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Abstract: The oxygen-evolving complex (OEC) is the native enzyme that catalyzes the oxidation
of water in natural photosynthesis. Two new classes of manganese cluster complexes of formula
Ba2Mn2L1

2(H3L1)2(CH3OH)4 1 and Mn4L2
6Cl2 2 were prepared (H4L1 = N,N′-(ethane-1,2-diyl)bis

(2-hydroxybenzamide); L2 = methyl picolinimidate) and characterized by standard techniques
including microanalysis, IR spectroscopy, ESI spectrometry, and magnetic susceptibility
measurements. X-ray diffraction studies of these complexes revealed (i) a box-type structure for 1
formed by two redox-active manganese(III) ions and two barium(II) ions connected by two bridging
bisamido-bisphenoxy ligand molecules; and (ii) a planar-diamond array for Mn4N6 cluster 2 where
the picolinimidates act as chelating ligands through the two nitrogen atoms. The ability of 1 and
2 to split water has been studied by means of water photolysis experiments. In these experiments,
the oxygen evolution was measured in aqueous media in the presence of p-benzoquinone (acting
as the hydrogen acceptor), the reduction of which was followed by UV-spectroscopy. The relevant
photolytic activity found for 1 is in contrast to the inactivity of 2 in the photolytic experiments.
This different behavior is discussed on the basis of the structure of the biomimetic models and the
proposed reaction mechanism for this process supported by DFT calculations.

Keywords: artificial photosynthesis; photocatalyst; water splitting; manganese

1. Introduction

The oxygen-evolving complex (OEC) is the catalytic site that catalyzes, in natural photosynthesis,
the oxidation of water into dioxygen, protons, and electrons [1–3]. The native Mn4CaO5 complex,
located at the donor site of photosystem II (PSII), is responsible for both the atmospheric oxygen that
we breathe, and also the conversion of solar energy into chemical energy. In this process, water splitting
is the key step that drives the chain of electron-transduction reactions to form the energy transporting
molecule NADPH, which holds the electrons in this chain [4,5]. The natural catalyst contains four
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manganese atoms and one calcium atom, coordinated by four water molecules, one imidazole, and six
carboxylate groups. In addition, two chloride ions are also in the vicinity of the Mn4Ca cluster [1,6].
Much of what we know about this catalytic complex was learned through structural and functional
artificial models of the OEC [7–10]. Structural understanding of this catalytic site has been achieved
thanks to multiple techniques, such as EPR [11–13], XAS [14–16] or XRD [17,18], often based on
the information obtained through mimetic models. The understanding of the mechanism of water
oxidation is also better understood on the basis of data obtained from bioinorganic modeling of the
OEC [19–21].

We have previously reported that a number of manganese model compounds are catalysts for
water photolysis [22,23]. In this sense, manganese-Schiff base µ-aqua dimers were found to be active
systems under light irradiation and in the presence of p-benzoquinone, which acts as a hydrogen
acceptor. The ONNO set of the tetradentate-Schiff base (using the iminic nitrogen and phenoxy
oxygen atoms) provides a strong chelating effect which confers an increased robustness to this type of
complex in comparison to other systems [24,25]. We propose a mechanism for this catalysis involving
successive hydrogen abstractions from water molecules bound to the metal ions by optically excited
p-benzoquinone. Photogenerated dioxygen is evolved in the overall process, while p-benzoquinone is
reduced to hydroquinone (Scheme 1).
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Scheme 1. Photogeneration of dioxygen from water molecules bound to the metal ion in manganese-Schiff
base µ-aqua dimers.

In our search for more efficient catalysts, we are looking for systems with higher nuclearity,
different topologies, and other donor atoms beyond the iminic nitrogen or the phenoxy oxygen atoms.
We are also interested in checking the hypothesis of the ease of coordination of the water molecules to
achieve active catalysts. In order to address some of these issues, in the work described here, we report
on two new potential biomimetic models of the OEC using other type of organic ligands, such as
the bisamido-bisphenoxy H4L1 or the methyl-picolinimidate L2 (see Scheme 2). H4L1 contains six
potential donor atoms: two amide nitrogen, two phenoxy, and two amide oxygen atoms. The latter
donor atoms point outward with respect to the ligand cavity which may facilitate the extension of the
structure dimensionality. In addition, the synthetic procedure used to obtain the manganese complex
incorporates an alkaline earth metal (i.e., barium) which may be important in stabilizing the structure
taking into account the presence of other alkaline earth metal ion, calcium, in the natural OEC. In the
case of the L2 ligand, its structure may favor the formation of high-nuclearity clusters.
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2. Results

2.1. Preparation and Characterization of Biomimetic Model 1

The multidentate bisamido-bisphenoxy H4L1 readily reacts with manganese(II) acetate in the
presence of barium hydroxide and air, as detailed in the experimental section, to give biomimetic
model 1 (Ba2Mn2L1

2(H3L1)2(CH3OH)4). The alkaline earth-metal hydroxide provides the basic
conditions required to achieve tetradeprotonation of the ligand and oxidation of manganese(II) to
manganese(III) in the presence of oxygen. Elemental analysis of the complex indicated a stoichiometry
Ba2Mn2L1

2(H3L1)2(CH3OH)4, which is consistent with the formation of neutral species, where L
identifies the ligand in its tetra-anionic form, and H3L identifies the ligand in its monoanionic form.
The analytical, magnetic, spectroscopic, and mass spectrometry data for model 1 are given in the
Materials and Methods section. Complex 1 seems to be stable in air as well as thermally stable, melting
above 300 ◦C without decomposition. It is sparingly soluble in water, partially soluble in common
organic solvents such as methanol, and very soluble in polar coordinating solvents such as DMF and
DMSO. The formulation of model 1 is in agreement with the molar conductivity measured in 10−3 M
DMF solution, which is 23 µS cm−1, typical of non-electrolyte complexes [26].

