

Article

High-Efficiency Catalytic Conversion of NO_x by the Synergy of Nanocatalyst and Plasma: Effect of Mn-Based Bimetallic Active Species

Yan Gao ^{1,2,3,*}, Wenchao Jiang ¹, Tao Luan ^{4,*}, Hui Li ^{1,2,3}, Wenke Zhang ^{1,2,3}, Wenchen Feng ⁴ and Haolin Jiang ⁴

- ¹ Department of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China; jiang_wc@126.com (W.J.); lihui_sdjzu@sina.com (H.L.); zhangwk10@126.com (W.Z.)
- ² Key Laboratory of Renewable Energy Building Utilization Technology of Ministry of Education, Shandong Jianzhu University, Jinan 250101, China
- ³ Key Laboratory of Renewable Energy Building Application Technology of Shandong Province, Shandong Jianzhu University, Jinan 250101, China
- ⁴ Engineering Laboratory of Power Plant Thermal System Energy Saving of Shandong Province, Shandong University, Jinan 250061, China; wcfeng18@126.com (W.F.); haolin_jiang@hotmail.com (H.J.)
- * Correspondence: gaoyan.sdu@hotmail.com (Y.G.); prof.luantao@gmail.com (T.L.); Tel.: +86-138-6415-4887 (Y.G.); +86-175-1531-9316 (T.L.)

Received: 30 November 2018; Accepted: 16 January 2019; Published: 18 January 2019

Abstract: Three typical Mn-based bimetallic nanocatalysts of Mn-Fe/TiO₂, Mn-Co/TiO₂, Mn–Ce/TiO₂ were synthesized via the hydrothermal method to reveal the synergistic effects of dielectric barrier discharge (DBD) plasma and bimetallic nanocatalysts on NO_x catalytic conversion. The plasma-catalyst hybrid catalysis was investigated compared with the catalytic effects of plasma alone and nanocatalyst alone. During the catalytic process of catalyst alone, the catalytic activities of all tested catalysts were lower than 20% at ambient temperature. While in the plasma-catalyst hybrid catalytic process, NO_x conversion significantly improved with discharge energy enlarging. The maximum NO_x conversion of about 99.5% achieved over $Mn-Ce/TiO_2$ under discharge energy of 15 W·h/m³ at ambient temperature. The reaction temperature had an inhibiting effect on plasma-catalyst hybrid catalysis. Among these three Mn-based bimetallic nanocatalysts, Mn–Ce/TiO₂ displayed the optimal catalytic property with higher catalytic activity and superior selectivity in the plasma-catalyst hybrid catalytic process. Furthermore, the physicochemical properties of these three typical Mn-based bimetallic nanocatalysts were analyzed by N_2 adsorption, Transmission Electron Microscope (TEM), X-ray diffraction (XRD), H₂-temperature-programmed reduction (TPR), NH₃-temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). The multiple characterizations demonstrated that the plasma-catalyst hybrid catalytic performance was highly dependent on the phase compositions. Mn–Ce/TiO₂ nanocatalyst presented the optimal structure characteristic among all tested samples, with the largest surface area, the minished particle sizes, the reduced crystallinity, and the increased active components distributions. In the meantime, the ratios of $Mn^{4+}/(Mn^{2+} + Mn^{3+} + Mn^{4+})$ in the Mn–Ce/TiO₂ sample was the highest, which was beneficial to plasma-catalyst hybrid catalysis. Generally, it was verified that the plasma-catalyst hybrid catalytic process with the Mn-based bimetallic nanocatalysts was an effective approach for high-efficiency catalytic conversion of NO_x, especially at ambient temperature.

Keywords: NO_x conversion; DBD plasma; Manganese; bimetal; nanocatalyst

1. Introduction

Nitrogen oxides (NO_x) are regard as the main air pollutant contributing to acid rain, photochemical smog, greenhouse effects, and ozone depletion [1]. Selective catalytic reduction (SCR) of NO_x by NH₃ or urea is proposed to be the highly effective and completely developed method to eliminate NO_x pollution [2]. In coal fired power plants, the commercial catalyst of V₂O₅-WO₃(MoO₃)/TiO₂ is used for its excellent catalytic performance in the typical standard SCR reaction [3]:

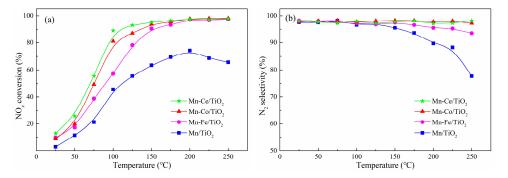
$$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$$
(1)

While the $V_2O_5 - WO_3(MoO_3)/TiO_2$ catalysts demand a strict temperature window of 300–400 °C, which limit the arrangement flexibility of this kind of catalyst. The vanadium-based catalysts can not reach satisfactory efficiency of eliminating NO_x when the reaction temperature is lower than 250 °C. In recent years, the fast selective catalytic reduction (fast SCR) attracted the attention of many research groups due to its lower reaction temperature and higher reaction efficiency [4]:

$$NO + NO_2 + 2NH_3 \rightarrow 2N_2 + 3H_2O \tag{2}$$

The catalysts appropriate to low temperature SCR are strongly desired, which could be located at downstream electrostatic precipitator and desulfurizer suitably [5]. However, the fast SCR still needs reaction temperature within 150–300 °C to achieve high efficiency of NO_x elimination [4,6]. Furthermore, the mole ratio of NO:NO₂ maintained at 1:1 is difficult in the real flue gas. Hence, it is necessary to develop an effective approach to eliminate NO_x with light concentration of NO₂ at low temperature region, which could be beneficial to the deNO_x device arrangement, as well as the SO₂ resistance.

Plasma-catalyst hybrid catalysis has been proved as an efficient technology to unite the high reactivity of plasma and the high selectivity of catalyst [7–9]. During the plasma-catalyst hybrid process, the plasma modifies not only the chemical properties and morphologies of the catalysts, but also changes the reaction pathway of an original catalytic process [10]. Plasma is confirmed to form an abundance of active species, such as O and O_3 radicals, which could oxidize NO into NO₂, further promoting catalysis via the fast SCR approach, especially at low temperature [4]. For the plasma-catalyst hybrid catalysis, the catalysts of V₂O₅–WO₃/TiO₂ [11], Ag/r-Al₂O₃ [12], Cu-ZSM-5 [13], and Mn–Ce/ZSM5–MWCNTs [4] have presented acceptable NO_x conversion efficiency under relatively low specific input energy. While the NO_x conversion maximum could still be further promoted at lower reaction temperature and smaller energy consume. Among the various transition metal elements applied in the catalysts for NO_x reduction, manganese displays superior activity especially at the low temperature, which can be attributed to the multifarious types of labile oxygen and high mobility of valence states [1]. Meanwhile, it has been found that iron, cobalt, and cerium species can combine with manganese to produce bimetallic catalysts, which contain abundant oxygen vacancies on the catalyst surface, forming strong interaction bands at atomic scale, such as Mn-O-Fe [14], Mn-O-Co [15], and Mn-O-Ce [16]. Moreover, the active metal species of FeO_x , CoO_x , and CeO_x are also regarded as the three typical promoters for NO_x conversion, which serve as core catalyst components of active metal oxides, supplying surface oxygen to accelerate NO_x elimination [14,15,17]. However, the effects of Mn-based bimetallic catalysts on the plasma-catalyst hybrid catalysis, especially the Mn–Fe/TiO₂, Mn–Co/TiO₂, and Mn–Ce/TiO₂ nanocatalysts have not been explored clearly.


In this study, we systematically synthesized three typical Mn-based bimetallic nanocatalysts of $Mn-Fe/TiO_2$, $Mn-Co/TiO_2$, and $Mn-Ce/TiO_2$. The synergistic effects of non-thermal plasma and Mn-based bimetallic nanocatalysts on NO_x catalytic conversion were investigated compared with the catalytic effects of plasma alone and nanocatalysts alone. Meanwhile, the influence factors of reaction temperature and discharge energy were taken into consideration during studying the synergetic mechanisms focusing on NO_x conversion of plasma and bimetallic nanocatalysts hybrid system. Furthermore, the physicochemical properties of these three typical Mn-based bimetallic nanocatalysts

were analyzed by Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), X-ray diffraction (XRD), H₂-temperature-programmed reduction (TPR), NH₃-temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS), in order to expose the relationship between structures and activities. The purpose of this work was mean to explore the synergistic reinforcement mechanism of plasma-catalysis hybrid catalytic process over Mn-based bimetallic nanocatalysts for NO_x elimination with high catalytic efficiency and satisfied catalytic selectivity, especially at atmospheric temperature.

2. Results and Discussion

2.1. NO_x Conversion of Catalyst Alone Catalytic Process

The NO_x catalytic conversion and the catalytic selectivity of three typical Mn-based bimetallic nanocatalysts of Mn–Fe/TiO₂, Mn–Co/TiO₂, and Mn–Ce/TiO₂ were exhibited in Figure 1, and the catalytic ability of Mn/TiO₂ catalyst was also depicted as a contrast. For all the tested Mn-based bimetallic nanocatalysts, the NO_x conversion increased significantly with the temperature rising from 25 °C to 250 °C and presented excellent performance (>90%, above 150 °C). Compared with the Mn/TiO₂ catalyst, the catalytic activities of Mn-based bimetallic nanocatalysts were remarkably improved at the whole temperature range, potentially due to the strong interaction of Mn-O-Xbond (X refered to Fe, Co or Ce), the improvement of Brønsted acid sites and Lewis acid sites, and the enhancement of Eley-Rideal (E-R) mechanism reaction [18], which could be further verified by the following physicochemical properties. As shown in Figure 1a, $Mn-Ce/TiO_2$ nanocatalyst achieved higher catalytic activity than the other samples in the temperature range of 25~200 °C. The Mn–Fe/TiO₂ nanocatalyst showed the minimum NO_x conversion among these three Mn-based bimetallic nanocatalysts, while still much larger than that of Mn /TiO₂ sample. However, the catalytic selectivity of Mn–Fe/TiO₂ nanocatalyst was lower than that of Mn–Co/TiO₂ and Mn–Ce/TiO₂ within 175~250 °C, as exhibited in Figure 1b. Furthermore, it could be easy to find there was no obvious difference of NO_x conversion or catalytic selectivity over these three Mn-based bimetallic nanocatalysts at ambient temperature, which was proposed to be due to the low catalytic activities for all the tested catalysts.

Figure 1. Catalytic performance of catalysts without plasma. Gas mixture composition: 300 ppm NO, 300 ppm NH₃, 8% O₂, ~0.1% H₂O and N₂ as balance gas. Gas hourly space velocity (GHSV) 20,000 h⁻¹. (a) NO_x conversion of Mn-based nanocatalysts; and (b) N₂ selectivity of Mn-based nanocatalysts.

