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Abstract: The oxygen reduction reaction (ORR) at the cathode is a fundamental process and functions
a pivotal role in fuel cells and metal–air batteries. However, the electrochemical performance of
these technologies has been still challenged by the high cost, scarcity, and insufficient durability of
the traditional Pt-based ORR electrocatalysts. Heteroatom-doped nanocarbon electrocatalysts with
competitive activity, enhanced durability, and acceptable cost, have recently attracted increasing
interest and hold great promise as substitute for precious-metal catalysts (e.g., Pt and Pt-based
materials). More importantly, three-dimensional (3D) porous architecture appears to be necessary for
achieving high catalytic ORR activity by providing high specific surface areas with more exposed
active sites and large pore volumes for efficient mass transport of reactants to the electrocatalysts.
In this review, recent progress on the design, fabrication, and performance of 3D heteroatom-doped
nanocarbon catalysts is summarized, aiming to elucidate the effects of heteroatom doping and 3D
structure on the ORR performance of nanocarbon catalysts, thus promoting the design of highly
active nanocarbon-based ORR electrocatalysts.

Keywords: oxygen reduction reaction; heteroatom doping; metal-free catalysts; nanocarbon;
three-dimensional

1. Introduction

With the increasing energy consumption and environmental issues, there has been an urgent demand
for the development of renewable and sustainable energy storage and conversion technologies [1–3].
Among the various technologies, rechargeable batteries, electrochemical capacitors, and fuel cells are
recognized as the most efficient and feasible choices, particularly for electronic and transportation
applications [4–6]. Compared with other batteries, such as nickel–metal hydride, lead–acid, and lithium–ion
batteries, fuel cells and metal–air batteries have the higher theoretical energy density and higher efficiency
with low emission of pollutants due to the direct conversion of chemical energy to electrical energy through
chemical reaction [7–9]. For example, the typical fuel cell with H2 as the fuel, O2 as the oxidizing agent,
and water as the end product with zero emissions and high efficiency, has drawn much attention in terms
of fundamentals and applications [10,11]. However, the practical application of such fuel cells is largely
restricted by the high activation barriers of electrochemical process, especially for the sluggish oxygen
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reduction reaction (ORR) kinetics at the cathode [12,13]. The cathodic ORR is much slower than the anodic
oxidation reaction and therefore greatly limits the output performance of these promising technologies [14].
Fortunately, electrocatalysts can play an important role to lower the activation energy barriers of the sluggish
ORR. Nowadays, platinum (Pt)-based materials are considered as the most efficient ORR electrocatalysts
for their excellent catalytic performance with relatively high current density and low overpotential [15–18].
However, the large-scale application of Pt-based electrocatalysts is severely hindered by the drawbacks
of high cost, fuel crossover effect, instability due to CO deactivation, and Pt dissolution. Thus, it is highly
urgent to develop advanced non-precious metal or even metal-free catalysts to substitute Pt-based catalysts
with high catalytic activity, enhanced durability, and satisfactory cost in the long term.

Recently, much effort has been devoted to developing a series of non-precious metal ORR catalysts,
such as transition metal oxides, chalcogenides, and transition metal–nitrogen–carbon (M–N/C, M = Fe,
Co, Ni, Mn, etc.) materials [19–22]. However, these non-precious metal-based catalysts have some
disadvantages, such as low catalytic activity compared to Pt/C and poor durability caused by the
metal leaching during usage. On the other hand, metal-free carbon-based catalysts have achieved
great development due to their outstanding catalytic ORR performance, high chemical stability,
relatively low cost, and environmental friendliness during the past decades [23–26]. Since the first
accomplishment of vertically aligned nitrogen-doped carbon nanotubes (VA-NCNTs) as metal-free
ORR catalysts reported by Dai’s group [27], various heteroatom-doped nanocarbon materials—such
as graphene, carbon nanotubes, porous carbon, and their hybrids—have been extensively exploited
as substitutes for Pt-based catalysts [28–31]. Most of the heteroatom-doped nanocarbon materials
exhibit comparable or even better catalytic activity to Pt-based catalysts due to the doping-induced
charge redistribution, which can facilitate the chemisorption of O2 and electron transfer for the ORR
process [32]. More importantly, the metal-free catalysts of doped nanocarbon materials surprisingly
exhibit efficient catalytic activity and long-term stability without CO deactivation and fuel crossover
effects. Therefore, developing advanced and low-cost heteroatom-doped metal-free nanocarbon
materials with superior ORR catalytic activities is highly desired.

Besides the heteroatom-doping (e.g., N, S, P, B, etc.), structure engineering of nanocarbon is also
a crucial strategy to determine the catalytic ORR performance, considering that the high surface area
and suitable pore structure of a superior electrode configuration are the prerequisites in ensuring
accessible active sites and efficient transport of electrons and ions [33–35]. For instance, engineering
3D porous structure of nanocarbon materials is a feasible approach to improve the ORR performance
by providing better electrolyte permeability, electron-transfer path, and mass transport/diffusion.
In recent years, for example, the fast development of nanocarbon materials (e.g., graphene) enables
them to play an important role in the improvement of metal-free ORR catalysts performance [36],
but 2D graphene sheets are readily to restack, which would block the active sites of catalysts and
increase the resistance for mass transfer, leading to poor catalytic properties. Hence, 3D structured
nanocarbon materials (cross-linked CNTs, 3D graphene, porous carbon, etc.) with chemical doping
assuredly hold great prospect as efficient ORR catalysts to replace noble-metal-based catalysts [37–39].