The value for the magnetic moment at room temperature, 4.8 B.M., is very close to the spin-only
value of 4.89 B.M. expected for a high-spin magnetically diluted d4 manganese(III) ion. The ESI
(electrospray ionization) mass spectrum (Figure 1) registered in methanol shows a peak corresponding
to the fragment [MnL + H+]+, indicating coordination of the manganese ion with the deprotonated
ligand. Other minor signals, assigned to [MnL(H3L) + H+]+, [Mn2L(H3L) + H+]+, [MnL(H3L)Ba +
H+]+ and [MnL(H3L)Ba2 + H+]+ also confirm the formation of the polynuclear complex including
manganese, barium, and the ligand both in its tetra-anionic (L−4) and monoanionic (H3L−) forms.
IR spectroscopy also suggests the formation of model 1, exhibiting the set of bands attributable to
the tetra-anionic coordinated ligand, but also the corresponding bands that can be assigned to the
monoanionic form of the ligand. Thus, the strong band at 1605 cm−1, characteristic of the ν(amide)I
(C=O) stretching mode, is shifted 38 cm−1 to lower wavenumbers with respect to the free ligand
(1643 cm−1), and the band 1540 of the ν(amide)II stretching mode, is shifted 12 cm−1 with respect to
the free ligand (1552 cm−1). These data suggest coordination of the L−4 ligand through the amide
nitrogen atoms, but additional bands at 1641 cm−1 and 1551 cm−1 can be assigned to the H3L−

ligand which does not coordinate through these amide nitrogen atoms. The band attributed to the
ν(C–O) mode is also shifted 11 cm−1 to lower frequencies with respect to the free ligand, indicating
coordination through the hydroxyl groups. A strong band centered at ca 3400 cm−1 can be assigned to
the ν(O–H) of methanol molecules.
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The electronic absorption spectrum of 1 shows two broad bands: a broad shoulder obtained
at 510 nm (ε = 700 M−1 cm−1), attributable to a d–d transition, and a broad band at 484 nm
(ε = 3100 M−1 cm−1), assigned to the phenolate → manganese(III) charge transfer. The energy
and intensity of these two bands are in agreement with those reported for related manganese(III)
complexes [27,28]. The paramagnetic 1H NMR spectrum (Figure S1 contains an up-field proton
resonance outside the diamagnetic region at –24.17 ppm (Figure S1) due to the isotropic shifting of the
ligand protons for high-spin manganese(III) complexes in an octahedral field. This signal corresponds
to the protons in ortho positions relative to the hydroxyl groups [22,23,29] and serves to substantiate
the formation of a manganese(III) complex.

Single crystals of complex 1 suitable for X-ray diffraction studies were obtained as described in the
Materials and Methods section. The main crystal data and structure refinement details are shown in
Tables 1 and 2; detailed crystallographic data is shown in Tables S1–S5 of the Supplementary Materials.
Different drawings showing the crystal structure are shown in Figures 2 and 3.

Table 1. Crystal data and structure refinement parameters for compounds 1 and 2.

Compound 1 2

Empirical formula C34H35BaMnN4O10 C21H24ClMn2N6O3
Formula weight 851.93 553.79
Temperature (K) 100(2) 293(2)
Wavelength (Å) 0.71073 0.71069
Crystal system Monoclinic Monoclinic

Space group P21/c P21/n
a (Å) 12.245(2) 11.953(5)
b (Å) 17.345(3) 11.256(5)
c (Å) 18.041(4) 17.889(5)
α (◦) 90 90
β (◦) 106.38(3) 99.051(5)
γ (◦) 90 90

Volume (Å3) 3676.2(13) 2376.9(16)
Z 4 4

Dcalcd. (g cm−3) 1.525 1.548
µ (mm−1) 1.467 1.21

F (000) 1712 1132
θmin/max (◦) 2.62/21.14 1.92/24.73

Goodness-of-fit on F2 1.005 1.067
Total data 27,410 4038

Unique data 6303 4038
Data/restrains/parameters 6303/3/440 4038/0/299

Final R indices (I > 2σ(I)) R1 = 0.0521; wR2 = 0.1220 R1 = 0.0894; wR2 = 0.2658
R indices (all data) R1 = 0.0941; wR2 =0.1356 R1 = 0.1223; wR2 =0.2812
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Table 2. Selected bond lengths (Å) and angles (°) for 1.