2.2. NO_x Conversion of Plasma-Catalyst Hybrid Catalytic Process

The NO conversion and NO₂ concentration over three typical Mn-based bimetallic nanocatalysts were compared in Figure 2. The performance of all prepared nanocatalysts were measured in terms of various discharge energies to reveal the interaction of Mn–O–Fe, Mn–O–Co, and Mn–O–Ce. As shown in Figure 2a, both Mn–Co/TiO₂ and Mn–Ce/TiO₂ nanocatalysts could reach NO_x conversion maximum >99% within the discharge energy range of 18~24 W·h/m³. While the start discharge energy of Mn–Ce/TiO₂ nanocatalyst with superior SCR activities was much lower than

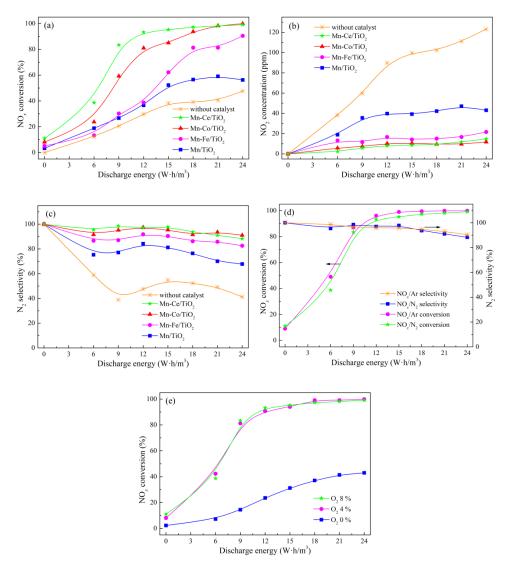
that of Mn–Co/TiO₂nanocatalyst. The Mn–Ce/TiO₂ bimetallic nanocatalyst raised the optimal NO_x conversion to 93.3% with the relatively low discharge energy of 12 W·h/m³. For the other Mn-based bimetallic nanocatalysts, a lower NO_x elimination efficiency was achieved with NO_x conversion less than 85% at 15 W·h/m³ and the maximum obtained at 24 W·h/m³, which meant that the higher discharge energy was required to induce the plasma-catalyst catalytic process, and the narrower discharge energy window was limited to the hybrid catalytic reaction.

The N₂ and O₂ contained in the gas mixture were motivated to form N and O atoms via the collision of active electrons in the plasma-catalyst hybrid system. Compared to the chemical-bond dissociation energies of N₂ (945.33 kJ/mol), the O₂ was much easier to react with the energetic electrons for its lower chemical-bond dissociation energies of 498.36 kJ/mol. As a result, a high concentration of O radicals was produced in the plasma-catalyst system. The generated dominating O radicals and subordinate N radicals could react with NO/O₂/N₂/NH₃ gas mixture in the following reactions (3)~(8) [19]. The oxidation reactions (5) and (6) occurred between the radicals of O and O₃ and the NO molecules to generate NO₂ were regarded as the positive main steps to enhance NO conversion [7,9].

$$O + O_2 \rightarrow O_3$$
 (3)

$$O_3 + NO \rightarrow NO_2 + O_2 \tag{4}$$

$$O + NO \rightarrow NO_2$$
 (5)


$$O + NO_2 \rightarrow NO + O_2 \tag{6}$$

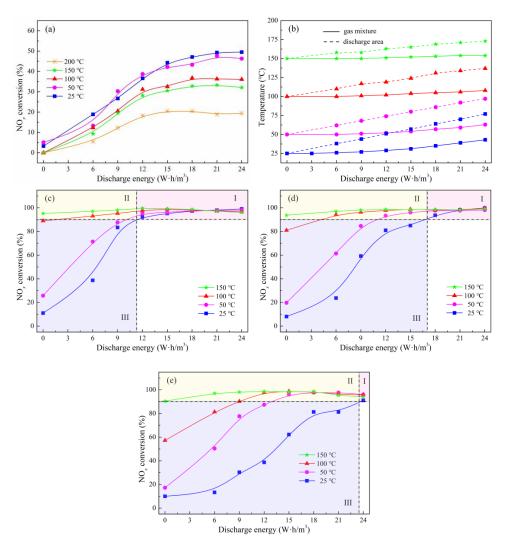
$$O + N \rightarrow NO$$
 (7)

$$NO + N \rightarrow N_2 + O$$
 (8)

Thus, in the plasma-catalyst hybrid catalytic process, the catalytic reactions (2) and (3) become the predominant paths for NO elimination [4]. It had been testified that the reaction rate of fast SCR reaction (2) was more than 10 times larger than that of standard SCR reaction (1) below 200 $^{\circ}$ C [17].

Meanwhile, the NO₂ concentrations over Mn-based bimetallic nanocatalysts were relatively lower compared to that of plasma without catalyst assistance. Under discharge energy of 24 W·h/m³, more than 120 ppm NO_2 generated in the plasma-only catalytic process. However, the NO_2 concentration in Mn-based bimetallic nanocatalysts combining with plasma was no more than 20 ppm, which indicated that almost 100 ppm NO_2 took part in the catalytic reaction probably via the fast SCR reaction or the catalytic oxidation, as shown in Figure 2b. Therefore, it was believed that both the fast SCR and the standard SCR reactions occurred in the plasma-catalyst hybrid system simultaneity and the proportion of NO_x conversion via the fast SCR reaction improved with the discharge energy increasing. The N₂ selectivity over the Mn-based nanocatalysts was displayed in Figure 2c. The N₂ selectivity of the plasma-catalyst hybrid catalytic process was obviously larger than that of plasma-only process within discharge energy range of 0~24 W·h/m³, which was owing to the possibility of higher NO conversion and lower NO₂ formation, discussed above in Figure 2a,b. All test results presented a decreasing trend of N_2 selectivity with the discharge energy rising, which resulted from a great deal of N_2O produced in this reaction operation. It was proposed that the pivotal disadvantages of catalyzing NO_x by plasma were the low selectivity and the complex chemical productions that formed via diverse reaction pathways [10]. In order to verify the actual reactions during the plasma-catalyst hybrid process over the Mn-based bimetallic nanocatalysts, the NO_x conversion and the N_2 selectivity over $Mn-Ce/TiO_2$ sample in the balance gas of N_2 and Ar were tested, as shown in Figure 2d. It was obvious that the variation tendency of NO_x conversion obtained in the balance gas of N_2 and Ar were quite similar. While within the whole discharge energy range of $0 \sim 24 \text{ W} \cdot \text{h/m}^3$, the NO_x conversion in Ar was slightly higher. According to a previous report, under abundant O radicals or O2, the N species is ten times more likely to react with O_2 than with NO [20]. Hence, almost N atoms produced from N_2 in the plasma transformed to NO via reaction (7), which was further oxidized into NO_2 and eliminated via fast SCR reactions immediately [7]. Therefore, in the balance gas of N₂, the NO concentration formed from N and O radicals was relatively small compare to the initial NO_x concentration, which caused little influence on the NO_x conversion during the plasma-catalyst hybrid process. Meanwhile, there was no obvious difference between the N₂ selectivity obtained in the balance gas of N₂ and Ar. The NO_x conversions over Mn–Ce/TiO₂ nanocatalyst with and without O₂ were analyzed as exhibited in Figure 2e. The NO_x conversion decreased drastically from 99.1% to 43% with the O₂ concentration dropping from 8% to 0%, which demonstrated the oxidation pathway for NO reduction by O species via reactions (3), (4), and (5) was dominant during the plasma-catalyst hybrid process. The NO_x conversions under O₂ 8% and 4% were almost the same, indicating the amount of oxygen excessive for NO_x redox reactions. Due to the dissociation energy of O₂ much smaller than that of N₂, the rate for dissociation of O₂ was much higher compared to the dissociation of N₂, which was the main reason for the remarkable promotion of O₂ on NO_x conversion [21].

Figure 2. Catalytic performance of plasma-catalyst hybrid catalytic process at ambient temperature. Gas mixture composition: 300 ppm NO, 300 ppm NH₃, 8% O₂, ~0.1% H₂O, and N₂/Ar as balance gas. Gas hourly space velocity (GHSV) 20,000 h⁻¹. (a) NO_x conversion; (b) NO₂ concentration; (c) N₂ selectivity; (d) NO_x conversion and N₂ selectivity in balance gas of N₂ and Ar over Mn–Ce/TiO₂; and (e) NO_x conversion over Mn–Ce/TiO₂ with and without O₂.


The interaction effects of discharge energy and temperature on NO_x conversion in plasma with and without Mn-based bimetallic nanocatalysts reaction process were shown in Figure 3. The variation tendency of NO_x conversion in plasma-only process was opposite to that in plasma-catalyst hybrid process with reaction temperature increasing. As displayed in Figure 3a, high reaction temperature led to significant reduction in NO_x elimination, with the maximum catalytic conversion of 49.5%at 21 W·h/m³, 25 °C declining to 20.5% at 12 W·h/m³, 200 °C. In the plasma catalytic process, the NO₂ generation via interaction between the radicals of O and O_3 and the NO molecules was conducive to deNO_x as analyzed above. While with the formed NO₂ accumulation in the plasma-only process, the inhibition of reaction (6) on NO elimination progressively intensified. The concentration of O radical could be improved under high temperature, which could further promote reaction (5), (6), and (7). As a result, the temperature increase spurred the formation of NO and impeded NO oxidation into NO₂ [19]. Considering the energy consume during the plasma-catalyst process, the reaction temperature in the catalyst bed could be higher than the outside of nanocatalysts. In order to clearly realize the relation between reaction temperatures and plasma, an infrared thermometer was introduced to detect the specific temperature of discharge area during the plasma process. The test results were shown in Figure 3b. The plasma energy caused the temperature of the discharge area improved at different degrees and the largest temperature increase could reach 47 °C under the discharge energy of 24 W·h/m³. While the reaction temperature of gas mixture influenced by the plasma energy was relatively smaller with the Maximum temperature rise no larger than 13 °C, due to the short residence time of the gas mixture in the discharge area. Therefore, under the experiment conditions of this research, the plasma effects on NO conversion could be primarily analyzed by the discharge energy based on the gas mixture temperature.

It was apparent that the trends of NO conversion of these three Mn-based bimetallic nanocatalysts were consistent, as exhibited in Figure 3c–e). The NO conversion under different reaction temperatures and various discharge energies could be divided into three zones. In zone I, the NO_x conversion >90% only depended on the discharge energy and not affected by the reaction temperature. In zone II, the satisfied NO_x conversion (>90%) was achieved and both depended on the discharge energy and the reaction temperature. In zone III, it was impossibility to acquire a desired NO_x conversion. Mn–Ce/TiO₂ nanocatalyst presented superior catalytic property than Mn–Co/TiO₂ and Mn–Fe/TiO₂ samples with much broader zone I, which signified high NO_x conversion obtained with lower reaction temperature and the less discharge energy. A variety of previous works had revealed the optimal NO_x conversions obtained with the specific input energy varying from 4.7 to 40.3 W·h/m³ and the temperature changing from 25 to 350 °C, as shown in Table 1. In this study, Mn–Ce/TiO₂ sample exhibited the superior performance with NO_x conversion of 99.5% under 15 W·h/m³ at 25 °C, respectively, which was believed to be a potential excellent catalyst for the NO removal via the plasma-catalyst process.

Table 1. Plasma	. 1 .	· ·	•	1
Iahle I Plasma	-catalyst ner	tormance in	nroviolic	recearches
	cataryst per.	ionnance m	picvious	researcies.