Several reviews have been published in the past few years regarding the design of heteroatom-
doped carbon nanomaterials and their applications in ORR [31,40–42]. However, special attention has
not been paid to these heteroatom-doped carbon nanomaterials from the standpoint of structural effects
on ORR performance. As shown in Figure 1, in this review, the current widely accepted mechanisms
for ORR is briefly introduced, the recent rational design of different 3D doped-nanocarbon materials,
such as 3D CNTs nanostructures, 3D graphene, porous carbon, and their hybrids is discussed as well,
and then we focus on the recent achievements of 3D doped-nanocarbon materials and their enhanced
ORR performance. The structure-dependent ORR performance of 3D doped-nanocarbon are well
discussed, which will be beneficial to future development of non-precious metal electrocatalysts with
both exceptional activity and durability in the near future.
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via a two-electron pathway, which should be avoided during the ORR process [46,47]. Under acidic 

ORR 
mechanism 

Catalyst design:
Nanocarbon

Doping
3D structure

ORR 
performance 

Figure 1. The relationships between ORR mechanism, catalyst design, and ORR performance.

2. The Mechanisms for ORR

The ORR is a fundamental reaction and a major limiting factor of performance for metal–air batteries
and fuel cells [7,11]. In general, ORR, which involves multiple electrochemical reactions, can proceed either
a four-electron path to directly produce H2O (in acidic medium, 4H+ + O2 + 4e− → 2H2O) and OH−

(in alkaline medium, 2H2O + O2 + 4e− → 4HO−) as the final products or a less efficient two-step
two-electron pathway with the formation of H2O2 (in acidic medium, O2 + 2H+ + 2e− → H2O2,
H2O2 + 2H+ + 2e− → 2H2O) or HO2

− (in alkaline media, O2 + H2O + 2e− → HO2
− + OH−,

HO2
− + H2O + 2e− → 3OH−) as the intermediate specie [41,43]. As schematically shown in Figure 2,

in a typical proton exchange membrane fuel cell (PEMFC), hydrogen and oxygen/air continuously
enter the anode and the cathode, respectively [44]. The fuel molecules (H2) are oxidized at the anode
(H2→ 2H+ + 2e−). In this process, the electrons flow out of the anode to provide electrical power, while
protons diffuse across the electrolyte membrane towards the cathode and react with adsorbed oxygen to
produce water (ORR, 4H+ + O2 + 4e−→ 2H2O). The ORR occurs by efficient four-electron reduction.
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Figure 2. Schematic illustration of a hydrogen/oxygen fuel cell and its reactions based on the PEMFC.
Reproduced from [44], Copyright 2001, Wiley.

Generally, the four-electron reduction mechanism is favorable for ORR owing to its efficiency
advantage and the avoiding of hydrogen peroxide intermediate species that can damage the membrane
and ionomer [45]. However, the ORR at the cathode suffers from complicated electron transfers,
as illustrated in Figure 3, in a full reduction pathway (Figure 3a), the O–O bond of adsorbed O2 breaks
into two O* intermediates which could be reduced to OH− and H2O as the final products in the
alkaline and acidic conditions, respectively. While for partial reduction to take place, as shown in
Figure 3b, O2 is first adsorbed on to the catalyst surface, then the adsorbed O2 couples two protons
to form HOOH* intermediates before the O-O bond is cleaved, leading to a high yield of H2O2

or HO2
− via a two-electron pathway, which should be avoided during the ORR process [46,47].
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Under acidic conditions, the ORR is inherently several orders of magnitude slower than the HOR,
and catalysts are required to lower activation barriers of the sluggish ORR. Only a few types of
materials, to date, have been found to provide suitable activity and stability towards the ORR in
acidic media, such as heteroatom-doped nanocarbon materials and the transition metal-based NP
functionalized carbon nanomaterials [21,48]. While the ORR kinetics are more favorable in alkaline
mediums, providing an opportunity to use non-precious metal catalysts, such as metal-oxides and
doped nanocarbon materials [45].
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3. 3D Heteroatom-Doped Nanocarbon Electrocatalysts for ORR

Carbon materials, especially nanostructured carbons, has been widely used as electrode materials
for energy storage and conversion devices originating from their general advantages, such as good
conductivity for rapid electron transfer, super large active surface area for ion adsorption, and superior
chemical stability for resistance of acid and alkaline corrosion [33,49–51]. Additionally, the tailorable
surface chemistry, abundant structural variety, and low cost of nanocarbons together boost their
harvesting as active catalysts for ORR in metal–air batteries and fuel cells [22,34]. Nevertheless,
structure optimization of nanocarbon catalysts is one of the main strategies to sufficiently expose
and/or activate the catalytic sites. It is noted that low-dimensional nanocarbons—including 0D
fullerene, 1D carbon nanotubes, and 2D grapheme—usually have low utilization efficiency due to
the embedded active sites on the limited surface, which is unfavorable for both mass transport and
electron transfer during ORR process [33,52]. However, when fabricated to be a continuous 3D porous
structure, the 3D nanocarbon can provide a high surface area with abundant exposed active sites,
contributing to good electrocatalytic performance. More importantly, the 3D nanostructures play
a critical role in greatly accommodating discharge products and providing channels for ion transfer
and oxygen diffusion, further accelerating reaction kinetics [53].

Over the past decade, carbon-based metal-free electrocatalysts doped with heteroatom, such as N, S,
B, P, and their mixtures, have emerged as front runners to replace Pt and other noble metals for highly
efficient ORR [22,54]. Both experiments and theoretical calculations show that the doping of heteroatoms
in the sp2 lattice of graphitic carbon can alter the electronic arrangement of the carbon-based material
and tailor their electron donor properties, as a result, breaking the electroneutrality of sp2 carbon to create
charged sites favorable for O2 adsorption and enhancing effective utilization of carbon π electrons for O2

reduction, thus leading to improved ORR electrocatalytic activity [24,29,43]. Despite the great improvements
that have been achieved, most of the carbon-based metal-free catalysts still show inferior intrinsic ORR
activities compared with Pt-based ones though with better stability and lower costs. Increasing evidences
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profile that efficient ORR nanocarbon catalysts should be favored to have abundant accessible active sites
for implementing reaction, good conductivity for charge transfer, and suitable porous structure for mass
transport. The presence of adequate reactive sites in combination with novel structural design makes
them attractive metal-free catalysts. To achieve the aforementioned merits, various heteroatom-doped 3D
nanocarbon materials, such as N-doped CNT aerogels [37], nanoporous N-doped graphene [55], N, P-doped
porous carbon, and doped graphene/CNT hybrid materials have been developed as high-performance
ORR catalysts (Figure 4) [56,57].
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3.1. Heteroatom-Doped 3D CNTs for ORR