Mn(2)–N(1) 1.938(5) Ba(1)–O(411) 2.636(5)
Mn(2)–N(4) 1.944(6) Ba(1)–O(511) 2.648(5)

Mn(2)–O(471) 1.877(5) Ba(1)–O(811) 2.658(5)
Mn(2)–O(171) 1.883(5) Ba(1)–O(171) 2.754(5)
Mn(2)–O(571) 2.125(5) Ba(1)–O(471) 2.816(5)
Ba(1)–Mn(2) 3.5510(12) Ba(1)–O(571) 3.074(5)

Ba(1)–O(200)
Ba(1)–O(100)

O(471)–Mn(2)–O(171) 88.6(2) O(411)–Ba(1)–O(511) 120.81(16)
O(471)–Mn(2)–N(1) 173.4(2) O(411)–Ba(1)–O(811) 75.91(14)

O(171)—Mn(2)–N(1) 92.4(2) O(511)–Ba(1)–O(811) 91.95(14)
O(471)—Mn(2)–N(4) 92.7(2) O(411)–Ba(1)–O(171) 97.69(15)
O(171)—Mn(2)–N(4) 164.2(2) O(511)–Ba(1)–O(171) 140.07(14)

N(1)–Mn(2)–N(4) 84.6(2) O(811)–Ba(1)–O(171) 87.29(14)
O(471)–Mn(2)–O(571) 84.4(2) O(411)–Ba(1)–O(471) 139.51(16)
O(171)–Mn(2)–O(571) 92.40(19) O(511)–Ba(1)–O(471) 94.13(15)
N(1)–Mn(2)–O(571) 102.1(2) O(811)–Ba(1)–O(471) 126.37(14)
N(4)–Mn(2)–O(571) 103.4(2) O(171)–Ba(1)–O(471) 56.24(14)

O(411)–Ba(1)–O(571) 142.68(14)
O(511)–Ba(1)–O(571) 82.08(13)
O(811)–Ba(1)–O(571) 74.13(13)
O(171)–Ba(1)–O(571) 59.34(13)
O(471)–Ba(1)–O(571) 54.23(13)
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Figure 3. (a) Stick diagram of supramolecular box 1 (barium cation in green, manganese ion in
purple, oxygen in red, nitrogen in blue, and carbon in grey); (b) coordination environment around
the manganese center in 1, showing the square-pyramidal geometry for this ion; (c) coordination
environment around the barium center in 1.

The asymmetric unit comprises a barium ion, a manganese ion, a tetraanionic (L1)4− ligand,
a monoanionic (H3L1)− entity, and a methanol solvent molecule. The two manganese ions of 1 have
similar coordination environments.
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The geometry around the manganese(III) ion is a five-coordinated distorted square-pyramidal
geometry (Figure 3b). The coordination sphere around each manganese center comprises the planar
tetraanionic bisamido-bisphenoxy L4− ligand, which is tightly bound to the metal ion through the
inner N2O2 compartment by the Namide and Ophenol atoms. The Mn-Namide (1.938 Å and 1.944 Å) and
Mn-Ophenol (1.877 Å and 1.883 Å) bond lengths are in the range expected for the tetradeprotonation
of the ligand [23]. The fifth coordination position is completed with a phenolic oxygen atom (O571)
from a monoanionic (H3L1) ligand. Thus, two different coordination behaviors are found in 1 for the
parent bisamido-bisphenoxy ligand: the inner compartment of the tetra-anionic (L1)4− forms three
chelate rings (two six-membered and one five-membered) once the manganese ion is coordinated,
while the monoanionic (H3L1)− ligand coordinates to one position of the manganese ion coordination
environment, acting as a bridging ligand between the manganese ion and the farthest barium ion.
The axial Mn–O571 length of 2.125 Å is longer than the other Mn–Ophenol lengths due to the Jahn–Teller
effect derived from the Mn(III) d4 high-spin configuration. The angles between the O–(or N)–Mn–O571,
representing O or N donor atoms at the equatorial positions occupied by the inner N2O2 compartment
of (L1)4−, range from 84.4° to 103.4°, revealing certain distortions of the square-pyramidal geometry
around each Mn(III) ion. Moreover, the amide atoms of (H3L1)− and (L1)4−, which point towards
the outside of the inner cavity, play crucial roles in to extending the dimensionality of the structure,
since they are bound to the barium ions.

The two barium atoms of 1 have similar coordination environments. The barium atom is bound
to eight oxygen atoms (Figure 3c): two phenoxy oxygen atoms (O171 and O471) from the tetra-anionic
L4− ligand, also bound to the manganese ion; two methanolic oxygen atoms (O100 and O200); and
three amidic oxygen atoms (O411, O511, and O811) from two different neighboring ligands, (L1)4− and
(H3L1)−. Therefore, each barium atom is coordinated with four different residues, which results in
Ba–O distances ranging from 2.636 to 3.073 Å. The relatively broad range of Ba–O distances is also
associated with increased structural flexibility and an increased capacity for close contacts between the
barium ion and aromatic rings [30]. Nevertheless, these distances are also in the expected range for
Ba–O bonds [31].

The barium atoms and the bridging (H3L1)− ligands play crucial roles in the assembly of the
final supramolecular structure of 1, which can be also visualized as a Ba2Mn2L1

2(H3L1)2(CH3OH)4

supramolecular box (Figure 3a). The size of the cavity inside the box is larger than those displayed
by supramolecular boxes induced by alkali metal ions [23]. Thus, the Ba–Ba distance in 1 is 8.339 Å,
while the M–M distances for alkali metal ions range from 4.47 to 4.87 Å for potassium, rubidium,
and cesium supramolecular boxes. The distance between the manganese ions is 7.886 Å, which is
long enough to prevent intermetallic interactions to be established, in agreement with the observed
spin-only magnetic moment of 4.8 B.M.