Samples	Specific Input Energy (W∙h/m³)	NO _x Conversion (%)	Temperature (°C)	Reductant	GHSV (h ⁻¹)	Gas Flow Rate (m ³ /h)	Ref
V ₂ O ₅ -WO ₃ /TiO ₂	4.7 ^a	~76.5	170	NH ₃	-	31.8	[11]
H-mordenite	5	76	160	NH ₃	20,000	31	[7]
Ag/Al_2O_3	16.7 ^a	~91	350	C_3H_6	10,000	1.2	[12]
BaTiO ₃ -Al ₂ O ₃	~40.3 ^a	~61.5	150	CH ₃ OH	11,000	-	[22]
Cu-ZSM-5	37.5 ^a	~90	25 ^b	C_2H_4	-	0.12	[13]
Co-ZSM-5	8.3 ^a	~70.6	150	C ₂ H ₄ +NH ₃	1000	0.12	[22]
Co-HZSM-5	38.3	~92	300	C ₂ H ₂	12,000	0.03	[23]
Mn-Ce/ZSM5-MWCNTs	16.7 ^a	~85	25	NH ₃	60,000	0.12	[4]
Mn-Ce/TiO ₂	15	99.5	25	NH ₃	20,000	0.1	This study

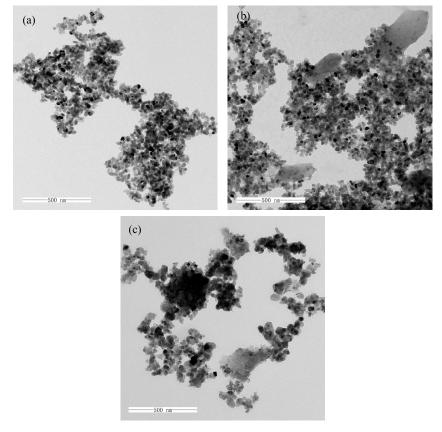
^a calculated according to the data in the report $(1 \text{ W} \cdot \text{h}/\text{m}^3 = 3.6 \text{ J}/\text{L})$; ^b room temperature.

Figure 3. Effect of temperature on NO conversion. Gas mixture composition: 300 ppm NO, 300 ppm NH₃, 8% O₂, ~0.1% H₂O, and N₂ as balance gas. Gas hourly space velocity (GHSV) 20,000 h⁻¹. (a) plasma-only process; (b) plasma cooperate with Mn–Ce/TiO₂ nanocatalysts; (c) plasma cooperate with Mn–Ce/TiO₂ nanocatalysts; and (d) plasma cooperate with Mn–Fe/TiO₂ nanocatalysts.

2.3. Morphological Characterization

2.3.1. BET Measurements

In order to achieve the physical properties of these three typical Mn-based bimetallic nanocatalysts, the results of specific surface areas (S_{BET}), total pore volumes (V_{total}), and average pore diameters (D_p) were summarized in Table 2. It was evident that Mn–Ce/TiO₂ nanocatalyst obtained larger specific surface areas than Mn–Co/TiO₂ nanocatalyst and was more than twice as much as Mn–Fe/TiO₂ nanocatalyst, which was probable, owing to the Mn–Ce–O_x species better dispersed on the nanocatalyst surface. Meanwhile, there were noticeable changes of D_p, increasing from 17.57 nm in Mn–Ce/TiO₂ to 33.06 nm in Mn–Co/TiO₂ and further rising to 54.85 nm in Mn–Fe/TiO₂. It was proposed that the Mn–Ce–O_x species were more likely to promote nanocatalyst to form micropores compared with Mn–Co–O_x and Mn–Fe–O_x species [24,25]. However, the difference of total pore volumes among these three Mn-based bimetallic nanocatalysts was not obvious. The total pore volumes of Mn–Ce/TiO₂ and Mn–Co/TiO₂ samples centered on 0.53 cm³·g⁻¹, approximately. While the total pore volume of Mn–Fe/TiO₂ decreased to 0.424 cm³·g⁻¹ slightly, which was probable due to the mesoporosity formation that suppressed the micropore generation, resulting in the total pore


volume reduced a little. Thereby, it was believed that $Mn-Ce/TiO_2$ nanocatalyst had superior physical properties than the other two samples with larger specific surface area, more micropores structure and satisfied total pore volumes, which coincided with catalytic performance of catalysts without plasma, as shown in Figure 1.

Samples	S_{BET} (m ² ·g ⁻¹)	$V_{total} (cm^3 \cdot g^{-1})$	D _p (nm)
Mn-Ce/TiO ₂	239.7	0.527	17.57
Mn-Co/TiO ₂	189.9	0.531	33.06
Mn-Fe/TiO ₂	104.6	0.424	54.85

Table 2. Physical properties of Mn-based bimetallic nanocatalysts.

2.3.2. TEM Analysis

The morphological characterization and grain structure of these three typical Mn-based bimetallic nanocatalysts were collected by TEM analysis. From Figure 4a, it could be observed that $Mn-Ce/TiO_2$ nanocatalyst was constituted of fine uniform nanoparticles with narrow size distribution, smooth elliptic surfaces, and without evident agglomeration. The distinct and unbroken mesh structure of micropore was formed in the $Mn-Ce/TiO_2$ sample. According to the TEM images of $Mn-Co/TiO_2$ nanocatalyst, as shown in Figure 4b, there were some tightly aggregated metal oxide nanoparticles interfused into the smaller regular particles, which increased the average pore diameters and reduced the specific surface areas to some extent. However, from Figure 4c, a noticeable augment in the particle size was observed over $Mn-Fe/TiO_2$ nanocatalyst, which was consistent with Barrett–Joyner–Halenda (BJH) results. The nanoparticles were irregular, lots of which stacked on the catalyst surface with an abundant micropore structure collapsing and regional accumulations.

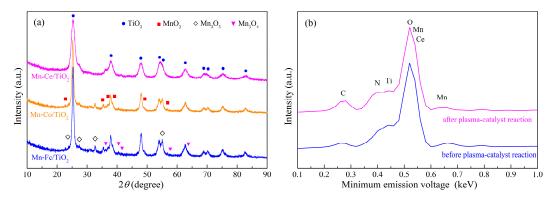


Figure 4. TEM of Mn-based bimetallic nanocatalysts. temperature on NO conversion. (**a**) Mn–Ce/TiO₂; (**b**) Mn–Co/TiO₂; and (**c**) Mn–Fe/TiO₂.

2.4. Structural Characterization

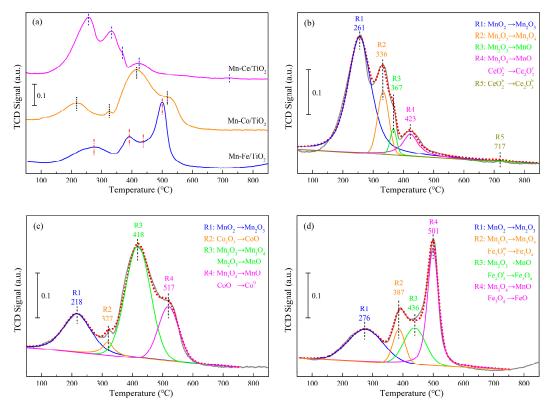
2.4.1. Textural Properties

Figure 5a exhibited the XRD spectra of Mn-based bimetallic nanocatalysts and the phases contained in the nanocatalyst samples were identified by the software of MDI Jade 6.5. Among all these three nanocatalysts, there were strong and distinguished diffraction peaks at about 2θ values of 25.3°, 37.8°, 48.0°, 53.9°, 62.7°, 68.8°, 70.3°, 75.1°, and 82.7° well matched the XRD pattern of anatase TiO₂ (ICDD PDF card # 71-1166) [26]. While the diffraction peaks for the structure of TiO₂ support were reserved completely, the diffraction angles of the matching peaks shifted at different degrees. In Mn–Ce/TiO₂ nanocatalyst, the anatase TiO₂ presented the lowest diffraction angle for every corresponding peak, which probably verified the interaction between MnCeO_x and anatase TiO₂ was stronger than that between MnCoO_x or MnFeO_x and anatase TiO₂ nanocatalyst, it could be found that the diffraction peaks of anatase TiO₂ in Mn–Ce/TiO₂ nanocatalyst were broader and weaker than that in the other two nanocatalysts, indicating the crystalline of TiO₂ reduced by the MnCeO_x loading. Meanwhile, there was no obvious characterization reflections for MnO_x or CeO_x in Mn–Ce/TiO₂ nanocatalyst that manifested the active species were finely dispersed on the nanocatalyst surface or the active species of MnO_x and CeO_x incorporated into TiO₂ lattice [27].

Figure 5. XRD patterns of Mn-based bimetallic nanocatalysts and element contents of $Mn-Ce/TiO_2$ before and after plasma-catalyst reaction. (a) XRD patterns of $Mn-Ce/TiO_2$, $Mn-Co/TiO_2$ and $Mn-Fe/TiO_2$ nanocatalysts; and (b) EDS patterns of element contents on the surface of $Mn-Ce/TiO_2$.

In the XRD patterns of $Mn-Co/TiO_2$ and $Mn-Fe/TiO_2$ nanocatalysts, the diffraction peaks accord with MnO_x were very complex due to the transformation among MnO_2 , Mn_2O_3 , Mn_3O_4 , and MnO in the incomplete crystallization of manganese oxides. The diffraction peaks matched with MnO₂ exactly at $2\theta = 22.10^{\circ}$, 35.19° , 36.96° , 38.72° , 47.86° , and 57.166° , corresponding to the crystallographic plane reflections of (110), (310), (201), (111), (311), and (420), respectively (ICDD PDF card # 82-2169) [28]. At the same time, the diffraction peaks of Mn_2O_3 and Mn_3O_4 were evident in $Mn-Co/TiO_2$ and $Mn-Fe/TiO_2$ nanocatalysts. The intensive and sharp characteristic peaks at 2θ values of 23.08° , 26.72° , 32.87° , and 56.89° could be primarily ascribed to Mn_2O_3 matching with the crystallographic plane reflections of (211), (220), (222), and (433), correspondingly (ICDD PDF card # 78-0390), and the distinct signals at 36.28°, 40.67°, 41.80°, 57.73°, and 64.17° could be assigned to Mn₃O₄ corresponding to the crystallographic plane reflections of (112), (130), (131), (115), and (063), respectively (ICDD PDF card # 75-0765) [28,29]. Comparing the pattern of Mn–Co/TiO₂ nanocatalyst, it could be noticed that the diffraction peaks of both Mn₂O₃ and Mn₃O₄ were remarkably decreased in Mn–Fe/TiO₂ nanocatalyst, simultaneously, the diffraction peaks matched anatase TiO₂ were also visibly weakened. These possibly suggested the addition of cobalt into manganese oxides had better effects than iron on diminishing the crystallization of MnO_x and TiO_2 at the same time. Furthermore, there were no obvious distinct diffraction peaks of CoO_x were observed in Mn–Co/TiO₂ nanocatalysts, which indicated the addition ratios of cobalt not only enhanced the dispersion of MnO_{x} , but also

promoted the dispersion of CoO_x entirely on the nanocatalyst surface. A similar proposal could be obtained over $Mn-Fe/TiO_2$ nanocatalysts. Generally, among $Mn-Ce/TiO_2$, $Mn-Co/TiO_2$, and $Mn-Fe/TiO_2$ nanocatalysts, the $MnCeO_x$ loading on anatase TiO_2 performed the superior properties with smaller the nanoparticle sizes, reducing the chemical compounds crystallinities and increasing the active species distributions, which were facilitated to the SCR reactions [30]. In order to confirm the presence of nitrates in the mixtures during the plasma-catalyst process, the Energy Dispersive Spectrometer (EDS) test was introduced to qualitatively analyze the elements changes, as exhibited in Figure 5b. It was apparent that the variation of nitrogen contents on the $Mn-Ce/TiO_2$ sample before and after the plasma-catalyst reaction was tiny, which indicated little deposition of nitrates on the catalyst surface.