As typical 1D sp2-hybridized carbon nanomaterials, CNTs can be considered as 2D graphene
sheets rolled up into nanoscale tubes [8,58]. Because of their unique structural characteristics and
outstanding physicochemical properties—such as large surface area, high mechanical property,
good electrical conductivity, and excellent chemical stability—CNTs have stimulated continuous
interest in the field of nanotechnology, especially in environmental and energy areas, in recent
decades [52,59]. When heteroatoms are appropriately doped into the carbon matrix of CNTs, enhanced
ORR performance can be achieved [8]. Doped-CNTs function in enhancing electrical conductivity,
oxygen mass transfer, corrosion resistance, and water removal of catalysts, leading to improved
catalytic activity and durability [60,61]. More importantly, putting the tiny cylindrical nanotubes
together into an integral 3D framework with interconnection and rational distribution and controlling
the porous structure can provide abundant exposed active sites and stable electron/mass transport
skeleton, and hence ORR activity [37].

3.1.1. Single Heteroatom-Doped 3D CNTs

In 2009, Dai et al. synthesized N-doped VA-CNTs through pyrolyzing iron(II) phthalocyanine
(FePc) in the presence of additional NH3 gas (Figure 5a) [27]. The proposed 3D N-doped VA-CNTs
were discovered to be superior to commercially Pt/C catalysts for the electrocatalysis of the ORR with
a much higher catalytic activity, lower overpotential, smaller crossover sensitivity, and better long-term
stability in alkaline electrolytes (Figure 5b). The catalytic mechanism of nitrogen-doped VA-CNTs
for the ORR was investigated using quantum mechanical calculations based on the B3LYP hybrid
density functional theory (DFT), results suggest that the introduce of nitrogen dopants changes the



Catalysts 2018, 8, 301 6 of 23

charge density of carbon atoms (Figure 5c). Based on the theoretical and experimental results, Dai and
co-workers presented that the N-induced charge delocalization could change the chemisorption mode
of O2 from the end-on adsorption (Pauling model) at the non-doped CNT surface (top, Figure 5d) to
a side-on adsorption (Yeager model) onto the N-doped CNT surface (bottom, Figure 5d). Interestingly,
the parallel diatomic adsorption could effectively weaken the O–O bonding to facilitate ORR at the
N-doped VA-CNTs electrodes. Besides the high surface area, good electrical and mechanical properties
of 3D vertically aligned CNTs provide additional advantages for the nanotube electrode in fuel cells.
It should be noted that a certain amount of residual Fe catalyst herein may exist in the N-doped
VA-CNTs. The metal contaminants are believed to have certain effects on ORR performance. Therefore,
it is urgently needed to develop a metal-free synthesis route to produce N-doped CNTs in order to
confirm the actual electroactivity of N-doped CNTs for ORR without the disturbance of metal residue.

To reveal the intrinsic catalytical mechanism of N-doped CNTs, several technologies including
metal-free catalysis growth and detonation-assisted chemical vapor deposition (CVD) have been
developed [62,63]. By using an erasable-promoter-assisted hydrothermal reaction coupling with
pyrolysis, Zhang and co-workers synthesized clean, high-specific surface area (~869 m2·g−1),
and highly conductive (~10.9 S·m−1) N-doped CNT aerogels [37]. During the synthetic process,
N doping was realized by pyrolysis of aerogels with pyrrole molecules as ‘built-in’ nitrogen sources
(post-treatment), importantly, the electrical conductivity of CNT aerogels was restored and the π-π
stacking between CNTs was enhanced through thermal treatment, which can repair the π-conjugated
skeleton of CNTs, thereby maintaining the 3D gel network (Figure 5e,f). Owing to the unique
structure with 3D frameworks constructed by randomly entangled CNTs, the obtained N-CNT aerogels
(Figure 5g) exhibited superior activity and high stability for ORR catalysis in alkaline conditions.
Moreover, the crossover test (Figure 5h) demonstrated that the N-CNT aerogels electrode efficiently
inhibit the crossover effect of methanol. Zhu et al. prepared porous N-doped CNTs by activation and
pyrolysis of polypyrrole nanotubes [64], which result in a hierarchical porous structure with in situ N
doping. This material exhibited excellent catalytic activity with a four-electron pathway for ORR in
alkaline condition. They believe that the favorable ORR activities of N-doped CNTs were attributed to
its porous tube structure, high surface area, and uniform N distribution. Template method is considered
as the most effective strategy for the preparation of ordered porous nanostructures. By using an anodic
alumina oxide template, Yang et al. fabricated a N-doped macroporous carbonaceous nanotube array
for ORR catalyst (Figure 5i,j) [65]. The nanotubes with macroporous feature can facilitate mass transfer
within the electrodes. The doping of electron-rich N which can activate the p electrons of sp2 carbon by
conjugating with the lone-pair electrons from nitrogen dopants can provide more active sites to adsorb
O2. These merits together contribute to the high performance for ORR in terms of onset potential,
half-wave potential values, reaction current, and durability.