2.2. Preparation and Characterization of Biomimetic Model 2

The reaction of 2-cyanopyridine and Mn(II) in methanol solution leads to the formation of
biomimetic model 2 (Mn4L2

6Cl2) containing O-methyl picolinimidate L2 as the chelate ligand.
The methanolysis of the initial 2-cyanopyridine takes place upon coordination with the Mn(II) ion as a
chelating bidentate ligand through the two nitrogen atoms of the pyridine ring and the carbonitrile
group. As observed previously, the coordination of 2-cyanopyridine to some divalent metal ions
activates the CN triple bond and makes it much more amenable toward nucleophilic attack by
CH3OH molecules [32–34]. The proposed stoichiometry for complex 2, Mn4L2

6Cl2, in which six
O-methyl picolinimidate ligands are in a monoanionic mode (L2)−, was confirmed by analytical and
spectroscopic data. Moreover, recrystallization from the mother liquors afforded X-ray quality crystals
for 2. Complex 2 melts above 300 ◦C without decomposition. It is insoluble in water and sparingly
soluble in common organic solvents such as methanol, but soluble in polar coordinating solvents such
as DMF and DMSO. The molar conductivity measurement in 10−3 M DMF solution of 18 µS cm−1

is also consistent with the formation of the neutral Mn4L2
6Cl2 species [26]. The value of the room
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temperature magnetic moment with diamagnetism corrections is 5.6 B.M., which is compatible with
high-spin magnetically diluted d5 manganese(II) ions. This value does not allow for differentiation
between octahedral and bipyramid trigonal coordination modes, since the ligand field theory raises
the same number of unpaired electrons in both types of geometries.

The ESI-MS of the CH2Cl2 solution of 2 gives peaks at m/z 1108.4 and 1129.5, which corresponds
to [2 + H]+ and [2 + Na]+ (positive mode), suggesting the stability of this biomimetic model in solution
(Figure S2). The IR spectrum for 2 also confirms the methanolysis reaction of the 2-cyanopyridine
to give the O-methyl picolinimidate ligand. Thus, the spectrum (Figure S3) has a sharp band with a
medium intensity at 3237 cm−1, characteristic of the N–H vibration of O-methyl picolinimidate [35].
The C–H stretching vibrations of the methyl groups of the carboxamide appear at 2981 and 2940 cm−1,
while the absence of the ν(C≡N) band (which should have appeared at about 2240 cm−1) is indicative
that the nitrile group has been converted to a carboxamide one. An additional strong band at
1659 cm−1 is also assigned to ν(C=NH) of the carboxamide group. The C–H stretching vibrations
of the pyridine rings appear at 3072 cm−1. Different medium and strong bands observed in the
range 1631–1591 cm−1 are assigned to C=N, C=C, and C–C stretching vibrations [36]. The absorption
band at 1379 cm−1 is assigned to the ν(=C–O–) stretching vibration which mixes with δ(NH) of the
imino ether group. The νas(C–O–C) and νs(C–O–C) absorption bands appear at 1138 and 965 cm−1,
respectively. The absorption band observed at 1206 cm−1 is assigned to δ(O–CH3). The medium
absorption band observed at the far-infrared spectrum region at 303 cm−1 is assigned to Mn–Cl
stretching vibrations [37], indicating the coordination of the chloride to the manganese ions.

Single crystals of complex 2, suitable for X-ray diffraction studies, were obtained by slow
evaporation of the mother liquors at room temperature. The main crystal data and structure
refinement details are collected in Tables 1 and 3; detailed crystallographic data is collected
in Tables S6–S10. Figures 4 and 5 show different views of the structure of 2, which displays
a planar-diamond core of the tetrameric cluster. The creation of bioinspired catalysts to reproduce
the basic chemistry of the natural OEC has aroused great interest in the preparation of tetranuclear
manganese clusters [3,7,9,10,13,15,38–43].

Table 3. Selected bond lengths (Å) and angles (°) for 2.

Mn(1)–N(28) 2.048(8) Mn(1)–Mn(2)#1 3.206(2)
Mn(1)–N(8) 2.051(8) Mn(2)–N(28)#1 1.939(8)

Mn(1)–N(18)#1 2.120(7) Mn(2)–N(8) 1.971(8)
Mn(1)–N(1) 2.123(9) Mn(2)–N(11) 2.081(11)

Mn(1)–N(18) 2.141(8) Mn(2)–Cl(31) 2.305(4)
Mn(1)–N(21) 2.143(10) Mn(2)–N(18) 2.353(8)
Mn(1)–Mn(2) 3.203(2) Mn(2)–Mn(1)#1 3.206(2)

N(28)–Mn(1)–N(8) 175.2(3) N(28)#1–Mn(2)–N(8) 124.9(4)
N(28)–Mn(1)–N(18)#1 80.3(3) N(28)#1–Mn(2)–N(11) 118.5(4)
N(8)–Mn(1)–N(18)#1 102.2(3) N(8)–Mn(2)–N(11) 101.3(4)

N(28)–Mn(1)–N(1) 98.5(3) N(28)#1–Mn(2)–Cl(31) 101.6(2)
N(8)–Mn(1)–N(1) 77.1(3) N(8)–Mn(2)–Cl(31) 102.9(2)

N(18)#1–Mn(1)–N(1) 98.9(3) N(11)–Mn(2)–Cl(31) 105.2(3)
N(28)–Mn(1)–N(18) 102.7(3) N(28)#1–Mn(2)–N(18) 76.8(3)
N(8)–Mn(1)–N(18) 81.9(3) N(8)–Mn(2)–N(18) 78.4(3)

N(18)#1–Mn(1)–N(18) 78.2(3) N(11)–Mn(2)–N(18) 75.4(4)
N(1)–Mn(1)–N(18) 157.7(3) Cl(31)–Mn(2)–N(18) 178.4(2)
N(28)–Mn(1)–N(21) 77.9(4)
N(8)–Mn(1)–N(21) 100.4(4)

N(18)#1–Mn(1)–N(21) 155.7(4)
N(1)–Mn(1)–N(21) 94.8(4)
N(18)–Mn(1)–N(21) 96.2(4)
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The biomimetic model Mn4L2
6Cl2 (2) contains six O-methyl picolinimidate and two chloride

ligands. The structure of 2 also reveals the decomposition of the 2-cyanopyridine via the addition of
methanol across the C≡N triple bond to form a chelating ligand O-methyl picolinimidate (L2)−.

