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Abstract: Inspired by the active site structures of lactate racemase and recently reported sulphur–
carbon–sulphur (SCS) nickel pincer complexes, a series of scorpion-like SCS nickel pincer complexes
with an imidazole tail and asymmetric claws was proposed and examined computationally
as potential catalysts for the asymmetric transfer hydrogenation of 1-acetonaphthone. Density
functional theory calculations reveal a proton-coupled hydride transfer mechanism for the
dehydrogenation of (R)-(+)-1-phenyl-ethanol and the hydrogenation of 1-acetonaphthone to produce
(R)-(+)-1-(2-naphthyl)ethanol and (S)-(−)-1-(2-naphthyl)ethanol. Among all proposed Ni complexes,
1Ph is the most active one with a rather low free energy barrier of 24 kcal/mol and high
enantioselectivity of near 99% enantiomeric excess (ee) for the hydrogenation of prochiral ketones to
chiral alcohols.

Keywords: asymmetric transfer hydrogenation; 1-acetonaphthone; density functional theory; nickel;
lactate racemase

1. Introduction

The synthesis of chiral compounds by metal-catalyzed asymmetric hydrogenation reactions
has been widely used in the pharmaceutical [1], agrochemical [2], fragrance [3], and other fine
chemical industries [4]. The catalytic asymmetric reduction of prochiral ketones and imines, especially
asymmetric hydrogenation (AH) and asymmetric transfer hydrogenation (ATH), is one of the
most efficient and versatile tools to produce chiral alcohols and amines. In both academic and
industrial operations, catalysts used for AH and ATH are typically based on noble metals, such as
Rh, Ir, and Ru [5]. The replacement of such high-cost and toxic precious metals with abundant
and environmentally benign base metals, such as Fe, Co, Ni, etc., for catalytic AH and ATH
reactions has attracted increasing attention in recent years [6–12]. Gao [9] and Morris [10–12] groups
reported tetradentate PNNP iron catalysts for the ATH of acetophenone with high enantioselectivities.
Morris and co-workers [13] reported unsymmetrical iron P-NH-P’ complexes for the asymmetric
hydrogenation of aryl ketones with enantiomeric excess (ee) values greater than 90%. In contrast to
the encouraging progress archived in iron catalysts, cobalt catalysts for catalytic ATH of ketones have
rather low enantioselectivities [9], and only a few Ni catalysts were reported so far [14–16]. In 2008,
Hamada et al. [14] applied nickel bisphosphine complexes for the asymmetric hydrogenation of
α-amino-β-keto ester hydrochlorides through dynamic kinetic resolution and achieved high diastereo-
and enantioselectivities (88−93% ee) for the production of anti-β-hydroxy-α-amino esters. Later on, they
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applied the same catalyst for the asymmetric hydrogenation of substituted aromatic α-aminoketone
hydrochlorides to produce β-aminoalcohols with excellent diastereo- and enantioselectivities [15].
In 2012, Dong et al. [16] reported Ni(II) complexes chelated by PNO ligands for the ATH of a series
of aromatic ketones using 2-propanol as the hydrogen source and obtained corresponding optical
alcohols up to 84% ee under mild conditions.

Inspired by the structures of the active site of lactate racemase [17] and experimentally reported
sulphur–carbon–sulphur (SCS) palladium pincer complexes [18], we recently proposed a series of
scorpion-like SCS nickel pincer complexes with an imidazole tail as potential catalysts for lactate
racemization [19]. Our density functional theory (DFT) calculations revealed a weak enantioselectivity
in the hydrogenation of pyruvate catalyzed by those SCS nickel pincer complexes with unsymmetrical
ligands. Based on those findings, we proposed and computationally examined in this work a series
of potential unsymmetrical catalysts with enhanced steric effect by adjusting the size of functional
groups in the SCS pincer ligand for the more challenging asymmetric transfer hydrogenation of
naphthyl ketone.