2.4.2. Reducibility Properties

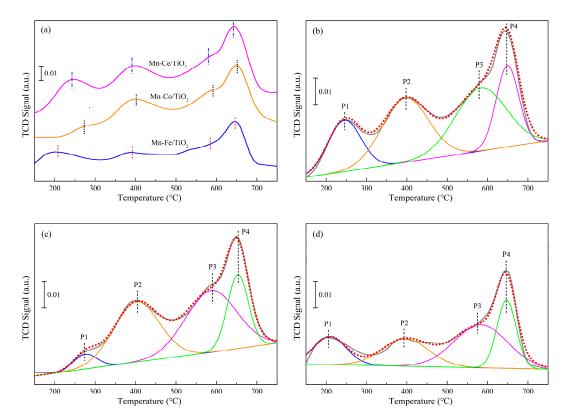
In order to explore the oxidation states and the reduction potentials of the active species contained in the Mn-based bimetallic nanocatalysts, H2-TPR analysis was performed with the reduction peaks fitted by Gaussian functions, as exhibited in Figure 6. The H₂ consumptions together with all reduction temperature values were summarized in Table 3. On account of the support of anatase TiO_2 induced no noteworthy reduction peaks in the test temperature region, all the H₂ consumption peaks displayed in Figure 6 could be ascribed to the reduction reactions of diverse active species of MnO_x , CeO_x , CeO_x , and FeO_x . For Mn-based catalysts, the typical reduction peaks were regard as following the order of $MnO_2 \rightarrow Mn_2O_3$ (Mn_3O_4) $\rightarrow MnO$ [31]. For $Mn-Ce/TiO_2$ nanocatalyst, as shown in Figure 6a, there were five main H₂ consumption peaks appearing within the temperature range of $50 \sim 850$ °C. The initial dominating reduction peak (R1) at around 261 °C was mainly caused by the reduction reaction of the high oxidation state of Mn⁴⁺ reducing to Mn³⁺ [32]. The subsequent asymmetrical reduction peak from 260 °C to 410 °C could be further divided into two reduction peaks (R2 and R3), according to the two processes of Mn₂O₃ reducing to Mn₃O₄ and Mn₂O₃ reducing to MnO reported in previous literatures [28,31]. The converting from Mn_2O_3 to Mn_3O_4 preferred to occur on the primal amorphous Mn_2O_3 [33], which was consistent with appearance of R2 peak. While the transformation from Mn₂O₃ to MnO was apt to happen at higher reaction temperatures [34], well coinciding with the temperature value of R3 peak. For Ce-containing sample, the typical CeO_x reduction process usually presented two separated peaks, the one of CeO_2^s converting to $Ce_2O_3^s$ on the catalyst surface occurred at about 450 °C, the other one of CeO₂^b transforming to Ce₂O₃^b in the catalyst bulk came up at 730 °C approximately [35]. Therefore, the fourth wide reduction peak (R4) in the Mn–Ce/TiO₂ nanocatalyst was related to the reduction processes of Mn_3O_4 to MnO and CeO_2^{s} to $Ce_2O_3^{s}$ simultaneously, and the fifth peak (R5) at around 717 $^{\circ}$ C was potentially associated with the CeO₂^b reduction reaction. Among these three Mn-based bimetallic nanocatalysts, Mn–Ce/TiO₂ nanocatalyst displayed the highest low-temperature reducibility and exhibited a noticeable lack of high-temperature reduction peaks at the same time, which manifested the higher oxidation states of manganese ion (Mn⁴⁺ and Mn^{3+}) constituted the dominating phase [34].

Comparing with Mn–Ce/TiO₂ nanocatalyst, the H₂-TPR curve of Mn–Co/TiO₂ nanocatalyst was conspicuously different in both the reduction temperatures and the peak intensions. For Mn–Co/TiO₂ nanocatalyst, the reduction peak of MnO₂ to Mn₂O₃ shifted toward lower temperature (218 °C) and weakened significantly. Meanwhile, the reduction peaks of Mn₂O₃ to Mn₃O₄ and Mn₂O₃ to MnO moved to higher temperatures and strengthened noticeably. The two reduction processes of Mn₂O₃ presented as a whole peak centered at about 418 °C. The reduction reaction of cobalt oxides exhibited two peaks at around 327 (R2) and 517 °C (R4), which could be ascribed to the transformation of Co³⁺ \rightarrow Co²⁺ and Co²⁺ \rightarrow Co⁰, respectively [15]. However, these two reduction peaks were overlapped with the MnO_x peaks in whole or partly. For Mn–Fe/TiO₂ nanocatalyst, considering the coexistence of FeO_x and MnO_x, the joint peaks (R2 and R3) from 330 °C to 530 °C were mainly attributed to the conversion of Mn₂O₃ to Mn₃O₄ combining with the transformation of Fe₂O₃ to Fe₃O₄. According to previous report [36], the majority of Fe₂O₃ (Fe₂O₃^m) was in the form of nanoparticles, oligomeric

clusters or isolated ions locating at effortlessly reducible sites. After the $Fe_2O_3^{m}$ reduction reaction, the reduction of residual Fe_2O_3 ($Fe_2O_3^{r}$) to Fe_3O_4 accomplished at the higher temperature [37]. The remarkable strong peak (R4) at about 501 °C was ascribed to the overlapped peaks of Mn_3O_4 to MnO and Fe_3O_4 to FeO.

As exhibited in Table 3, the total H₂ consumptions of Mn–Ce/TiO₂ and Mn–Co/TiO₂ nanocatalysts were 4.86 mmol·g⁻¹ and 4.43 mmol·g⁻¹, respectively, much larger than that of Mn–Fe/TiO₂ nanocatalysts. It was proposed that the peaks appearing at lower temperatures demonstrated superior catalytic activity in low temperature region [2]. While the starting reduction peak temperature of Mn–Co/TiO₂ nanocatalyst was the lowest at 218 °C, its total H₂ consumption was obvious smaller than that of Mn–Ce/TiO₂ nanocatalyst, which was regarded as a more important factor affecting the reducing capacity. Based on the H₂ consumption as a vital factor to the redox property of catalyst, it was reasonable that Mn–Ce/TiO₂ nanocatalyst presented the higher NO_x conversion with and without plasma than Mn–Co/TiO₂ and Mn–Fe/TiO₂ nanocatalysts.

Figure 6. H₂-TPR profiles of Mn-based bimetallic nanocatalysts: (a) Total H₂-TPR curves; (b) multi-peaks Gaussian fitting for Mn–Ce/TiO₂ nanocatalyst; (c) multi-peaks Gaussian fitting for Mn–Co/TiO₂ nanocatalyst; and (d) multi-peaks Gaussian fitting for Mn–Fe/TiO₂ nanocatalyst.


Table 3. H₂-TPR quantitative analysis of Mn-based bimetallic nanocatalysts.

Samples		Tem	perature	(°C)		$\rm H_2$ Consumption (mmol·g ⁻¹)					
Samples	R 1	R 2	R 3	R 4	R 5	R 1	R 2	R 3	R 4	R 5	Total
Mn-Ce/TiO ₂	261	336	367	423	717	2.52	1.24	0.36	0.67	0.07	4.86
$Mn-Co/TiO_2$	218	327	418	517	-	1.14	0.21	2.12	0.96	-	4.43
Mn-Fe/TiO ₂	276	387	436	501	-	0.83	0.41	0.54	1.59	-	3.37

2.4.3. Ammonia Adsorption Properties

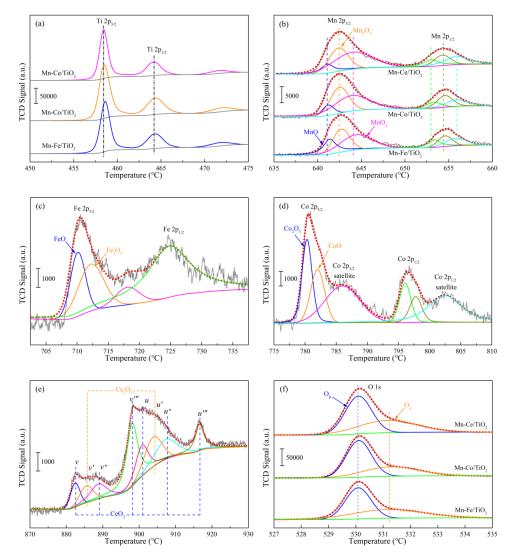
Besides the redox property, the acid capacity on the catalyst surface was another crucial factor influencing the catalytic performance in SCR reactions [14,38]. NH₃-TPD and NO-TPD tests were introduced in order to establish the connection between the surface acidities and the SCR activities for

the Mn-based bimetallic nanocatalysts. The test results were analyzed and compared in Figure 7 and Table 4, respectively. The NH₃-TPD curves for these three typical Mn-based bimetallic nanocatalysts were attributed to four desorption peaks of chemisorbed NH₃ within the temperature range of 150~750 °C. It was obvious that the first weak NH₃ desorption peak (P1) of Mn–Fe/TiO₂ nanocatalyst appeared at about 209 °C ascribed to the NH₃ desorption from the weak acid sites, which was deemed too weak to be stable bound NH_3 in the gas mix during the SCR reactions [14]. The second and the third successive desorption peaks (P2 and P3) located from 398 °C to 585 °C indicated the distribution of medium strong acid sites. Additionally, the final and relatively stronger peak (P4) at 649 approximately were attributed to strong acid sites, which could be regard as plenty of Lewis acid sites generated on the nanocatalyst surface with adsorbing a large amount of strongly bound ammonia [39]. For Mn–Co/TiO₂ nanocatalyst, the NH₃ desorption result demonstrated superior acidity capacity at medium and high temperatures, but an undesirable temperature shift towards higher temperature regions appeared at the same time. The desorption peak temperature value of weak acid sites (P1), medium strong acid sites (P2 and P3), and strong acid sites (P4) reached 276 °C, 402 °C, 587 °C, and 653 $^{\circ}$ C, respectively, which signified that it is more difficult for the chemisorbed NH₃ to desorb from the acid sites and participate in SCR reactions [40]. Compared with the NH₃-TPD curve of Mn–Co/TiO₂ nanocatalyst, the four desorption peaks of Mn–Ce/TiO₂ nanocatalyst shifted towards lower temperatures slightly and became much stronger. The enrichments of the weak acid sites, the medium strong acid sites and the strong acid sites were all positive to ammonia adsorption, which could undoubtedly form more abundant Brønsted acid sites and Lewis acid sites promoting NH₃ adsorption on the nanocatalyst surface [41,42]. This change was regard as an important reason for the outstanding catalytic performance of Mn–Ce/TiO₂ nanocatalyst with and without plasma.