There are several different nitrogen configurations including pyrrolic N, pyridinic N, and graphitic
N in carbon matrix [54]. Pyrrolic N and pyridinic N are located at the edges and bonded to two carbon
atoms, while graphitic N is incorporated in the core structure of the carbon materials by replacing
the sp2-hybridized carbon atom. Generally, different configurations with different N type would
affect the electronic structure of neighboring carbon atoms, leading to different catalytic properties.
Up to date, numerous N-doped CNT materials have been prepared via different synthetic strategies
for ORR electrocatalyst [37,64,66,67]. However, it is still unclear whether the pyridinic or graphitic
N is mainly responsible for the active sites for the ORR. Recent theoretical work and experiments
suggest that pyridinic N improves the onset potential, whereas the graphitic N determines the limiting
current density for the ORR [24]. Pyridinic N can provide one p electron to the aromatic π system with
a lone electron pair in the plane of the carbon matrix to enhance the electron-donating capability of the
catalyst. Therefore, pyridinic N can weaken the O–O bond via the bonding of O with N and/or the
adjacent C atom to facilitate the reduction of O2.
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density distribution for the N-doped CNTs; (d) Schematic representations of possible adsorption
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(f) model schematic diagram; and (g) Transmission electron microscopy (TEM) image of N-doped
CNT aerogels; (h) Methanol crossover effect measurements of N-doped CNT and Pt/C catalyst at
−0.4 V. Reproduced from [37], Copyright 2015, Wiley. (i) The fabrication process and (j) SEM image
of N-doped macroporous carbonaceous nanotubes arrays. Reproduced from [65], Copyright 2014,
The Royal Society of Chemistry.

Similar to N-doped CNTs, other heteroatom (e.g., phosphorus and boron)-doped CNTs also
demonstrated improved electrocatalytic activity toward ORR, compared to its undoped counterpart [60,68].
Boron and phosphorus have a similar effect on the ORR activity as N, as they both disrupt the charge
uniformity and change the charge density of the carbon network. However, the mechanisms of B-doped
CNTs and N-doped CNTs are different. There are multiple active B moieties in B-doped CNTs, including
BC3, B4C, BC2O, and BCO2. Owing to the lower electronegativity of B (2.04) than C (2.55), positively
polarized B dopant in B-doped CNTs on one hand adsorbs O2 on the other hand acts as a bridge to transport
electrons from graphitic carbon p electrons to O2, which can also improve the ORR activity. Although
the ORR performance of B-doped CNT materials is not competitive to that of commercial Pt/C catalyst,
the proportional relationship between the boron content and ORR performance suggests the great potential
of B-CNTs for further improvement. P doped-CNTs are another interesting type of metal-free catalysts
for improving ORR because P has the same number of valence electrons as N and often shows similar
chemical properties. For example, p-doped MCNTs were reported to exhibit much higher ORR activity
than commercial Pt/C in alkaline fuel cells [69]. Very recently, Zhang and co-authors also confirmed that
porous P-doped CNTs exhibit better ORR catalytic activity than that of undoped-CNTs [68].
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3.1.2. Multiple Heteroatom-Co-Doped 3D CNTs

Addition to the single heteroatom-doped CNTs, co-doped CNTs with different heteroatom were
investigated to show much better electrocatalytic ORR performance duo to the synergistic effect
between different heteroatoms. Vertically aligned MWCNT arrays co-doped with P atoms and N
atoms were first synthesized by an injection-assisted CVD method [61]. Because of the synergetic
effect arising from co-doping CNTs with both P and N, the obtained P, N co-doped MWCNT arrays
significantly show outstanding electrocatalytic activity toward ORR comparable to the commercial
Pt/C electrode and significantly better than that of CNTs doped by P or N only. Subsequently, another
N, P-dual-doped CNT array was synthesized by a novel one-pot method with an aminophosphonic
acid resin as the N, P, and C sources [70]. Compared with traditional bamboo-shaped N-CNTs and N,
P-dual-doped CNTs, the as-obtained N, P-CNTs with unique architecture of which the large hollow
channels and open ends provide abundant catalytic active sites in inner walls, being accessible to
oxygen molecules exhibited comparable activity and much better CO and methanol tolerance towards
ORR to Pt/C catalysts.

3.2. Heteroatom-Doped 3D Graphene for ORR

Graphene, which is composed of one monolayer of carbon atoms with a honeycomb structure,
has been widely explored in different fields for its fascinating physical and chemical properties [71,72].
However, graphene is constructed of sp2-bonded carbon atoms via hybridization of s, px, and py

atomic orbitals, resulting in a zero-band gap semiconductor with the conduction and valence bands.
The lack of intrinsic bandgap muchly limits the applications of pristine graphene in the areas of energy
storage, electrocatalysis, and nanoelectronics [73]. Fortunately, chemical doping with foreign atoms
has been demonstrated to be an effective method to tailor the electronic and electrochemical properties
of graphene by changing the electronic density within the graphene sheet, thus opening the bandgap in
graphene, and extending its applications [74,75]. For example, the increased active sites and enhanced
catalytic activity of graphene towards ORR have been achieved by doping with foreign non-metallic
atoms (e.g., N, B, P, or S) [36,76–78].

Other than heteroatom doping, morphology control, and structural design, which relate to
the surface area, pore structure and electron donating/withdrawing capability, is perhaps the most
effect way to enhance the ORR activity of graphene materials [29,33]. Especially, heteroatom doping,
in company with 3D structure design, has been a popular and widely accepted strategy to develop
graphene-based ORR electrocatalyst [79–82].

3.2.1. Single Heteroatom-Doped 3D Graphene

After their first discovery of metal-free VA-NCNTs as high-performance ORR electrocatalysts,
Dai et al. used a modified CVD method to prepare N-doped graphene films on Ni-coating SiO2/Si
substrate [83]. They demonstrated that the N-graphene can act as a metal-free catalyst with a much
better catalytic activity, tolerance to crossover effect, and long-term stability than Pt catalyst for ORR
via a four-electron pathway in alkaline fuel cells. Subsequently, N-doped graphene was synthesized
via catalyst-free thermal annealing graphite oxide and nitrogen source [76]. The synthesized N-doped
graphene materials, which completely avoid the contamination of metal catalysts, have high nitrogen
content and exhibit excellent catalytic activities toward ORR in alkaline electrolytes.