2. Results and Discussion

Figure 1 shows Meguro et al.’s SCS nickel pincer complexes [18], our previously proposed
scorpion-like SCS nickel pincer complex [19], and the unsymmetrical SCS nickel pincer complexes
(1Ph, 1Me, 1Et, and 1tBu) proposed in this study. Scheme 1 shows the catalytic cycles for the ATH
of 1-acetonaphthone to (R)-(+)-1-(2-naphthyl)ethanol and (S)-(−)-1-(2-naphthyl)ethanol catalyzed
by catalyst 1Ph. (R)-(+)-1-phenyl-ethanol was used as the hydrogen source because the phenyl
group in it could have π–π stacking interaction with the phenyl groups in 1Ph (see Supplementary
Materials) and reduce the reaction energy barriers. Actually, both (R)-(+)-1-phenyl-ethanol and
(S)-(−)-1-phenyl-ethanol in racemic (±)-1-phenyl-ethanol could act as hydrogen sources with similar
barriers for dehydrogenation. Figure 2 shows the calculated free energy profile of the reaction described
in Scheme 1. The optimized structures of some important intermediates and transition states for
hydrogen transfer are displayed in Figure 3. The free energy profiles of the same reaction catalyzed by
1Me, 1Et, and 1tBu are shown in Figures 4–6, respectively.
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Figure 1. (a) Sulphur–carbon–sulphur (SCS) Pd pincer complexes synthesized by Meguro et al.; (b) SCS
Ni pincer complex designed by Qiu and Yang; (c) unsymmetrical SCS pincer complexes proposed in
this work.
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Scheme 1. Proposed catalytic cycle for the asymmetric transfer hydrogenation of 1-acetonaphthone to
(R)-(+)-1-(2-naphthyl)ethanol and (S)-(−)-1-(2-naphthyl)ethanol catalyzed by 1Ph.
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At the beginning of the reaction, a (R)-(+)-1-phenyl-ethanol molecule approaches 1Ph and
forms a slightly less stable intermediate 2Ph. The proton and hydride on the hydroxymethyne
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group in (R)-(+)-1-phenyl-ethanol simultaneously transfer to the imidazole nitrogen and the sp2

carbon coordinated to nickel, respectively, through transition state TS2,3-Ph (∆G = 23.1 kcal/mol).
The dissociation of acetophenone from 3Ph is a 0.7 kcal/mol downhill step. Then, a 1-acetonaphthone
molecule approaches the pincer metal complex and forms a 1.2 kcal/mol more stable intermediate 5Ph
or a 3.5 kcal/mol more stable intermediate 5Ph’, depending on the orientation of 1-acetonaphthone.
The proton and hydride could simultaneously transfer from the pincer ligand in 5Ph or 5Ph’ to
1-acetonaphthone through transition state TS5,6-Ph or TS5’,6’-Ph with a free energy barrier of 23.8
(5Ph’→TS5,6-Ph) or 27.3 (5Ph’→TS5’,6’-Ph) kcal/mol for the formation of (R)-(+)-1-(2-naphthyl)ethanol
and (S)-(−)-1-(2-naphthyl)ethanol, respectively.
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The free energy difference of the enantio-determining steps, TS5,6-Ph and TS5’,6’-Ph, is 3.5 kcal/mol,
which could lead to an approximate ee value of 99.5%. The asymmetric transfer hydrogenation
of 1-acetonaphthone catalyzed by 1Ph, 1Me, 1Et, and 1tBu has similar mechanisms but different
relative energies in the catalytic cycle. Table 1 lists the free energy barriers of the reactions and
the enantioselectivity of 1Ph, 1Me, 1Et, and 1tBu. As shown in Table 1, the free energy barrier of the
dehydrogenation of (R)-(+)-1-phenyl-ethanol (∆G1) catalyzed by 1Ph is 25.1 kcal/mol (5Ph’→TS2,3-Ph),
which is 0.5, 2.3, and 2.8 kcal/mol lower than the ∆G1 of 1Me (6Me’→TS2,3-Me), 1Et (6Et’→TS2,3-Et),
and 1tBu (1tBu→TS2,3-tBu), respectively. The free energy barriers of enantio-determining steps (∆G2

and ∆G3) of 1Ph, 1Me, 1Et, and 1tBu have the same trend. Although 1Me, 1Et, and 1tBu have stronger
steric effects than 1Ph, there is a trade-off between their free energy barriers and enantioselectivities.
1tBu has the strongest steric effect, which leads to the highest free energy barrier and the highest
enantioselectivity. 1Ph has an enantioselectivity close to 1tBu, and the lowest free energy barriers for
hydrogen transfers because of the π–π stack interaction between the naphthyl group in the reactant
and the phenyl group in 1Ph.
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Table 1. Energy barriers of 1Ph, 1Me, 1Et, and 1tBu.