The coordination numbers are six and five for Mn1 and Mn2, respectively. The metal coordination
geometry is described as distorted octahedral for Mn1 and distorted trigonal bipyramidal for Mn2 [44].
Analysis of the shape determining angles for Mn2, using the approach of Reedijk and coworkers [45],
yielded τ [(α-β)/60, being with α and β being the two greatest valence angles of the coordination
center] having a value of 0.9 for Mn2 (τ = 0.0 and 1.0 for square-pyramidal and trigonal bipyramidal
geometries respectively). Thus, if we apply the same approach for the five-coordinated manganese
ion in 1, we obtain a value of 0.15 for τ, corresponding to the described square-pyramidal geometry.
Although M(II) metal complexes tend to stabilize in octahedral geometries, which is the case for Mn1
in 2, the symmetrical high-spin configuration of the Mn(II) ion provides no crystal field stabilization
energy (CFSE), and the stability constants of its high-spin complexes are consequently lower than
those of corresponding complexes of neighboring M(II) ions. This may be one of the reasons for the
occurrence of different geometries such as the trigonal bipyramidal displayed by Mn2 in 2.

Each manganese atom in 2 is coordinated to three or four different O-methyl picolinimidate
ligands, depending on whether the ion is trigonal bipyramidal or octahedral. In the case of Mn1,
which has a octahedral geometry, two chelating (L2)− are bound via the pyridyl nitrogen donor
(Mn1–N1 = 2.123(9) Å and Mn1–N21 = 2.143(10)) and the imine nitrogen atoms (Mn1–N8 = 2.051(8) Å
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and Mn1–N28 = 2.048 Å), two additional monodentate (L2)− ligands are also bound through
their imine nitrogen atoms (Mn1–N18 = 2.141(8) and 2.120(7) Å). For Mn2, three (L2)− are bound;
one of them behaves as the chelating ligand through the pyridyl and the imine nitrogen atoms
(Mn2–N11 = 2.081(11) Å and Mn2–N18 = 2.353(8) Å), while two (L2)− act as monodentates via the
imine nitrogen atoms (Mn2–N28 = 1.939(8) and Mn2–N8 = 1.971(8)). The fifth coordination position
for Mn2 is completed with a chloride ion. Accordingly, each one of the six O-methyl picolinimidate
ligands chelates a manganese ion but also bridges two manganese centers via the imine nitrogen atom.

2.3. Photolytic Studies

The photolytic experiments were carried out in the presence of p-benzoquinone, a water-soluble
hydrogen atom acceptor [46]. The experimental details are given in Section 4.5, and the experimental
setup was improved by us [22,23] with respect to previous experiments [47,48] in order to obtain
a better sealing of the system. The magnetic stirrer used in the original experimental setup had
a detrimental effect on the reproducibility of the dissolved oxygen measurements, while now the use
of a methacrylate bath allows magnetic stirring, so the setup is more airtight.

The photolytic activity of the biomimetic models was followed in two ways: quantitative oxygen
evolution and variation of the electronic spectrum of the BQ during photolysis. It was noted earlier
that excited-state benzoquinone abstracts a hydrogen atom directly from water [49] at pH 7 and is
greater in aqueous solutions. The final products were hydroquinone and 2-hydroxybenzoquinone.

The concentrations of O2 in the solutions during the experiments increased linearly from
about 2% dissolved oxygen to 14.4% for photolysis catalyzed by biomimetic model 1, whereas
the concentrations of O2 remained almost constant for hours in the case of photolytic experiments
using biomimetic model 2 (Figure 6). The ability of 1 to split water was also been tested by the
reduction of p-benzoquinone into hydroquinone, which was determined by spectrophotometric
monitoring of the reaction. Benzoquinone in water has major absorption at 246 nm (ε = 2.2 × 104 M–1

cm–1), which decreased during the experiments, whilst a characteristic hydroquinone peak at 290 nm
developed (Figure 7).
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The photolytic experiment for 2 showed similar behavior to an aqueous solution containing only
benzoquinone (without any complex)—a slow decrease in the amount of benzoquinone, followed by
the formation of a mixture of hydroquinone and 2-hydroxy-p-benzoquinone without the generation
of molecular oxygen [49]. The fact that 2-hydroxy-p-benzoquinone was not observed in the UV-VIS
spectrum for the present studies with 1 indicates that it is probably stabilized by the manganese
complex, presumably due to the approaching of the quinones to the complex. In this sense, it is worth
noting that no dioxygen evolves when the sterically hindered 2,5-tert-butyl-p-benzoquinone is used
rather than p-benzoquinone, showing a steric requirement in the hydrogen abstraction process.
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3. Discussion