3D graphene structures can effectively restrain the restacking between graphene sheets, and therefore
expose more active sites, heteroatom-doped 3D graphene materials are expected to show much better
electrocatalytic performance for ORR than the 2D ones [84,85]. By using a hydrothermal self-assembly
approach followed by high-temperature treatment, as shown in Figure 6a, Qiu et al. fabricated 3D porous
N-doped graphene aerogels (NPGAs, Figure 6b), which exhibited good electrocatalytic activity and
long-term stability in a Li–O2 cell system [86]. The large void volume, interconnected porous channels,
multidimensional electron transport pathways, less stacking of graphene sheets and the sufficient exposure
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of active sites originated from the doped N atoms within graphene sheets collectively contribute to the
outstanding electrochemical performances of the as-made NPGA. Yi et al. prepared highly conductive
and ultralight nitrogen-doped graphene nanoribbons aerogel (N-GNRs-A) by using a facile hydrothermal
method (Figure 6c) [81]. Due to the synergistic effect of the nanoporous structure, high surface area, good
conductivity and the N-doped structural integrity of the GNRs, the proposed aerogel as a novel ORR catalyst
show comparable catalytic activity (Figure 6d), superb methanol tolerance (Figure 6e), and better stability
(Figure 6f) than commercial Pt/C catalysts in both alkaline and acidic solutions. After that, various 3D
N-doped graphene materials prepared through different methods have been developed as high-performance
ORR catalysts [38,86–88]. S-doped 3D porous RGO hollow nanospheres framework (S-PGHS), prepared
with GO and dibenzyl disulfide as precursors, exhibited superior electrocatalytic activity comparable with
that of commercial Pt/C (40%), and much better durability and methanol tolerance [89]. 3D sulfur-doped
graphene networks S-GFs were also prepared by using an ion-exchange/activation combination method,
which showed outstanding ORR catalytic performance [90]. Recently, 3D P-doped graphene (3DPG)
fabricated by CVD method with nickel foam as template and triphenylphosphine (TPP) as C and P sources
was proposed as ORR catalyst, which exhibited better catalytic activity, long-term stability, and methanol
tolerance than pristine 3D graphene and commercial Pt/C [91].
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Figure 6. (a) Schematic process for synthesis of 3D NPGAs; (b) SEM image of 3D NPGAs. Reproduced
from [86], Copyright 2015, Wiley. (c) Illustration of the synthetic route for N-GNRs-A; (d) Linear sweep
voltammetry (LSV) curves of pristine MWCNTs, GNRs-A, N-GNRs-A, and Pt/C in an O2-saturated
0.1 M KOH solution at a scan rate of 10 mV s−1 and a rotation speed of 1600 rpm; (e) Methanol crossover
effect on N-GNRs-A and Pt/C upon addition of 3 M methanol after about 10 min in an O2-saturated
0.1 M KOH solution at −0.4 V; (f) Current–time chronoamperometric response of N-GNRs-A and
Pt/C catalysts at −0.4 V in O2 saturated 0.1 M KOH aqueous solution at a rotation rate of 1600 rpm.
Reproduced from [81], Copyright 2014, Wiley.

3.2.2. Multiple Heteroatom-Co-Doped 3D Graphene

Co-doped 3D graphene has been expected to possess better electrocatalytic performance compared
to single doped 3D graphene due to the synergistic effect between different heteroatoms. Qiao and
co-authors prepared N and S dual-doped mesoporous graphene (N-S-G) for the first time as a metal-free
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catalyst for ORR [92]. The obtained N-S-G showed outstanding ORR performance, which is comparable
to commercial Pt/C and prominently better than that of graphene catalysts doped solely with S or with
N. Furthermore, by using further DFT calculations, they elucidated that the synergistic performance
improvement results from the redistribution of spin and charge densities caused by the co-doping of
S and N, which leads to abundant carbon atom active sites. Soon after that, 3D N, S co-doped graphene
frameworks (N/S-GFs) and 3D B, N co-doped graphene foams (BN-GFs) were prepared by one-pot
hydrothermal approach and modified CVD method, respectively [79,80]. Both of which manifested
superior ORR catalytic behavior with mainly four-electron transfer pathway in alkaline condition.
3D N, B-doped graphene aerogels (N, B-GAs) prepared via a two-step method involves a hydrothermal
reaction and a pyrolysis procedure were also demonstrated to exhibit an outstanding catalytic activity
for the ORR [93]. Among the dual-doped 3D graphene materials for ORR catalysts, N, S co-doped 3D
graphene is the most popular one and has been widely prepared by various methods including biomass
pyrolysis [94], hydrothermal method [95,96], hydrothermal reaction-pyrolysis two-step method [97],
and soft template-assisted method [98].

In addition to dual doping, co-doping 3D graphene catalysts with more than two different heteroatoms
is also an effective strategy to enhance the ORR performance, as exemplified by N-P-O co-doped 3D
graphene [99]. The N-P-O co-doped free-standing 3D hierarchical porous graphene (3D-HPG) was fabricated
through a one-pot gas-exfoliation assisted ‘cutting-thin’ technique from solid carbon sources (Figure 7a).
The produced graphene exhibited continuously 3D hierarchical porous structure with heteroatoms of N, P,
and O simultaneously doped into the carbon frameworks, which can effectively modulate the electronic
characteristics and surface chemical feature (Figure 7b). The resultant N-P-O co-doped 3D-HPG catalysts
exhibited excellent ORR activity. As shown in Figure 7c, in a 0.1 M KOH electrolyte, the ORR polarization
curves reach well-defined diffusion limiting currents, and the Koutecky–Levich (K–L) plots suggest the good
linearity at varied potentials with the electron transfer number calculated to be 3.83, which is comparable to
the commercial Pt/C catalyst. Significantly, the durability of N-P-O co-doped 3D-HPG is much better than
that of commercial Pt/C catalyst (Figure 7d).
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Figure 7. (a) Schematic process for synthesis of N-P-O co-doped 3D-HPG; (b) Schematic model of 3D-HPG;
(c) ORR polarization curves for 3D-HPG at different rotating rates in O2-Saturated 0.1 M KOH solution at
scanning rates of 5 mV·s−1, inset: K–L plots; (d) The current vs. time (i-t) chronoamperometric responses of
3D-HPG and Pt/C in O2-saturated 0.1 M KOH at a constant potential at 0.65 V (versus RHE) and a rotation
rate of 1600 rpm, inset: the ratio of the J/J0. Reproduced from [99], Copyright 2016, Elsevier.
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3.3. Heteroatom-Doped 3D Porous Carbon for ORR

