide derivatives is sulfide oxidation,
as illustrated in Scheme 2A [7]. The strong oxidizing agents and reactive organolithium contribute to
the wide use of this method, although its scope is limited. Benzylsulfoxides have also been successfully
obtained by Pd-catalyzed Suzuki cross-coupling (Scheme 2B) [8]. In 2013, Walsh et al. reported a more
efficient synthesis route for benzylsulfoxides with a greater atom economy [9]. This is the first example
of the direct arylation of methyl sulfoxides. However, these methods lack sufficient practicality for
the synthesis of benzylsulfoxides because of their high substrate requirements and limited catalyst
compatibility. Therefore, the development of an efficient and less stringent reaction route for the
synthesis of benzylsulfoxides remains highly desirable.

Catalysts 2019, 9, 105; doi:10.3390/catal9010105 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
http://www.mdpi.com/2073-4344/9/1/105?type=check_update&version=1
http://dx.doi.org/10.3390/catal9010105
http://www.mdpi.com/journal/catalysts


Catalysts 2019, 9, 105 2 of 8

Catalysts 2019, 9, x FOR PEER REVIEW 2 of 8 

 

R
S

[O]

i) Oxidation of Sulfides

ii) Suzuki Coupling

Ar
S
O

Br +
Pd(OAc)2

XantPhos, CsF Ar
S
O

Ar
S

Me + Ar
S
OCu(OAc)2, DBU

1,4-Dioxane, O2

iii) This work !

R1

R
S

R1O

(HO)2B
R1

R1

X
R1

R1

(A)

(B)

X = Br, Cl

(C)

 
Scheme 2. Previous sulfoxide synthesis approaches. 

The activation of the C–H bond is considered as one of the most useful C–C bond formation 
strategies [10]. However, many studies have demonstrated that, compared with the C(sp2)–H bond 
functionalization reactions, the application of C(sp3)–H bond functionalization reactions remains a 
challenge in this field [11], as the reactions of C(sp3)–H bond functionalization require harsher 
conditions and activated systems [12]. Given the present challenges, the development of more 
efficient and environmentally-friendly chemical processes for drug discovery is required [13]. 
Herein, we report on a novel copper-catalyzed direct sulfoxidation reaction by the activation of the 
C(sp3)–H bond (Scheme 2C). This method can provide a simple and convenient route to 
biologically-active benzylsulfinylbenzene compounds.  

2. Results 

At first, as shown in Table 1, the reaction conditions were screened based on the model reaction 
of thioanisole 1a with bromobenzene 2a (Table 1). The Cu(II) salts displayed a high catalytic activity 
in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (entries 1–6). In addition, Cu(OAc)2 
exhibited superior catalytic efficiency over all of the examined copper catalysts (entry 6). These 
results indicated that DBU was the optimal base (entry 12), which produced the product 3a with an 
87% yield. It was also noted that the product yield was decreased when the reaction temperature 
was less or greater than 110 °C (entries 13 and 14). Thus, the optimum reaction condition was 
determined as the 1a and 2a ratio of 1:1.2 in the presence of Cu(OAc)2 (10 mol%) and DBU (2 equiv) 
in 1,4-dioxan (3 mL) at 110 °C for 10 h (Table 1, entry 12). 

Next, a wide array of thioanisoles 1 and bromobenzene 2 were subjected to this reaction, and 
provided the products with good to excellent yields (Table 2). Thioanisoles bearing an 
electron-donating group (Me and MeO) demonstrated better activity than those bearing an 
electron-withdrawing group (Cl, Br, and CF3). Bromobenzenes 2, bearing an electron-withdrawing 
group, also demonstrated better activity than those bearing an electron-donating group. It was 
notable that the very strong electron-withdrawing effect of the trifluoromethyl group was still 
obtained with a 71% yield (entry 10) of the corresponding product 3n. 

Furthermore, other aromatic methyl thioethers 1 with aryl chlorides 4 also successfully 
provided the corresponding products (Table 3). Naphthalene-2-thiol displayed a moderate 
reactivity with chlorobenzene, with an 86% yield (entry 6). However, this reaction did not take 
place for thioanisoles 1, which bear the electron-deficient group substitutes CF3 and NO2. 
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The activation of the C–H bond is considered as one of the most useful C–C bond formation
strategies [10]. However, many studies have demonstrated that, compared with the C(sp2)–H bond
functionalization reactions, the application of C(sp3)–H bond functionalization reactions remains
a challenge in this field [11], as the reactions of C(sp3)–H bond functionalization require harsher
conditions and activated systems [12]. Given the present challenges, the development of more efficient
and environmentally-friendly chemical processes for drug discovery is required [13]. Herein, we
report on a novel copper-catalyzed direct sulfoxidation reaction by the activation of the C(sp3)–H
bond (Scheme 2C). This method can provide a simple and convenient route to biologically-active
benzylsulfinylbenzene compounds.