Catalysts ∆G1 (kcal/mol) ∆G2 (kcal/mol) ∆G3 (kcal/mol) ∆∆G(ee) = ∆G2 − ∆G3

1Ph 25.1(5Ph’→TS2,3-Ph) 23.8(5Ph’→TS5,6-Ph) 27.3(5Ph’→TS5’,6’-Ph) −3.5 (99.5%)
1Me 25.6(6Me’→TS2,3-Me) 26.8(6Me’→TS5,6-Me) 28.6(6Me’→TS5’,6’-Me) −1.8 (90.9%)
1Et 27.4(6Et’→TS2,3-Et) 27.9(6Et’→TS5,6-Et) 29.3(6Et’→TS5’,6’-Et) −1.4 (82.8%)

1tBu 27.9(1tBu→TS2,3-tBu) 28.5(1tBu→TS5,6-tBu) 32.2(1tBu→TS5’,6’-tBu) −3.7 (99.6%)

It is noteworthy that the special role of the imidazole groups in those newly proposed SCS pincer
complexes are proton reservoirs facilitating proton-coupled hydride transfer in the dehydrogenation
and hydrogenation reactions. The ethylene group connecting the pyridinium ring and the imidazole
group ensures the adjustability of the imidazole group’s position for easy accepting or donating of
protons. The substituents on the arm of the SCS pincer ligand balance the free energy barriers and the
enantioselectivity of the ATH reactions.

3. Computational Methods

3.1. DFT Calculation Details

All DFT calculations in this study were performed using the Gaussian 09 (Revision C.01, Gaussion,
Inc., Wallingford, CT, USA) suite of Ab Initio programs [20] for theωB97X-D [21] functional with the
all-electron 6-31+G(d,p) basis set for H, C, N, O, S, and P atoms [22–24] and the Stuttgart relativistic
effective core potential basis set for Ni (ECP10MDF) [25]. All structures in this paper were optimized
in acetonitrile by using the integral equation formalism polarizable continuum model (IEFPCM) [26]
with solvation model based on density (SMD) [27] atomic radii solvent corrections. The ground
states were confirmed as singlet through comparison with optimized high-spin analogs. An ultrafine
integration grid (99,590) was used for numerical integrations. Thermal corrections were calculated
within the harmonic potential approximation on optimized structures under T = 298.15 K and 1 atm
pressure. Unless otherwise noted, the relative energies reported in the text are Gibbs free energies
with solvent effect corrections. The calculated structures were verified to have no imaginary frequency
(IF) for all intermediates and only one IF for each transition state. All transition states were also
confirmed to connect proper reactants and products by intrinsic reaction coordinate calculations.
The JIMP2 molecular visualizing and manipulating program was employed to draw the 3D molecular
structures [28].
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3.2. Quantitative Estimation of Enantiomeric Excess

The enantiomeric excess can be quantitatively estimated from the free energy barrier difference of
enantio-determining steps (∆∆G = ∆G2 − ∆G3) based on the transation state theory [29]:

ee =
e−

∆∆G
RT − 1

e−
∆∆G
RT + 1

× 100%

where R is the universal gas constant and T is the absolute temperature of the reaction in calculation
(298.15 K in this case).

4. Conclusions

Inspired by the structures of the active center of lactate racemase and some experimentally
reported base metal SCS pincer complexes, we proposed a series of scorpion-like SCS pincer nickel
complexes 1Ph, 1Me, 1Et, and 1tBu and computationally predicted their potentials as catalysts for the
ATH of ketones. Our computational study reveals a proton-coupled hydride transfer dehydrogenation
and hydrogenation mechanism, in which the proton and hydride on the hydroxymethyne group
in (R)-(+)-1-phenyl-ethanol simultaneously transfer to the imidazole nitrogen and the sp2 carbon
coordinated to nickel and then transfer to the carbonyl group in 1-acetonaphthone for the formation of
(R)-(+)-1-(2-naphthyl)ethanol or (S)-(−)-1-(2-naphthyl)ethanol. Among all SCS pincer nickel complexes
we proposed, 1Ph has well-balanced catalytic activity (∆G2 = 23.8 kcal/mol) and enantioselectivity
(∆∆G = −3.5 kcal/mol). We believe the π–π stacking effect between the phenyl groups in reactants
and 1Ph helps to stabilize intermediates and reduce energy barriers in the reaction. Our computational
design not only provides prototypical SCS nickel pincer complexes as promising catalysts for the
asymmetric hydrogenation of 1-acetonaphthone, but also sheds a light on the development of efficient
base metal catalysts with high chiral selectivity. The further design of SCS nickel pincer complexes
for the asymmetric hydrogenation of various ketones and imines using different hydrogen sources
is underway.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/1/101/s1,
Table S1: Relative free energies between 1tBu and key transition states calculated by using different density
functionals, Table S2: Relative free energies between 1tBu and key transition states in different solvents, Figure S1:
Optimized structures and solvent corrected absolute free energies of 1Ph and two conformers with the imidazole
group far away from the metal center (1Ph’) and on the other side of the pincer ligand close to the PPh2 group
(1Ph”).
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