Engineering a 3D porous structure—which can provide good electrolyte permeability, mass
transport, and an electron-transfer path—is considered the most promising approach to enhance the
ORR performance of carbon-based non-precious metal ORR electrocatalysts. Up to now, various 3D
porous carbon materials have been exploited as promising and efficient catalysts for their outstanding
virtues such as low cost, high conductivity, high surface area with abundant porosity, designable
carbon framework, as well as high chemical and mechanical stability [100–103]. Similar to 3D CNTs
and 3D graphene, 3D porous carbon can also be doped with heteroatoms for ORR electrocatalysts [104].

3.3.1. Single Heteroatom-Doped 3D Porous Carbon

To develop N-doped carbon materials without any metal components, Feng and co-workers fabricated
N-doped 3D ordered mesoporous carbons (N-OMCs) via a metal-free nanocasting technology by using
SBA-15 as the template and N,N′-bis(2,6-diisopropyphenyl)-3,4,9,10-perylenetetracarboxylic diimide (PDI)
as the precursors [100]. Owing to its high surface area and a graphitic framework with an appropriate
nitrogen content, the obtained N-OMCs exhibited outstanding ORR performance with high catalytic activity,
efficient resistance to crossover effects and excellent long-term stability. The ORR performance was superior
to that observed for the commercial Pt/C catalyst, suggesting the superior ORR activity of N-OMCs.
Soon after that, another nitrogen-doped carbon nanocages (NCNCs) with high nitrogen content and specific
surface area were prepared by using in situ generated MgO as a template and pyridine as the source of both
carbon an nitrogen [105]. The resulting NCNCs exhibited superior ORR performance with outstanding
stability towards methanol crossover and CO poisoning in alkaline solution. Importantly, without the
interference of metal impurities, this study clarifies that it is the N-doped carbon species rather than the
metal-related active sites are responsible for the ORR activity of the NCNCs. By using a green biomass source
method with fermented rice as starting materials, Qu and co-authors fabricated a porous N-doped carbon
spheres (N-CSs) with high specific surface areas (2105.9 m2·g−1) and high porosity (1.14 cm3·g−1) [106].
When tested as ORR catalyst for fuel cells, the proposed N-CSs exhibit excellent catalytic activity with
long-term stability and good resistance to crossover effects and CO poisoning superior to that of the
commercially available catalyst Pt/C. Later, various N-doped 3D porous carbon derived from different
biomass—such as malachium aquaticum [107], shrimp-shell [108], and porous cellulose [109]—have been
demonstrated to exhibit excellent ORR performance.

In general, two crucial factors—including the doped element content/type and specific
surface area/porous structure—govern the performance of the carbon-based ORR catalysts. Recently,
to simultaneously optimize both surface functionalities and porous structures of the metal-free catalysts,
Feng et al. developed N-doped carbon materials by using templating synthesis with nitrogen-enriched
aromatic polymers as precursors and subsequent NH3 activation (Figure 8a) [102]. The as-fabricated
nitrogen-doped mesoporous carbon exhibit the outstanding ORR activity in alkaline media with half-wave
potential of 0.85 V versus reversible hydrogen electrode with a loading of 0.1 mg·cm−2. More importantly,
the H2O2 yield measured with meso/micro-PoPD remained below 5% at all potentials, corresponding to
a favorable high electron-transfer number of 3.97 (Figure 8b). Superior electrochemical durability was also
observed for the meso/micro-PoPD to the Pt/C catalyst under the same condition (Figure 8c). It should
be noted that most N atoms are buried within the N-doped carbons, and these hidden N atoms are
inaccessible to the reactants during ORR process. Recently, Wang and co-workers developed a 3D N-doped
hierarchical porous carbon monolith (NHPCM) composed of branched mesoporous rods via an in situ
source-template-interface reaction route by using furfuryl alcohol as the carbon source (Figure 8d) [103].
Owing to the increased exposure and achievability of the catalytic sites originates from the favorably activated
O2 at the edged groups, the resulting hybridized carbon nanowires possess an outstanding electrocatalytic
ORR activity with a four-electron dominant reaction pathway. Interestingly, in spite of low N content,
the NHPCM with 1.1 at% N shows not only superior ORR activity, but also improved MeOH crossover and
high durability compared to commercial Pt/C (Figure 8e,f). This phenomenon is ascribed to the high ratio
of graphitic to pyridinic N and the unique 3D macroporous scaffold with interconnected mesoporous rods,
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as well as the easily reachable catalytic sites. Uninterruptedly, various N-doped 3D porous carbon materials
were exploited for ORR catalysts [110–115].
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Figure 8. (a) Schematic illustration of the synthesis of meso/micro-N-doped carbon (PoPD)
electrocatalyst; (b) H2O2 yields plots of meso/micro-PoPD, reference materials, and Pt/C catalyst;
(c) Half-wave potential of meso/micro-PoPD and Pt/C with the same loading of 0.1 mg cm−2 as
a function of the number of potential cycles in O2-saturated electrolyte. Reproduced from [102],
Copyright 2014, Macmillan Publishers Limited; (d) Schematic illustration of the synthesis of
3D N-doped hierarchical porous carbon monolith (NHPCM) electrocatalyst; (e) Current–time
chronoamperometric response of NHPCM-1000 and Pt/C with or without the addition of 6 mL
MeOH into the electrochemical cell containing 100 mL electrolyte at 0.6 V (vs. RHE) with a rotating rate
of 1600 rpm; (f) Current–time chronoamperometric response of NHPCM-850, NHPCM-1000, and Pt/C
over 3.5 h at 0.6 V (vs. RHE) in O2-saturated 0.1 M KOH solution at 1600 rpm. Reproduced from [103],
Copyright 2015, Wiley.