The results described in the previous section demonstrate that the selected ligands promote the
formation of polynuclear structures: a Ba2Mn2 supramolecular box for 1 and a Mn4N6 planar-diamond
cluster for 2 (Scheme S1). While the structural features of the biomimetic model 1 allow it to be
a photolytic active compound, complex 2 is inactive. An explanation of these different catalytic
behaviors can be found in the mechanism proposed by this catalysis. Previous studies with
manganese(III)-Schiff base model systems using a comparable photolytic experimental setup showed
that the photogeneration of dioxygen involves a mechanism with successive hydrogen abstractions
from water molecules bound to the metal ion by optically excited p-benzoquinone. An H2O molecule
bound to the manganese ion starts off the reaction sequence by transferring a hydrogen atom to an O−

created by a π*←n optical excitation in p-benzoquinone. This process oxidizes Mn(III) to Mn(IV) and
creates tightly bound OH− groups that are sufficiently polarized for easy deprotonation. The strong
Mn–OH bond prevents the formation of hydroxylated rings, as occurs in aqueous solution in the
absence of active Mn complexes. In the case of the present model complexes 1 and 2, neither has a water
molecule bound to the metal ions in the solid state. In the case of the biomimetic model 2, there are two
different environments around the metal ions: an octahedral geometry for Mn1, without any vacancy
in the coordination sphere, and a trigonal bypiramidal for Mn2, which contains a chloride anion bound
to the metal ion that could be, in principle, replaced by a water molecule. Most likely, the oxidation
state of the metal ion (Mn(II)) does not favor the formation of hydroxide species required to trigger
the reaction.

In complex 1, a H3L1 ligand bridges two Mn(III) centers, providing a donor atom that occupies the
apical position of the square-pyramidal coordination geometry. This apical coordination is rather weak,
as demonstrated by the bond distances reported in Table 2. Thus, most likely, the weakly-coordinated
bridging H3L1 ligand present in 1 dissociates, at least in part, in aqueous solution, generating an apical
vacant position which allows the coordination of a water molecule. DFT calculations performed at the
TPSSh/TZVP level (see computational details below) provide additional support for this hypothesis.
Indeed, geometry optimizations of the [MnL1]−·2H2O entity provides a square pyramidal structure in
which a water molecule occupies the apical position (Mn-Owater = 2.337 Å), with the ligand providing
the four donor atoms of the basal plane with Mn-O and Mn-N distances of ca. 1.90 and 1.95 Å,
respectively. These values are in good agreement with those observed in the X-ray structure (Table 2).
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The second water molecule does not coordinate with the metal ion but remains involved in hydrogen
bonding interactions with the phenolate oxygen atoms which highlights the preference of the metal
center for a square-pyramidal coordination (Figure 8).
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Figure 8. Geometries of the [MnL1]−·2H2O and {[MnL1]−·2H2O}2 systems obtained with DFT
calculations (TPSSh/TZVP). The distances shown correspond to the hydrogen bonds involving
water molecules.

We also employed DFT calculations to model the dimeric entity {[MnL1]−·2H2O}2, which
is expected to be involved in the catalytic process (Scheme 1). According to our calculations
(Tables S11 and S12), the formation of the {[MnL1]−·2H2O}2 entity is supported by hydrogen
bonds involving coordinated water molecules and the phenolate oxygen atoms of a neighboring
[MnL1]−·2H2O unit. The Gibbs free energy associated with the formation of the dimer from
the monomer entity was calculated to be 6.0 kcal mol−1, pointing to a sizeable stability of the
{[MnL1]−·2H2O}2 edifice. The water molecules that bridge the two complex entities through hydrogen
bonds are relatively close (3.42 Å), which likely facilitates the formation of oxygen upon deprotonation.
Thus, the photolytic activity catalyzed by 1 likely follows a similar mechanism as that described above
for manganese(III)-Schiff base model complexes, starting from µ-aqua dimers which suffer successive
hydrogen abstractions in the presence of photoexcited p-benzoquinone. Photogenerated oxygen
evolves in the overall process and µ-phenoxy dimers are proposed to form. The catalytic cycle involves
the regeneration of the µ-aqua dimers through water coordination in both apical positions which is
also consistent in aqueous media with previous published results [22] and present DFT calculation
studies. A precipitate was not observed during or after the irradiation experiments catalyzed by 1.

An alternative mechanism, without the need of µ-aqua dimers forms, was recently developed
by Borovik et al. [50,51], who reported the feasibility of a sequential proton transfer-electron transfer
route for converting a monomeric MnIV–OH to a MnV–oxo species, and also suggested that a single
ligand can support mononuclear Mn complexes spanning four different oxidation states (II through V)
with oxo and hydroxo ligands that are derived from water. These findings are also consistent with our
previous proposed mechanism of multiple hydrogen abstractions from water molecules bound to the
metal ion [22].

4. Materials and Methods

4.1. Chemical and Reagents

All of the starting materials (Aldrich) and solvents (Probus) used for the synthesis were of
commercially available reagent grade and were used without further purification.