Figure 7. NH₃-TPD profiles of Mn-based bimetallic nanocatalysts: (a) Total NH₃-TPD curves; (b) multi-peaks Gaussian fitting for Mn–Ce/TiO₂ nanocatalyst; (c) multi-peaks Gaussian fitting for Mn–Co/TiO₂ nanocatalyst; (d) multi-peaks Gaussian fitting for Mn–Fe/TiO₂ nanocatalyst.

Samples		Tempera	ture (°C)		NH_3 Composition (mmol·g ⁻¹)					
	Peak 1	Peak 2	Peak 3	Peak 4	Peak 1	Peak 2	Peak 3	Peak 4	Total	
Mn-Ce/TiO ₂	245	396	583	647	0.27	0.52	0.58	0.39	1.76	
Mn-Co/TiO ₂	276	402	587	653	0.11	0.49	0.52	0.32	1.44	
Mn-Fe/TiO ₂	209	398	585	649	0.14	0.24	0.39	0.20	0.97	

Table 4. Quantitative analysis of NH₃-TPD profiles.


In order to exactly confirm the total acid capacity, the quantitative analysis of the desorption peaks of Mn–Ce/TiO₂, Mn–Co/TiO₂ and Mn–Fe/TiO₂ nanocatalyst was performed and summarized in Table 4. Among these three nanocatalysts, the total NH₃ desorption of Mn–Ce/TiO₂ sample achieved the maximum value of 1.76 mmol·g⁻¹, which further verified the better promotion effects of $MnCeO_x$ on the surface acidity than that of $MnCeO_x$ and $MnFeO_x$. It was noteworthy that, although Mn-Fe/TiO₂ nanocatalyst exhibited the weak acid sites at the lowest temperature, the acid capacity of its weak acid sites was only 0.14 mmol·g⁻¹ too small to satisfy the NH₃ adsorption requirements during SCR recations. Therefore, Mn–Ce/TiO₂ nanocatalyst with NH₃ desorption of 0.27 mmol·g⁻¹ at around 245 °C was qualified for the best acidity properties at the low temperature. However, it had been revealed that NH₃ could block NO adsorption and activation onto the metal active sites on the catalyst surface via the undesired electronic contact between the adsorbed NH₃ and the metal sites [43]. As a result, NH₃ presented inhibiting effects on SCR reactions at low temperature. Hence, the acidity properties on the surface of the Mn-based bimetallic nanocatalysts were closely related to the redox performance. It was required to achieve an adequate equilibrium between the oxidation states of active species and the acidity properties of active metal compounds in order to develop the optimal catalyst.

2.4.4. Oxidation States of Active Species

The elemental valence states and the atomic concentrations on the surface of Mn-based bimetallic nanocatalysts were explored by XPS analysis for the purpose of a better insight into the metal oxidation states and the surface compositions. The XPS spectra of Mn 2*p*, O 1*s*, Ti 2*p*, Fe 2*p*, Co 2*p*, and Ce 3*d* in the nanocatalysts were exhibited in Figure 8. The valence state of every element was determined numerically according to Gaussian fitting, respectively. The specific binding energy and the individual element concentration in various valence states were summarized in Table 5. Figure 8a displayed the XPS spectrum for Ti 2*p* of catalyst support, which comprised two peaks of Ti 2*p*_{1/2} locating at about 464.3 eV and Ti 2*p*_{3/2} situating at around 458.7 eV, respectively [44]. Comparing the three XPS spectrum of Ti, it could be easily found that, although the Mn-based bimetallic nanocatalysts were observed in the Ti peaks. The +4 valence state of titanium on the catalyst surface was stabilized and dominating in Mn–Fe/TiO₂, Mn–Co/TiO₂, and Mn–Ce/TiO₂ nanocatalysts.

The XPS spectra of Mn 2*p* in these three typical Mn-based bimetallic nanocatalysts consisted of two characteristic peaks, assigned to Mn 2*p*_{1/2} peak at around 653 eV and Mn 2*p*_{3/2} peak at about 642 eV [45], as shown in Figure 8b. The asymmetrical Mn 2*p*_{3/2} peak further verified the complicated manganese species in divers valence states coexisting in the nanocatalysts. The curve of Mn 2*p*_{3/2} peak could be split into three peaks via multi-peaks gaussian fitting, the first peak at around 641.2 ± 0.3 eV was assigned to Mn²⁺, the second one at 642.6 ± 0.2 eV associated with Mn³⁺, and the third one at 644.1 ± 0.5 eV consistent with Mn⁴⁺, respectively [46]. The complex MnO_x including three valence states were apparently difficult to distinguish with the binding energy difference no more than 3.7 eV. In order to make an accurate identification of the atomic composition and Mnⁿ⁺ concentration on the nanocatalyst surface, a quantitative analysis was introduced based on the area covered under each separated peak, as listed in Table 4. According to previous studies [28,33,47], NO_x conversion over pure MnO_x could been ranked as MnO₂ > Mn₂O₃ > Mn₃O₄. Hence, the improved concentration of Mn-based

bimetallic nanocatalysts, the major amount of manganese primarily presenting +4 valence state on the catalyst surface dispersedly, as shown in Table 4. While $Mn-Ce/TiO_2$ sample presented the highest atomic composition of Mn^{4+}/Mn^{n+} (56.5%), which was much larger than 46.8% and 40.2% in $Mn-Co/TiO_2$ and $Mn-Fe/TiO_2$ nanocatalysts, respectively. It was regard as the reason for the higher catalytic activity of $Mn-Ce/TiO_2$ nanocatalyst, as exhibited in the above results.

Figure 8. XPS analysis of Mn-based bimetallic nanocatsalysts: (**a**) XPS spectra for Ti 2*p*; (**b**) XPS spectra for Mn 2*p*; (**c**) XPS spectra for Fe 2*p*; (**d**) XPS spectra for Co 2*p*; (**e**) XPS spectra for Ce 3*d*; and (**f**) XPS spectra for O 1*s*.

Table 5. Surface atomic compositions of the catalysts determined by XPS.

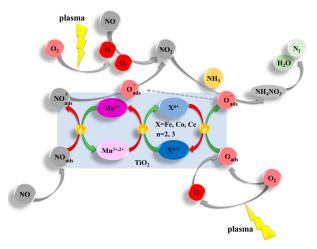
	Binding Energy (eV)/Atomic Composition (%)										
Samples	Mn		Fe		Со		Ce		0		
	Mn ²⁺	Mn ³⁺	Mn ⁴⁺	Fe ²⁺	Fe ³⁺	Co ²⁺	Co ³⁺	Ce ³⁺	Ce ⁴⁺	Oα	Οβ
Mn–Ce/TiO ₂	640.9/	642.4/	644.0/	,	,	/	,	885.6/	882.4/	531.2/	530.2/
$Mn-Ce/11O_2$	9.3	34.2	56.5	-//-	-/-	-//-	-/-	40.4	59.6	40.4	59.6
Mn–Co/TiO ₂	641.2/	642.6/	644.1/	-/-	-/-	779.6	782.1/	-/-	-/-	531.4/	530.3/
$MII = C0/110_2$	13.8	39.4	46.8	-/-	-/-	39.3	60.7	-/-	-/-	33.7	66.3
Mn-Fe/TiO ₂	641.4/	642.8/	644.6/	709.6/	711.7/	-/-	,	-/-	-/-	531.6/	530.3/
wm-re/ 110 ₂	21.3	38.5	40.2	43.4	56.6	-/-	-//-	-/-	-/-	28.2	71.8

For $Mn-Fe/TiO_2$ nanocatalyst, the Fe 2p XPS spectra was was presented in Figure 8c with two individual peaks attributed to Fe $2p_{3/2}$ at about 710 eV, Fe $2p_{1/2}$ at around 724 eV and a satellite peak of Fe^{3+} in Fe_2O_3 exhibited at 718.3 eV [49]. The broad peak of Fe $2p_{3/2}$ was composed of two overlapped peaks, the one ascribed to Fe²⁺ locating at around 709.6 eV and the other one attributed to Fe³⁺ seated at about 711.6 eV. These two peaks confirmed the co-occurrence of iron in +2 and +3 valence states on Mn–Fe/TiO₂ nanocatalyst surface, as quantified in Table 5. The promotion effect of iron on Mn-based bimetallic nanocatalysts was ascribed to the interaction happening in the redox circulation: Fe^{3+} + $Mn^{3+} \leftrightarrow Fe^{2+} + Mn^{4+}$ [50]. For $Mn-Co/TiO_2$ nanocatalyst, there were two main peaks in the Co 2*p* spectrum ascribed to Co $2p_{3/2}$ at about 780.6 eV and Co $2p_{1/2}$ at around 796.5 eV. Each of these two peaks was accompanied by an adjacent satellite peak at 786.8 eV and 803.1 eV correspondingly, as depicted in Figure 8d. The two broader and gentler satellite structures at the relatively higher binding energy region were caused by the metal-to-ligand charge transfer, also known as the shakeup process of cobalt in its high spin state. While this process can only be observed with the high spin state of Co²⁺ ion, but cannot be observed with the diamagnetic low-spin Co³⁺ ion [51]. The XPS spectra of Co $2p_{3/2}$ scope could be further divided into Co³⁺ spectrum at binding energy of 780.0 eV and Co²⁺ spectrum at 781.6 eV. This test result showed the ions of Co^{2+} and Co^{3+} were co-existed on Mn–Co/TiO₂ nanocatalyst surface and the Co^{3+} exhibited a comparatively higher atomic composition of 60.7%. The Co^{3+} species existed in a relatively high valence state and gave rise to more anionic defects, generating abundant surface oxygen to enhance the process of adsorption and oxidation during SCR reactions [52]. For $Mn-Ce/TiO_2$ nanocatalyst, the Ce 3d spectra result was depicted in Figure 8e. The Ce 3d pattern was composed of u and v multi-peaks matching to the spin orbit split $3d_{5/2}$ and $3d_{3/2}$ core holes [53]. According to the binding energies of different peaks, the Ce 3d spectra could be elaborately separated into eight peaks, labeled as u, u', u'', u''' and v, v', v'', respectively [54]. The u' and v' peaks were matched with the $3d^{10}4f^1$ electronic state of Ce³⁺, and the *u*, *u*'', *v*, *v*'', and *v*''' peaks were ascribed to the 3d¹⁰4f⁰ electronic state of Ce⁴⁺ [55]. These distinctive peaks verified the coexistence of of Ce³⁺ and Ce⁴⁺ species on Mn–Co/TiO₂ nanocatalyst surface. The Ce³⁺ species were important incentives for the formation of unsaturated chemical bonds and the generation of electric charge balance. [56]. In the active compounds of manganese and cerium, the negative charge transferred from Mn^{2+} or Mn³⁺ to Ce⁴⁺ strengthening the interaction between manganese and cerium [1,2]. The oxygen circle of storing and releasing was easier for the Mn–Ce/TiO₂ nanocatalyst with the redox couple of Ce³⁺/Ce⁴⁺ to form more surface oxygen vacancies that were advantageous to oxygen adsorption and chemisorbed oxygen generation [57].