3.3.2. Multiple Heteroatom-Co-Doped 3D Porous Carbon

As described above, the synergistic effect arising from the co-doping of heteroatoms significantly
enhances the ORR activity of metal-free catalysts. For example, a 3D sulfur–nitrogen co-doped carbon
foams (S–N–CF) with hierarchical pore structures were demonstrated to show better ORR performance
with higher catalytic activity, higher methanol tolerance and longer-term stability than a commercial
Pt/C catalyst [101]. The relationship between the catalyst properties and structures of metal-free
carbon materials for ORR was also clarified: (1) the high heteroatom doping for S–N–CF can provide
abundant active sites; (2) the hierarchical pore structures and 3D networks can ensure fast electron
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transfer and reactant transport within the electrodes. More recently, multiple heteroatom-co-doped
3D porous carbons—such as 3D S–N co-doped carbon foams [101], N and P dual-doped hierarchical
porous carbon foams [39]; B, N co-doped 3D porous graphitic carbon [116]; N and P co-functionalized
3D porous carbon networks [117]; and N, S, and O co-doped hierarchically porous carbon [118]—have
been developed as efficient metal-free electrocatalysts for ORR. As an example, the N, S, and O
co-doped hierarchically porous carbon were fabricated via a one-pot pyrolysis reaction with silica
as template, sucrose and trithiocyanuric acid (TA) as precursors [118], A hierarchically micro-,
meso-, and macroporous carbon featured with abundant dopant species and high specific surface
area were obtained (Figure 9a). The resulting product displays abundant low contrast holes with
diverse sizes, suggesting the featured hierarchical porosity (Figure 9b). When tested in acidic
electrolytes, the one-pot pyrolyzed metal-free electrocatalysts with optimized structure exhibits
comparable or even better ORR activities than the commercial Pt/C catalyst (Figure 9c,d). The excellent
electrocatalytic performance is ascribed to the abundant dopant species, good integrated conductivity,
and hierarchically porous architecture.
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3.4. Nanocarbon Hybrid Materials for ORR

In addition to heteroatom-doped 3D CNT, graphene and porous carbon nanomaterials discussed
above, nanocarbon hybrid materials with 3D structures also show superior ORR activity. To restrain
the stacking interaction, which may bury active sites for ORR, between 2D heteroatom-doped graphene
sheets, researchers tactfully incorporated 1D structured CNTs between graphene sheets [119–124].
The resulting CNTs/graphene hybrid exhibited good ORR activity comparable to and/or better
than the commercial Pt/C catalysts under alkaline conditions. For example, Yu and coworkers,
for the first time, proposed a nitrogen-doped graphene/carbon nanotube nanocomposite (NG-NCNT)
as ORR catalyst. Herein, the NG-NCNT was synthesized via a hydrothermal process by using
oxidized multiwalled carbon nanotube, graphene oxide, and ammonia as precursors (Figure 10a) [119].
The prepared electrode with NG-NCNT as catalyst displays much larger current and more positive
onset potential than those of the NG, NCNT, G-CNT, and mixed product of GO and OCNT, respectively
(Figure 10b). These indicate that the NG-NCNT possesses the best electrocatalytic ORR activity
among the samples. Recently, a facile route by combining rapidly evaporating aerosol droplets with
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pyrolysis process was developed to fabricate N, P co-doped CNTs/graphene hybrid nanospheres
(Figure 10c,d) [125]. The obtained hybrid material shows better ORR performance than a commercial
Pt/C catalyst in alkaline condition (Figure 10e). When tested in acidic solution, a comparable ORR
onset potential and much better stability than the commercial Pt/C catalyst were also achieved
(Figure 10f). To date, carbon nanotube/graphene hybrid structures doped with heteroatom such as
N [57,122,124,126,127] and N/S [121,123] have been fabricated by different methods as promising
metal-free catalysts for ORR.
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Figure 10. (a) Schematic illustration of the preparation of the NG-NCNT nanocomposites; (b) RDE
voltammograms in O2-saturated 0.1 M KOH solution at room temperature (rotation speed 1600 rpm,
sweep rate 20 mV·s−1) for the NG-NCNT, NCNT, NG, G-CNT, Pt/C and directly mixed product of GO
and OCNT. Reproduced from [119], Copyright 2013, Wiley. (c) Schematic illustration of the process
for co-assembling carbon nanotubes and graphene into hybrid nanospheres in rapidly evaporating
aerosol droplets; (d) A photograph of the ultrasonic fountain and mist generated by a high-frequency
ultrasound (1.7 MHz) from an aqueous dispersion containing oxidized carbon nanotubes and graphene
oxides; (e) LSV curves of N, P-CGHNs and Pt/C in O2-saturated 0.1 M KOH; (f) LSV curves of N,
P-CGHNs and Pt/C in O2-saturated 0.1 M HClO4. Reproduced from [125], Copyright 2016, Wiley.