Catalysts 2018, 8, 382 12 of 17

4.2. Physical Measurements

Elemental analyses were performed on a Carlo Erba Model 1108 CHNS-O (CE Instruments,
Wigan, UK) elemental analyzer. The IR spectrum for 1 was recorded as KBr pellets on a Bio-Rad FTS
135 spectrophotometer (Bio-Rad Laboratories, Hercules, CA, USA) in the range 4000–400 cm−1. IR
spectrum for 2 was recorded as KBr pellets on a Varian FT-IR 670 spectrophotometer (Varian Medical
Systems, Palo Alto, CA, USA) in the range 4000–200 cm−1.1H NMR spectra were recorded on a
Bruker AC-300 spectrometer (Bruker BioSpin, Rheinstetten, Germany) using CD3OD (296 K) as
solvent and SiMe4 as an internal reference. The electro-spray mass spectra of the compounds were
obtained on a Hewlett-Packard model LC-MSD 1100 instrument (Hewlett-Packard, Palo Alto, CA,
USA) (positive ion mode, 98:2 CH3OH–HCOOH as the mobile phase). Room temperature magnetic
susceptibilities were measured using a digital measurement system MSB-MKI (Sherwood Scientific,
Cambridge, UK), calibrated using mercury tetrakis(isothiocyanato)cobaltate(II) Hg[Co(NCS)4] as
a susceptibility standard. Electronic spectra were recorded on a Cary 230 spectrometer (Agilent
Technologies, Stockport, UK). Conductivities of 10−3 M solutions in DMF were measured on a Crison
microCM 2200 conductivimeter (Crison Instruments, Barcelona, Spain).

4.3. Synthesis of the Complexes

Ba2Mn2L1
2(H3L1)2(CH3OH)4 (1): 0.66 mmol (0.2 g) of H4L1 was dissolved in 50 mL of methanol

and Ba(OH)2 (0.66 mmol, 0.13 g), dissolved in 30 mL of methanol, was added to the initial light-colored
solution. Then, a methanolic solution of Mn(Ac)2.4H2O (0.66 mmol, 0.16 g) was also added at room
temperature. The initial light color of the solution rapidly changed to red-brown. After 3 h of
stirring at room temperature, slow evaporation of the solvent led to the deposition of red crystals.
The products were collected by filtration, washed with diethyl ether (2 × 20 mL) and then dried in
vacuo. Yield: 0.12 g (43%). Selected data for 1: MS(ESI): m/z 352.4 [MnL+ H+]+, 374.4 [MnL + Na+]+,
651.8 [MnL(H3L) + H+]+, 706.6 [Mn2L(H3L) + H+]+, 789.0 [MnL(H3L)Ba + H+]+, 926.2 [MnL(H3L)Ba2 +
H+]+. Elemental analysis found: C, 47.5; H, 4.0; N, 6.5%. C68H70Ba2Mn2N8O20 (MW 1703.8) requires C,
47.9; H, 4.1; N, 6.6. IR (cm−1) ν(O-H) 3407 (m), ν(amideI-H3L−) (C=O) 1641 (s), ν(amideI-L4−) (C=O)
1605 (s), ν(amideII-H3L−) (C-N, N-H) 1551 (m), ν(amideII-L4−) (C-N, N-H) 1540 (m), ν(C-O) 1243 (s).
Magnetic moment µeff = 4.8 BM. 1H NMR paramagnetic (DMSO-d6, ppm): δ−24.165. λ(ε) 510 nm (700).

Mn4L2
6Cl2 (2): a methanol solution (40 mL) of MnCl2 (40 mg, 0.2 mmol) was added dropwise to a

CH3OH/H2O solution (20 mL) containing 2-cyanopyridine (42 mg, 0.4 mmol). The light green solution
was heated for 40 min with stirring and then filtered after cooling to room temperature. Well-shaped
colorless crystals of 2 suitable for X-ray diffraction were obtained within 2 months with a 25% yield
upon slow evaporation of the solvents. Yield: 0.01 g (20%). Selected data for 2: MS(ESI): m/z 1108.4
[2 + H+]+, 1129.5 [2 + Na+]+. Elemental analysis found: C, 45.1; H, 4.4; N, 14.9%. C42H48Cl2Mn4N12O6

(MW 1107.6) requires C,45.6; H, 4.3; N, 15.2%. IR (cm-1): IR (cm-1): ν (N-H carboxamide) 3237 (m),
ν (C-H)Ar 3072 (m), ν (C-H)Me 2981 (w), 2940 (w), ν ( C=NH carboxamide) 1659 (s), ν ( C=N) 1631 (s),
ν[(N=C–O–) + δ(NH)] 1379 (s), δ(O–CH3) 1206 (m), νas (C–O–C) 1138 (s), νs (C–O–C) 965 (m), ν (Mn-Cl)
303 (m).

4.4. X-ray Crystallographic Studies

Data for 1 and 2 were collected on a Bruker Smart CCD-1000 diffractometer (Bruker AXS GmbH,
Karlsruhe, Germany) (at 100 K for 1 and at room temperature for 2), using graphite-monochromated
Mo–Kα radiation (λ = 0.71073 Å) from a fine-focus sealed tube source (at 100 K). The computing data
and reduction were made by BRUKER SAINT (Bruker AXS GmbH, Karlsruhe, Germany) [52] software.
In both cases, an empirical absorption correction was applied using SADABS [53].

The structures were solved by SIR-97 [54] and refined by full-matrix least-squares techniques
against F2 using SHELXL-97 [55]. Positional and anisotropic atomic displacement parameters were
refined for all heteroatoms. The hydrogen atoms positions were included in the model by electronic
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density, and they were refined isotropically [Uiso(H) = 1.2 Ueq(Atom)] or were geometrically calculated
and refined using a riding model (isotropic thermal parameters 1.2–1.5 times those of their carrier
atoms). The criteria for a satisfactory complete analysis were a ratio of “rms” shift to standard deviation
of less than 0.001 and no significant features in the final difference maps. Molecular graphics were done
with ORTEP [56] and Mercury [57]. A summary of the crystal data, experimental details, and refinement
results are listed in Table 1. Significant bond distances and angles are summarized in Tables 2 and 3,
while detailed crystallographic data is collected in Tables S1–S5 (for 1) and Tables S6–S10 (for 2).