The O 1*s* spectra for Mn-based bimetallic nanocatalysts were displayed in Figure 8f. On the base of curve-fitting results, the O 1*s* spectra was divided into two peaks: The O_{α} peak ascribed to chemisorbed oxygen centered at binding energy of 531.2 ~ 531.6 eV, the O_{β} peak attributed to lattice oxygen appeared at binding energy of 530.2 ~ 530.3 eV. Compared with the O 1*s* spectra of nanocatalysts, it could be found that the binding energies of O_{α} shifted to lower values from 531.6 eV in Mn–Fe/TiO₂ to 531.4 eV in Mn–Co/TiO₂ and to 531.2 eV in Mn–Ce/TiO₂, and similar variation tendency occurred on the binding energies of O_{β}. Meanwhile, as shown in Table 4, the surface atomic composition of chemisorbed oxygen over Mn–Ce/TiO₂ and 28.2% on Mn–Fe/TiO₂ samples. The chemisorbed oxygen was the most energetic oxygen species due to its high mobility [58]. Therefore, these surface atomic composition of Mn–Ce/TiO₂ nanocatalyst were regard as another reason for its superior catalytic performance with and without plasma.

2.5. Reaction Mechanism Analysis

According to the catalytic performance of NO_x conversion over Mn-based bimetallic nanocatalysts with and without plasma and the physicochemical properties of these nanocatalysts presented above, the complex bimetallic oxides of MnFeO_x, MnCoO_x, and MnCeO_x affected the hybrid catalyst-plasma catalytic process obviously with the different redox characteristics of active chemisorbed sites. All the three bimetallic nanocatalysts enhanced the catalytic ability of manganese species by increasing the ratio of Mn^{4+}/Mn^{n+} , generating more lattice oxygen and plenty of oxygen vacancy on the catalyst surface [2]. In the catalyst-plasma hybrid catalytic system, the plasma derivatives reformed the chemical compositions of the gas mix and modified the electronic states on the nanocatalyst surface. For $Mn-Fe/TiO_2$, $Mn-Co/TiO_2$ and $Mn-Ce/TiO_2$ nanocatalysts, a dynamic equilibrium was sustained on their surfaces with the electron transfer between Mn and Fe (Co or Ce) ions during the catalytic oxidation process, which could be expressed as $Fe^{3+} + Mn^{3+} \leftrightarrow Fe^{2+} + Mn^{4+}$, $Co^{3+} + Mn^{3+} \leftrightarrow Co^{2+} + Mn^{4+}$, $Ce^{3+} + Mn^{3+} \leftrightarrow Ce^{2+} + Mn^{4+}$, respectively.


Besides originally partial NO oxidation into NO₂ over the lattice oxygen of MnO_x, FeO_x, CoO_x and CeO_x, more NO was oxidized to NO₂ via the reaction (4) and (5) under the energetic particles. The valence state part of manganese cations increased, which was caused by the electron transition from Mn³⁺ to Mn⁴⁺ via lattice oxygen [59]. Mn⁴⁺ was more desirable for the oxidation of NO to NO₂ over Mn-based catalysts [16] and it was reduced to Mn³⁺ during the SCR reactions [58]. Under the plasma derived species, such as O₃ or O radicals, the Mn³⁺ could be fast re-oxidation into Mn⁴⁺, thus accelerating the catalytic oxidation process and the fast SCR reaction. Furthermore, the concentration of chemisorbed oxygen on the nanocatalyst surface was also improved in the catalyst-plasma hybrid catalytic system. More surface oxygen species could form via the direct interaction of MnO_x, FeO_x, CoO_x, and CeO_x with plasma excited oxygen species. Considering the inhibiting effect of NO on O₃ formation, the surface oxygen species were more likely to generate from O radicals. The adsorbed oxygen reacted with NO to form NO₂ according to the following reaction steps (9)~(11):

$$O + M \rightarrow M - O_{ads}$$
 (9)

$$NO + M - O_{ads} \rightarrow M - O - NO_{ads}$$
(10)

$$M - O - NO_{ads} \rightarrow M + NO_2$$
 (11)

where M represented the active sites on the nanocatalyst surface, O_{ads} and NO_{ads} represented adsorbed NO and oxygen on the nanocatalyst surface, respectively. During this process, the NO_{ads} liberated electron to Mn^{4+} and the O_{ads} trapped electron from Fe²⁺ or Co²⁺ or Ce³⁺, respectively, which transform into absorbed NO⁺ and O⁻. Then formed NO⁺ further reacted with O⁻ to generate NO₂. Simultaneously, a part of NO was oxidized to NO₂ directly by the active oxygen produced from O_2 activation on the surface oxygen vacancies. The possible catalyst-plasma hybrid catalytic process of SCR reaction over Mn-based bimetallic nanocatalysts was exhibited in Figure 9.

Figure 9. The possible catalyst-plasma hybrid catalytic process of SCR reaction over Mn-based bimetallic nanocatalysts.

3. Materials and Methods

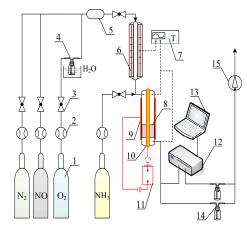
3.1. Catalysts Preparation

The three typical Mn-based bimetallic nanocatalysts were prepared by hydrothermal method. $Mn(NO_3)_2$ (analytical pure 50%, Sinopharm, Shanghai, China), Fe(NO₃)₃·9H₂O (analytical pure 99.9%, Sinopharm, Shanghai, China), Co(CH₃COO)₂·4H₂O (analytical pure 99.9%, Kermel, Tianjin, China), and Ce(NO₃)₃·6H₂O (analytical pure 99.9%, Nanjing-reagent, Nanjing, China) were introduced as the precursors of MnO_x , FeO_x , CoO_x , and CeO_x , respectively. The tetrabutyl titanate was used as the precursors of TiO₂ for supporting the active metallic oxides. Mn(NO₃)₂ was added into deionized water at room temperature and then $Fe(NO_3)_3 \cdot 9H_2O$ was dissolved in the solution. Amount of glycol was added into the above mixture with magnetic stirring continuously. A Teflon-lined stainless steel autoclave was introduced to heat the homogeneous solution at 180 °C for 8 h. After the autoclave cooling down to the ambient temperature, tetrabutyl titanate was added into this solution and aged in the autoclave again at 180°C for 3 h. The mixture was collected by reduplicative centrifugation and wash. Finally, the precipitate was dried at 150 °C for 12 h and calcined in air at 500 °C for 4 h. The produced Mn-based bimetallic nanocatalysts were triturated and filtered with 60-80 mesh for activity tests and characterization analysis. The nanocatalyst was denoted as Mn-Fe/TiO₂ with the molar ratios of Mn:Fe:Ti = 2:1:7. The Mn–Co/TiO₂ and Mn–Ce/TiO₂ nanocatalysts were prepared under the same process with Co(CH₃COO)₂·4H₂O and Ce(NO₃)₃·6H₂O replacing Fe(NO₃)₃·9H₂O, respectively.

3.2. Catalysts Characterization

The Maxon Tristar II 3020 micropore-size analyzer (Maxon, Chicago, IL, USA) was used for testing N₂ adsorption isotherms of the prepared nanocatalysts at -196 °C. The surface areas and the pore-size distributions of the nanocatalysts were measured after the nanocatalysts degassing in vacuum at 350 °C for 10 h. BET plot linear portion was used to determine the nanocatalysts specific surface areas, and the desorption branch with Barrett–Joyner–Halenda (BJH) formula was introduced to calculate the pore-size distributions. The XRD data was captured by a Bruker D8 advance analyzer (Bruker, Frankfurt, Germany) with Mo K_{α} radiation, diffraction intensity from 10° to 90°, point counting time of 1s and point counting step of 0.02° . The element phases contained in the nanocatalys were distinguished by comparing characteristic peaks presented in the XRD patterns with the International Center for Diffraction Data (ICDD). The advanced microstructural image data and the surface element contents of the nanocatalysts were achieved by a high resolution transmission electron microscope JEOL JEM-2010 combined with EDS ((Japan electronics corporation, Tokyo, Japan). H₂-TPR and NH₃-TPD tests were performed with a Micromeritics Autochem II 2920 chemical adsorption instrument (Micromeritics, Houston, TX, USA). During H₂-TPR experiment, nanocatalysts were pretreatment in He at 400 °C for 1 h, and then cooled to environment temperature in H₂ and He gas mixture at 30 mL/min. The test temperature range of H₂ consumptions was from 50 $^{\circ}$ C to 850 $^{\circ}$ C with the heating rate of 10 °C/min. The operating process of NH₃-TPD test was similar to that of H₂-TPR test with NH₃ replacing H₂. XPS analysis was performed on a Thermo ESCALAB 250XI (Thermo Fisher, Boston, MA, USA) with pass energy 46.95 eV, Al K_{α} radiation 1486.6 eV, X-ray source 150 W and binding energy precision \pm 0.3 eV. The C 1s line at 284.6 eV was measured as a reference.

3.3. Catalytic Performance Tests


The catalytic performance of Mn-based bimetallic nanocatalysts was explored in a catalyst-plasma hybrid system as shown in Figure 10. The dielectric barrier discharge (DBD) plasma reactor was comprised of two electrodes and a quartz tube. The high voltage electrode was a stainless-steel rod with diameter of 3 mm, installed inside the quartz tube coaxially. The ground electrode was a copper wire mesh wrapped outside the quartz tube tightly. The discharge energy was produced by an AC power transverter with a digital controller of voltage, electricity, and frequency. The quartz tube was in the height of 800 mm, outer diameter of 12 mm and thicknesses of 0.8 mm. 5 mL of nanocatalyst

was filled in the discharge zone of plasma reactor. A resistance furnace was introduced to maintain the desired reaction temperature located upstream plasma reactor, connected to the temperature controller. The concentration of gas mixture was measured by German MRU MGA-5 analyzer (MRU, Berlin, Germany) joint with an external special detector for N₂O and NH₃. An Infrared Thermometer (HCJYET, HT-8872, Hongcheng, Shanghai, China) was introduced to detect the specific temperature of discharge area during the plasma process. During plasma-catalyst catalytic activity experiment, the inlet mixed gas included 300 ppm NO, 300 ppm NH₃, 8% O₂, ~0.1% H₂O and N₂ as balance gas. The gas hourly space velocity (GHSV) was about 20 000 h⁻¹. The NO_x conversion rate was calculated according to Equation (12), where $[NO_x] = [NO] + [NO_2]$. The N₂ selectivity was calculated by the concentrations of N₂O and NO_x, as shown in Equation (13). Each experiment was repeated three times to assure the results accuracy. The discharge energy density was defined as discharge power divided by the inlet gas flow rate [9], which was calculated using Equation (14) [60], where E (W·h/m³) was energy density, P (W) was discharge power, and Q (m³/h) was the gas flow rate. More basic data relating to the discharge energy was listed in Table 1.