2. Results

At first, as shown in Table 1, the reaction conditions were screened based on the model reaction of
thioanisole 1a with bromobenzene 2a (Table 1). The Cu(II) salts displayed a high catalytic activity in the
presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (entries 1–6). In addition, Cu(OAc)2 exhibited
superior catalytic efficiency over all of the examined copper catalysts (entry 6). These results indicated
that DBU was the optimal base (entry 12), which produced the product 3a with an 87% yield. It was
also noted that the product yield was decreased when the reaction temperature was less or greater
than 110 ◦C (entries 13 and 14). Thus, the optimum reaction condition was determined as the 1a and
2a ratio of 1:1.2 in the presence of Cu(OAc)2 (10 mol%) and DBU (2 equiv) in 1,4-dioxan (3 mL) at
110 ◦C for 10 h (Table 1, entry 12).

Next, a wide array of thioanisoles 1 and bromobenzene 2 were subjected to this reaction,
and provided the products with good to excellent yields (Table 2). Thioanisoles bearing an
electron-donating group (Me and MeO) demonstrated better activity than those bearing an
electron-withdrawing group (Cl, Br, and CF3). Bromobenzenes 2, bearing an electron-withdrawing
group, also demonstrated better activity than those bearing an electron-donating group. It was notable
that the very strong electron-withdrawing effect of the trifluoromethyl group was still obtained with a
71% yield (entry 10) of the corresponding product 3n.

Furthermore, other aromatic methyl thioethers 1 with aryl chlorides 4 also successfully provided
the corresponding products (Table 3). Naphthalene-2-thiol displayed a moderate reactivity with
chlorobenzene, with an 86% yield (entry 6). However, this reaction did not take place for thioanisoles
1, which bear the electron-deficient group substitutes CF3 and NO2.
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Table 1. Optimization of the reaction conditions a.
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We also did the two controlled experiments (Scheme 4). The results showed that both of the two
reactions proceeded smoothly.
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The results suggested that the sulfoxidation product originating from the thioanisoles was
followed by the copper-catalyzed oxidation in the presence of oxygen [15]. Based on these results, we
proposed a possible reaction mechanism, as seen in Scheme 5. At the beginning of the reaction, the
ligand coordination process of Cu(OAc)2 and DBU generated intermediate 9. After that, intermediate
10 was followed by the ligand exchange step with DBU [16,17]. Then, intermediate 10 was converted
to intermediate 11 by the oxidation addition step. Copper p-benzyl intermediates were previously
observed to serve as synthetic intermediates. Next, intermediate 12 was provided from intermediate 11
via copper p-benzyl coordination, which generated a Cu species 13. Through the reductive elimination
step, intermediate 13 generated the desired product of benzylsulfoxide derivatives, and concomitantly
formed intermediate 9, which re-entered the catalytic cycle.
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4. Materials and Methods

4.1. Materials

All reagents used in the experiment were obtained from commercial sources and used without
further purification. Solvents for chromatography were of technical grade and distilled prior to
use. Solvent mixtures were understood as volume/volume. Chemical yields refer to pure isolated
substances. Catalysts were purchased from Alfa Aesar (analytical reagent, Tianjin, China). Thin layer
chromatography (TLC) employed glass 0.25 mm silica gel plates with an F-254 indicator (Spectrum,
USA), visualized by irradiation with UV light. The Nuclear Magnetic Resonance (NMR) spectra were
recorded on a Bruker AVANCE III-400 spectrometer (Bruker, Germany) at 400 MHz and 100 MHz for
1H and 13C NMR in CDCl3, respectively. The NMR chemical shift was reported in ppm relative to
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7.26 and 77 ppm of CDCl3 as the standards of 1H and 13C NMR, respectively. The mass spectra were
performed on a Bruker Esquire 3000 plus mass spectrometer (Bruker, Germany) equipped with an
Electron Spray Ionization (ESI) interface and ion trap analyzer. The Electron Spray Ionization High
Resolution Mass Spectrometry (ESI-HRMS) was tested on a Bruker 7-tesla Fourier Transform Mass
Spectrometry (FT-ICR MS) equipped with an electrospray source.

4.2. General Synthesis Methods of 3a–5f

A solution of methylsulfanylbenzene 1a (0.5 mmol, 62.1 mg), bromobenzene 2a (0.6 mmol,
94.2 mg), Cu(OAc)2 (10 mol%, 9.1 mg), and DBU (2 equiv, 152.2 mg) in 1,4-dioxane (3 mL) was stirred
under air. After being stirred at 110 ◦C for 10 h, it was cooled to room temperature. Then, the reaction
mixture was quenched with saturated salt water (10 mL). Next, the solution was extracted with ethyl
acetate (3 × 10 mL), and then washed with saturated Na2CO3 solution. The organic layers were
combined and dried by Na2SO4 and concentrated in vacuo. The pure product benzylsulfinylbenzene
3a (94.1 mg, 87% yield) was afforded by flash column chromatography on silica gel (cyclohexane/ethyl
acetate = 5:1).

5. Conclusions

In conclusion, we reported on a copper-catalyzed C(sp3)–H bond direct sulfoxidation reaction.
Starting from sample aromatic methyl thioethers with aryl halides, versatile biologically-active
arylbenzylsulfoxide derivatives were synthesized in good to high yields under a moderate condition.
This one-step transformation to a synthetically valuable internal benzylsulfoxide scaffold was realized
for the first time with high efficiency. The reaction mechanism was studied by kinetic deuterium isotope
labeling experiments. This present reaction provides a high efficiency approach to the formation of
C(sp3)–C(sp2) bonds.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/1/105/s1.
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