4.5. Photolysis Experiments

The irradiation of aqueous solutions of complexes 1 and 2 was carried out in a colorless
two-necked glass flask (1 L) placed in a methacrylate thermostatted water bath. Complex 1
(5 × 10–6 mol; 8.5 mg) was firstly dissolved in 2 mL of methanol, while 2 mL of dimethylformamide
were used to prepare a solution of complex 2 (5 × 10–6 mol; 5.5 mg). A magnetically stirred solution
of the biomimetic model and p-benzoquinone (2 × 10–4 mol; 21 mg) in 1 L of deoxygenated and
deionized water was irradiated with light (in the 350–2500 nm range) from a 200 W tungsten lamp for
24 h. The solution was connected to a UV spectrophotometer through a peristaltic pump and a flow
cell. Quantitative measurements of the amount of dioxygen formed during irradiation were performed
using a dissolved oxygen probe-type electrode (Crison Oxi45P, Crison Instruments, Barcelona, Spain).
In a typical experiment deionized deoxygenated water was placed in the two-necked glass flask–one
neck contained the oxygen electrode and the second contained a septum. The whole flask arrangement
was immersed in the thermostatted bath so that the water came up the base of the necks. Stirring
was begun, the complex and quinone were added, and the septum was fitted to make the system
airtight. Four needles were pushed through the septum—one reaching into the liquid—and a stream of
dinitrogen was introduced into the solution until the reading of the oxygen meter fell to <3%. Once this
value was reached, the N2 needle and the purge needle were removed, and the system was left stirring
for 10 min to equilibrate. The light was switched on. Only the two needles connected to the flow cell
remained through the septum. Oxygen readings were recorded as % dissolved oxygen where 100%
corresponds to a fully saturated aqueous solution at 25 ◦C (6 cm3 O2 dm–3), and 0% corresponds to no
dissolved oxygen. Reproducible results were obtained with this method provided that the temperature
of the bath remained constant (25.0 ± 0.1 ◦C), and a constant stirring rate was maintained.

4.6. DFT Calculations

Full geometry optimizations of the [MnL1]−·2H2O and {[MnL1]−·2H2O}2 systems were
performed in aqueous solution employing DFT calculations at the TPSSh/TZVP [58,59] level
employing the Gaussian 09 package (Revision D.01) [60]. Bulk solvent effects (water) were included
by using the integral equation formalism variant of the polarizable continuum model (IEFPCM) [61].
No symmetry constraints were imposed during the optimizations. The stationary points found on
the potential energy surfaces as a result of geometry optimizations were tested to represent energy
minima rather than saddle points via frequency analysis. All calculations used an ultrafine integration
grid and the default threshold for the SCF energy convergence (10−8 a. u.).

5. Conclusions

Two new biomimetic models of the OEC were prepared and characterized. DFT calculations show
that the photocatalitically active Ba2Mn2 supramolecular box complex can follow a mechanism with
successive hydrogen abstractions from water molecules bound to the metal ion by optically excited
p-benzoquinone. In the case of the Mn4N6 planar-diamond cluster, the oxidation state of the metal ion
(Mn(II)) does not favor the formation of hydroxide species required to trigger the photolytic reaction.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/8/9/382/s1,
Table S1: Atomic coordinates (×104) and equivalent isotropic displacement parameters (Å2 × 103) for 1; Table S2:

http://www.mdpi.com/2073-4344/8/9/382/s1
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Bond lengths [Å] and angles [◦] for 1; Table S3: Anisotropic displacement parameters (Å2 × 103) for 1; Table S4:
Hydrogen coordinates (×104) and isotropic displacement parameters (Å2 × 103) for 1; Table S5: Torsion angles
[◦] for 1; Table S6: Atomic coordinates (×104) and equivalent isotropic displacement parameters (Å2 × 103) for
2; Table S7: Bond lengths [Å] and angles [◦] for 2; Table S8: Anisotropic displacement parameters (Å2 × 103)
for 2; Table S9: Hydrogen coordinates (× 104) and isotropic displacement parameters (Å2 × 103) for 2; Table
S10: Torsion angles [◦] for 2. Table S11: Optimized Cartesian Coordinates (Å) obtained with DFT calculations
(TPSSh/TZVP) for the [MnL1]-2H2O system; Table S12: Optimized Cartesian Coordinates (Å) obtained with DFT
calculations (TPSSh/TZVP) for the {[MnL1]-2H2O}2 system; Scheme S1. Chemdraw structures for 1 and 2; Figure
S1: Paramagnetic 1H NMR spectrum for complex 1; Figure S2: ESI mass spectrum for complex 2; Figure S3: IR
spectrum for 2.
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Nomenclature

Acronyms
BQ benzoquinone
DFT density functional theory
DMF dimethylformamide
DMSO dimethyl sulfoxide
ESI-MS electrospray ionization mass spectroscopy
NAPDH nicotinamide adenine dinucleotide phosphate
NMR nuclear magnetic resonance
ONNO oxygen-nitrogen-nitrogen-oxygen
ORTEP Oak Ridge thermal ellipsoid plot
SCF self consistent field

TPSSh/TZVP
hybrid functional using the Tao-Perdew-Staroverov-Scuseria
functional–valence triple zeta polarization basis set
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