NO_x conversion rate =
$$\left(\frac{[NO_x]_{in} - [NO_x]_{out}}{[NO_x]_{in}}\right) \times 100\%$$
 (12)

$$N_{2} \text{ selectivity} = 1 - \frac{2[N_{2}O]_{out}}{[NO_{x}]_{in} - [NO_{x}]_{out}} \times 100\%$$
(13)

$$E(W \cdot h/m^3) = \frac{P(W)}{Q(m^3/h)}$$
 (14)

Figure 10. The schematic diagram about the catalyst-plasma hybrid system. 1, standard gas; 2, mass flowmeter; 3, shutdown valve; 4, water carrier; 5, gas mixer; 6, resistance furnace; 7, temperature controller; 8, nanocatalysts; 9, ground electrode; 10, high voltage electrode; 11, AC power transverter; 12, flue gas analyzer; 13, record system; 14, gas washing bottle; and 15, induced draft fan.

4. Conclusions

The Mn-based bimetallic nanocatalysts of Mn–Fe/TiO₂, Mn–Co/TiO₂, Mn–Ce/TiO₂, synthesized by hydrothermal method, presented obvious synergistic effects on NO_x catalytic conversion via the plasma-catalyst hybrid catalytic process. In the catalytic process with catalyst alone, the NO_x conversions of all tested catalysts were lower than 20% at ambient temperature. While in the plasma-catalyst hybrid catalytic process, the catalytic activities for NO_x elimination improved significantly with discharge energy enlarging. The maximum NO_x conversion of about 99.5% achieved on Mn–Ce/TiO₂ with discharge energy of 15 W·h/m³ at ambient temperature. The reaction temperature had an inhibiting effect on plasma-catalyst hybrid catalysis. Among these three Mn-based bimetallic nanocatalysts, $Mn-Ce/TiO_2$ displayed the optimal catalytic property with higher catalytic activity and superior selectivity in the plasma-catalyst hybrid catalytic process. Furthermore, based on the multiple characterizations performed on the Mn-based bimetallic nanocatalysts, it could be confirmed that the catalytic property of plasma-catalyst hybrid catalytic process was highly dependent on the phase composition of the catalyst. $Mn-Ce/TiO_2$ nanocatalyst presented the optimal structure characteristic among all tested samples, with the largest surface area, the increased active components distributions, the reduced crystallinity and the minished particle sizes. In the meantime, the ratios of $Mn^{4+}/(Mn^{2+} + Mn^{3+} + Mn^{4+})$ in the $Mn-Ce/TiO_2$ sample was the highest, which was beneficial to plasma-catalyst hybrid catalysis. Generally, it was believed that the plasma-catalyst hybrid catalytic process with the Mn-based bimetallic nanocatalyst was an effective approach for high-efficiency catalytic conversion of NO_x , especially at ambient temperature.

Author Contributions: Conceptualization, Y.G.; Funding acquisition, Y.G., T.L., W.Z.; Methodology, Y.G., T.L.; Project administration, Y.G.; Writing–original draft, Y.G.; Writing–review & editing, H.L. and W.Z.; Data curation, Y.G., W.J., W.F., H.J.

Funding: This work was supported by National Natural Science Foundation of China (Project No. 51708336), Shandong Provincial Natural Science Foundation (ZR2016EEB28), Shandong Provincial Science and Technology Development Plan (2011GSF11716), Shandong Jianzhu university open experimental project (2018yzkf023, 2018wzkf013,), and the Shandong electric power engineering consulting institute science and technology project (37-K2014-33).

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Wang, B.; Chi, C.; Xu, M.; Wang, C.; Meng, D. Plasma-catalytic removal of toluene over CeO₂-MnOx catalysts in an atmosphere dielectric barrier discharge. *Chem. Eng. J.* **2017**, *322*, 679–692. [CrossRef]
- France, L.J.; Yang, Q.; Li, W.; Chen, Z.; Guang, J.; Guo, D.; Wang, L.; Li, X. Ceria modified FeMnOx—Enhanced performance and sulphur resistance for low-temperature SCR of NOx. *Appl. Catal. B Environ.* 2017, 206, 203–215. [CrossRef]
- 3. Gao, Y.; Luan, T.; Lu, T.; Cheng, K.; Xu, H. Performance of V₂O₅-WO₃-MoO₃/TiO₂ catalyst for selective catalytic reduction of NOx by NH₃. *Chin. J. Chem. Eng.* **2013**, *21*, 1–7. [CrossRef]
- 4. Wang, T.; Liu, H.; Zhang, X.; Liu, J.; Zhang, Y.; Guo, Y.; Sun, B. Catalytic conversion of NO assisted by plasma over Mn-Ce/ZSM5-multi-walled carbon nanotubes composites: Investigation of acidity, activity and stability of catalyst in the synergic system. *Appl. Surf. Sci.* **2018**, *457*, 187–199. [CrossRef]
- Zhang, R.; Yang, W.; Luo, N.; Li, P.; Lei, Z.; Chen, B. Low-temperature NH₃-SCR of NO by lanthanum manganite perovskites: Effect of A-/B-site substitution and TiO₂/CeO₂ support. *Appl. Catal. B Environ.* 2014, *146*, 94–104. [CrossRef]
- Gao, Y.; Luan, T.; Zhang, M.; Zhang, W.; Feng, W. Structure–Activity Relationship Study of Mn/Fe Ratio Effects on Mn–Fe–Ce–Ox/γ-Al₂O₃ Nanocatalyst for NO Oxidation and Fast SCR Reaction. *Catalysts* 2018, *8*, 642. [CrossRef]
- 7. Miessner, H.; Francke, K.P.; Rudolph, R.; Hammer, T. NOx removal in excess oxygen by plasma-enhanced selective catalytic reduction. *Catal. Today* **2002**, *75*, 325–330. [CrossRef]
- 8. Kim, H.-H.; Teramoto, Y.; Ogata, A.; Takagi, H.; Nanba, T. Plasma Catalysis for Environmental Treatment and Energy Applications. *Plasma Chem. Plasma Process.* **2016**, *36*, 45–72. [CrossRef]
- Penetrante, B.M.; Brusasco, R.M.; Merritt, B.T.; Pitz, W.J.; Vogtlin, G.E.; Kung, M.C.; Kung, H.H.; Wan, C.Z.; Voss, K.E. Plasma-Assisted Catalytic Reduction of NOx. In Proceedings of the International Fall Fuels and Lubricants Meeting and Exposition, San Francisco, CA, USA, 19–22 October 1998. [CrossRef]
- Patil, B.S.; Cherkasov, N.; Lang, J.; Ibhadon, A.O.; Hessel, V.; Wang, Q. Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: Effect of support materials and supported active metal oxides. *Appl. Catal. B Environ.* 2016, 194, 123–133. [CrossRef]
- Hammer, T.; Kishimoto, T.; Miessner, H.; Rudolph, R. Plasma Enhanced Selective Catalytic Reduction: Kinetics of NOx-Removal and Byproduct Formation. In Proceedings of the International Fuels & Lubricants Meeting & Exposition, Dearborn, MI, USA, 25 October 1999; Volume 1, pp. 3632–3641.

- 12. McAdams, R.; Beech, P.; Shawcross, J.T. Low Temperature Plasma Assisted Catalytic Reduction of NOx in Simulated Marine Diesel Exhaust. *Plasma Chem. Plasma Process.* **2008**, *28*, 159–171. [CrossRef]
- 13. Oda, T.; Kato, T.; Takahashi, T.; Shimizu, K. Nitric oxide decomposition in air by using non-thermal plasma processing—With additives and catalyst. *J. Electrost.* **1997**, *42*, 151–157. [CrossRef]
- Zhang, C.; Chen, T.; Liu, H.; Chen, D.; Xu, B.; Qing, C. Low temperature SCR reaction over Nano-Structured Fe-Mn Oxides: Characterization, performance, and kinetic study. *Appl. Surf. Sci.* 2018, 457, 1116–1125. [CrossRef]
- Qiu, L.; Pang, D.; Zhang, C.; Meng, J.; Zhu, R.; Ouyang, F. In situ IR studies of Co and Ce doped Mn/TiO₂ catalyst for low-temperature selective catalytic reduction of NO with NH₃. *Appl. Surf. Sci.* 2015, 357, 189–196. [CrossRef]
- You, X.; Sheng, Z.; Yu, D.; Yang, L.; Xiao, X.; Wang, S. Influence of Mn/Ce ratio on the physicochemical properties and catalytic performance of graphene supported MnOx-CeO₂ oxides for NH₃-SCR at low temperature. *Appl. Surf. Sci.* 2017, 423, 845–854. [CrossRef]
- 17. Chen, Y.; Wang, J.; Yan, Z.; Liu, L.; Zhang, Z.; Wang, X. Promoting effect of Nd on the reduction of NO with NH₃ over CeO₂ supported by activated semi-coke: An in situ DRIFTS study. *Catal. Sci. Technol.* **2015**, *5*, 2251–2259. [CrossRef]
- 18. Liu, Z.; Zhu, J.; Li, J.; Ma, L.; Woo, S.I. Novel Mn–Ce–Ti Mixed-Oxide Catalyst for the Selective Catalytic Reduction of NOx with NH₃. *ACS Appl. Mater. Interfaces* **2014**, *6*, 14500–14508. [CrossRef] [PubMed]
- 19. Wang, T.; Zhang, X.; Liu, J.; Liu, H.; Wang, Y.; Sun, B. Effects of temperature on NOx removal with Mn-Cu/ZSM5 catalysts assisted by plasma. *Appl. Therm. Eng.* **2018**, *130*, 1224–1232. [CrossRef]
- 20. Penetrante, B.M.; Bardsley, J.N.; Hsiao, M.C. Kinetic Analysis of Non-Thermal Plasmas Used for Pollution Control. *Jpn. J. Appl. Phys.* **1997**, *36*, 5007. [CrossRef]
- 21. Heck, R.M. Catalytic abatement of nitrogen oxides–stationary applications. *Catal. Today* **1999**, *53*, 519–523. [CrossRef]
- 22. Kim, H.H.; Takashima, K.; Katsura, S.; Mizuno, A. Low-temperature NOx reduction processes using combined systems of pulsed corona discharge and catalysts. J. Phys. D Appl. Phys. 2001, 34, 604. [CrossRef]
- 23. Niu, J.; Yang, X.; Zhu, A.; Shi, L.; Sun, Q.; Xu, Y.; Shi, C. Plasma-assisted selective catalytic reduction of NOx by C₂H₂ over Co-HZSM-5 catalyst. *Catal. Commun.* **2006**, *7*, 297–301. [CrossRef]
- 24. Liu, Z.; Yi, Y.; Zhang, S.; Zhu, T.; Zhu, J.; Wang, J. Selective catalytic reduction of NOx with NH₃ over Mn-Ce mixed oxide catalyst at low temperatures. *Catal. Today* **2013**, *216*, 76–81. [CrossRef]
- 25. Li, X.; Zhang, S.; Jia, Y.; Liu, X.; Zhong, Q. Selective catalytic oxidation of NO with O₂ over Ce-doped MnOx/TiO₂ catalysts. *J. Nat. Gas Chem.* **2012**, *21*, 17–24. [CrossRef]
- 26. Ma, Z.; Yang, H.; Li, Q.; Zheng, J.; Zhang, X. Catalytic reduction of NO by NH₃ over Fe–Cu–Ox/CNTs-TiO₂ composites at low temperature. *Appl. Catal. A Gen.* **2012**, 427–428, 43–48. [CrossRef]
- 27. Shi, Y.; Chen, S.; Sun, H.; Shu, Y.; Quan, X. Low-temperature selective catalytic reduction of NOx with NH₃ over hierarchically macro-mesoporous Mn/TiO₂. *Catal. Commun.* **2013**, *42*, 10–13. [CrossRef]
- Gao, F.; Tang, X.; Yi, H.; Chu, C.; Li, N.; Li, J.; Zhao, S. In-situ DRIFTS for the mechanistic studies of NO oxidation over α-MnO₂, β-MnO₂ and γ-MnO₂ catalysts. *Chem. Eng. J.* 2017, 322, 525–537. [CrossRef]
- 29. Gao, Y.; Luan, T.; Zhang, W.; Li, H. The promotional effects of cerium on the catalytic properties of Al₂O₃-supported MnFeOx for NO oxidation and fast SCR reaction. *Res. Chem. Intermed.* **2018**, in press. [CrossRef]
- 30. Pérez Vélez, R.; Ellmers, I.; Huang, H.; Bentrup, U.; Schünemann, V.; Grünert, W.; Brückner, A. Identifying active sites for fast NH₃-SCR of NO/NO₂ mixtures over Fe-ZSM-5 by operando EPR and UV–vis spectroscopy. *J. Catal.* **2014**, *316*, 103–111. [CrossRef]
- Gong, P.; Xie, J.; Fang, D.; Han, D.; He, F.; Li, F.; Qi, K. Effects of surface physicochemical properties on NH₃-SCR activity of MnO₂ catalysts with different crystal structures. *Chin. J. Catal.* 2017, *38*, 1925–1934. [CrossRef]
- 32. Boningari, T.; Pappas, D.K.; Ettireddy, P.R.; Kotrba, A.; Smirniotis, P.G. Influence of SiO₂ on M/TiO₂ (M = Cu, Mn, and Ce) Formulations for Low-Temperature Selective Catalytic Reduction of NOx with NH₃: Surface Properties and Key Components in Relation to the Activity of NOx Reduction. *Ind. Eng. Chem. Res.* 2015, 54, 2261–2273. [CrossRef]

- Luo, S.; Zhou, W.; Xie, A.; Wu, F.; Yao, C.; Li, X.; Zuo, S.; Liu, T. Effect of MnO₂ polymorphs structure on the selective catalytic reduction of NOx with NH₃ over TiO₂–Palygorskite. *Chem. Eng. J.* 2016, 286, 291–299. [CrossRef]
- 34. Jiang, H.; Wang, C.; Wang, H.; Zhang, M. Synthesis of highly efficient MnOx catalyst for low-temperature NH₃-SCR prepared from Mn-MOF-74 template. *Mater. Lett.* **2016**, *168*, 17–19. [CrossRef]
- 35. Cheng, X.; Zhang, X.; Su, D.; Wang, Z.; Chang, J.; Ma, C. NO reduction by CO over copper catalyst supported on mixed CeO₂ and Fe₂O₃: Catalyst design and activity test. *Appl. Catal. B Environ.* **2018**, 239, 485–501. [CrossRef]
- 36. Stanciulescu, M.; Caravaggio, G.; Dobri, A.; Moir, J.; Burich, R.; Charland, J.P.; Bulsink, P. Low-temperature selective catalytic reduction of NOx with NH₃ over Mn-containing catalysts. *Appl. Catal. B Environ.* **2012**, 123–124, 229–240. [CrossRef]
- 37. Kong, F.; Qiu, j.; Liu, H.; Zhao, R.; Zeng, H. Effect of NO/SO₂ on Elemental Mercury Adsorption by Nano-Fe₂O₃. *Proc. CSEE (China)* **2010**, *30*, 43–48.
- Cao, L.; Chen, L.; Wu, X.; Ran, R.; Xu, T.; Chen, Z.; Weng, D. TRA and DRIFTS studies of the fast SCR reaction over CeO₂/TiO₂ catalyst at low temperatures. *Appl. Catal. A Gen.* 2018, 557, 46–54. [CrossRef]
- Jin, R.; Liu, Y.; Wu, Z.; Wang, H.; Gu, T. Low-temperature selective catalytic reduction of NO with NH₃ over MnCe oxides supported on TiO₂ and Al₂O₃: A comparative study. *Chemosphere* 2010, *78*, 1160–1166. [CrossRef] [PubMed]
- Ma, L.; Seo, C.Y.; Nahata, M.; Chen, X.; Li, J.; Schwank, J.W. Shape dependence and sulfate promotion of CeO₂ for selective catalytic reduction of NOx with NH₃. *Appl. Catal. B Environ.* 2018, 232, 246–259. [CrossRef]
- 41. Xiong, Z.-B.; Liu, J.; Zhou, F.; Liu, D.-Y.; Lu, W.; Jin, J.; Ding, S.-F. Selective catalytic reduction of Nox with NH₃ over iron-cerium-tungsten mixed oxide catalyst prepared by different methods. *Appl. Surf. Sci.* **2017**, 406, 218–225. [CrossRef]
- 42. Liu, F.; He, H.; Zhang, C.; Shan, W.; Shi, X. Mechanism of the selective catalytic reduction of NOx with NH₃ over environmental-friendly iron titanate catalyst. *Catal. Today* **2011**, *175*, 18–25. [CrossRef]
- 43. Fan, X.; Qiu, F.; Yang, H.; Tian, W.; Hou, T.; Zhang, X. Selective catalytic reduction of NOX with ammonia over Mn–Ce–Ox/TiO₂-carbon nanotube composites. *Catal. Commun.* **2011**, *12*, 1298–1301. [CrossRef]
- 44. Guan, D.S.; Wang, Y. Synthesis and growth mechanism of multilayer TiO₂ nanotube arrays. *Nanoscale* **2012**, *4*, 2968–2977. [CrossRef] [PubMed]
- 45. Lu, X.; Shen, C.; Zhang, Z.; Barrios, E.; Zhai, L. Core–Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes. *ACS Appl. Mater. Interfaces* **2018**, *10*, 4041–4049. [CrossRef] [PubMed]
- 46. Wang, C.; Yu, F.; Zhu, M.; Wang, X.; Dan, J.; Zhang, J.; Cao, P.; Dai, B. Microspherical MnO₂-CeO₂-Al₂O₃ mixed oxide for monolithic honeycomb catalyst and application in selective catalytic reduction of NOx with NH₃ at 50–150 °C. *Chem. Eng. J.* **2018**, *346*, 182–192. [CrossRef]
- Kapteijn, F.; Singoredjo, L.; Andreini, A.; Moulijn, J.A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. *Appl. Catal. B Environ.* **1994**, *3*, 173–189. [CrossRef]
- 48. Gao, G.; Shi, J.-W.; Liu, C.; Gao, C.; Fan, Z.; Niu, C. Mn/CeO₂ catalysts for SCR of NOx with NH₃: Comparative study on the effect of supports on low-temperature catalytic activity. *Appl. Surf. Sci.* **2017**, 411, 338–346. [CrossRef]
- 49. Zhang, W.; Wang, F.; Li, X.; Liu, Y.; Liu, Y.; Ma, J. Fabrication of hollow carbon nanospheres introduced with Fe and N species immobilized palladium nanoparticles as catalysts for the semihydrogenation of phenylacetylene under mild reaction conditions. *Appl. Surf. Sci.* **2017**, *404*, 398–408. [CrossRef]
- 50. Wang, T.; Wan, Z.; Yang, X.; Zhang, X.; Niu, X.; Sun, B. Promotional effect of iron modification on the catalytic properties of Mn-Fe/ZSM-5 catalysts in the Fast SCR reaction. *Fuel Process. Technol.* **2018**, *169*, 112–121. [CrossRef]
- Hu, H.; Cai, S.; Li, H.; Huang, L.; Shi, L.; Zhang, D. Mechanistic Aspects of deNOx Processing over TiO₂ Supported Co–Mn Oxide Catalysts: Structure–Activity Relationships and In Situ DRIFTs Analysis. ACS Catal. 2015, 5, 6069–6077. [CrossRef]
- 52. Li, K.; Tang, X.; Yi, H.; Ning, P.; Kang, D.; Wang, C. Low-temperature catalytic oxidation of NO over Mn–Co–Ce–Ox catalyst. *Chem. Eng. J.* **2012**, *192*, 99–104. [CrossRef]

- 53. Qi, G.; Yang, R.T. Performance and kinetics study for low-temperature SCR of NO with NH₃ over MnOx–CeO₂ catalyst. *J. Catal.* **2003**, *217*, 434–441. [CrossRef]
- 54. Huang, B.; Yu, D.; Sheng, Z.; Yang, L. Novel CeO₂@TiO₂ core–shell nanostructure catalyst for selective catalytic reduction of NOx with NH₃. *J. Environ. Sci.* **2017**, *55*, 129–136. [CrossRef] [PubMed]
- Boningari, T.; Somogyvari, A.; Smirniotis, P.G. Ce-Based Catalysts for the Selective Catalytic Reduction of NOx in the Presence of Excess Oxygen and Simulated Diesel Engine Exhaust Conditions. *Ind. Eng. Chem. Res.* 2017, *56*, 5483–5494. [CrossRef]
- Ruggeri, M.P.; Grossale, A.; Nova, I.; Tronconi, E.; Jirglova, H.; Sobalik, Z. FTIR in situ mechanistic study of the NH₃NO/NO₂ "Fast SCR" reaction over a commercial Fe-ZSM-5 catalyst. *Catal. Today* 2012, *184*, 107–114. [CrossRef]
- 57. Huang, T.-J.; Zhang, Y.-P.; Zhuang, K.; Lu, B.; Zhu, Y.-W.; Shen, K. Preparation of honeycombed holmium-modified Fe-Mn/TiO₂ catalyst and its performance in the low temperature selective catalytic reduction of NOx. *J. Fuel Chem. Technol.* **2018**, *46*, 319–327. [CrossRef]
- Marbán, G.; Valdés-Solís, T.; Fuertes, A.B. Mechanism of low-temperature selective catalytic reduction of NO with NH₃ over carbon-supported Mn₃O₄: Role of surface NH₃ species: SCR mechanism. *J. Catal.* 2004, 226, 138–155. [CrossRef]
- 59. Wang, J.; Yi, H.; Tang, X.; Zhao, S.; Gao, F.; Yang, Z. Oxygen plasma-catalytic conversion of NO over MnOx: Formation and reactivity of adsorbed oxygen. *Catal. Commun.* **2017**, *100*, 227–231. [CrossRef]
- Wang, T.; Zhang, X.; Liu, J.; Liu, H.; Guo, Y.; Sun, B. Plasma-assisted catalytic conversion of NO over Cu-Fe catalysts supported on ZSM-5 and carbon nanotubes at low temperature. *Fuel Process. Technol.* 2018, 178, 53–61. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).