3.5. Other Kinds of Nanocarbon Materials for ORR

Aside from CNTs, graphene, porous carbon, and their hybrids mentioned above, other kinds of
nanocarbon materials characterized with heteroatom doping and 3D structure also have been widely
investigated as ORR electrocatalysts [128–131]. Nanocarbon networks especially N-doped nanocarbon
networks can serve as excellent ORR catalysts. For instance, Hou et al. proposed a free-standing N-doped
carbon nanotubes/carbon nanofibers hybrid (NCNT/CNFs) via simple pyrolysis of toluene or pyridine [132].
Due to the unique 3D hierarchical structure and pyridinic-N doping, the as-prepared NCNT/CNFs exhibited
outstanding catalytic ORR performance with a favorable four-electron pathway, better selectivity and
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resistance to the methanol crossover, and long-term stability compared to the powder-form NCNTs and
commercial Pt/C catalyst in an alkaline medium. Afterwards, Yan et al. proposed a N-doped carbon
nanofiber aerogel (N-CNFA) as an efficient oxygen electrode catalyst for fuel cells [133]. The optimized
N-CNFA follows a favorable four-electron ORR mechanism with more stability than commercial Pt/C
catalyst. This excellent performance was attributed to the hierarchical porous structure, high specific surface
area, and the abundance of catalytically active sites on N-CNFA. Recently, a metal-free N- and O-doped
carbon nanowebs was also developed for use as an efficient ORR catalyst for hybrid Li-air batteries [131].
The 3D web structure shows good mass and electron transport properties, which render it a better framework
support for the catalytically active sites, besides, the N and O groups together create highly ORR active
pyridone groups on the nanoweb surface. It is well-known that 3D flexible electrodes are the fundamental
requirement of flexible energy storage and conversion systems. By simply pyrolyzing the facial cotton
under NH3, Cheng et al. prepared a 3D flexible, porous N-doped carbon microtube (NCMT) sponge as
a multifunctional ORR catalyst [134]. The flexible NCMT sponge consists of a mass of interconnected
fiber-like structures with a micron-scale hollow core and porous well-graphitized walls (Figure 11a,b).
Owing to the synergetic advantages of micron-scale hollow cores and the intimately-interconnected, porous
tube walls, the sluggish three-phase (O2, electrolyte, and electrode) reactions efficiently proceed as illustrated
in Figure 11c. The exposed surface atoms, such as C and N, provide abundant active sites. The porous
walls and hollow cores within the carbon fiber promote the fast and efficient transport of O2 and electrolyte.
The interconnected graphitic walls facilitate fast electron transfer. Therefore, the unique 3D structure of
NCMT demonstrates excellent ORR activities with better durability than Pt/C (Figure 11d).
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More recently, N and S co-doped 3D hollow-structured carbon spheres (N,S-hcs) were synthesized
via a facile and environmentally friendly route of soft template avenue as an efficient and stable
metal free catalyst for the ORR [135]. Similar to the synthesis of N,S-hcs, cetyltrimethylammonium
bromide (CTAB) was used as a typically pore-forming template to fabricate mesoporous 3D N-doped
yolk-shelled carbon spheres (N-YS-CSs) via carbonization in the presence of carbon nitrogen
precursors [136] . The mesoporous surface and particle size of N-YS-CSs can be well tuned by
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controlling the amount of ammonia a catalyst, and the optimized products exhibit outstanding cathode
catalytic performance for direct methanol fuel cells. Another report is that Huang’s group used
urchin-like hierarchical silica spheres as templates for the synthesis of uniform 3D hierarchical N-doped
carbon nanoflower (NCNF) and investigated its electrocatalytic activity towards ORR [137].

4. Conclusions and Perspectives

Nanocarbon-based metal-free catalysts are promising candidates originating from low cost and
high-performance of ORR catalysts for fuel cells and metal–air batteries. In this review, we have
summarized the recent development of advanced nanocarbon-based, metal-free ORR catalysts,
including single and multiple heteroatom-doped carbon nanotubes, graphenes, and porous carbons,
as well as their hybrids. The discussion of electrocatalysis has focused on the influence of 3D structure
and heteroatoms on the electrochemical performance of nanocarbon catalysts. Compared with
commercially available Pt/C, single nonmetal heteroatom (e.g., N, S, B, and P) or multiple heteroatom
(e.g., NP, NS, NB NSO and NPO) doped nanocarbon materials show comparable or even higher
electrocatalytic activity, better durability, and greater tolerance against fuel crossover and CO poisoning.
The unique 3D structured nanocarbon materials can not only enhance the exposure and stability of
ORR active sites, but also provide the mass transport and electron transfer pathways. Therefore,
the synergetic effect between the 3D nanostructures and the doping-induced charge redistribution
results in superior ORR activity.

Over the past decade, considerable progress has been made in the development of high-efficiency
3D structured nanocarbon-based ORR electrocatalysts. However, some important challenges may
be addressed prior to practical applications: (1) The understanding of the activity mechanism of
heteroatom-doped nanocarbon is challenging to rationally correlate the electron structure, adsorption
properties, and apparent activities. For example, the nitrogen doping induces charge distribution,
and parallel diatomic O2 adsorption can effectively weaken the O–O bond and lower the ORR potential,
facilitating oxygen reduction at the N-doped nanocarbon electrode. Some theoretical and experimental
results indicate that different N doping configurations result in difference of the ORR activity and planar
pyridinic N with a lone electron pair is claimed as the active type to improve the electron-donating
capability and weaken the O–O bond. However, there is a debate that graphitic N rather than pyridinc
N may be responsible for the ORR. Therefore, in-depth understanding of the type of active sites
toward ORR and unambiguous identifying of different types of active configurations is imperative
for developing advanced heteroatom-doped nanocarbon catalysts in terms of rationally selecting
synthesis methods and precursors. Besides, more powerful and effective characterizations, including
advanced electron microscopy and in situ or operando techniques, should be combined with theoretical
calculations to identify the different active types and the actual active sites. (2) Except active sites,
two other key factors of the mass transport and electrical conductivity together determine the ORR
performance of a nanocarbon catalyst. Therefore, structure design and optimization of nanocarbon
electrocatalysts, such as pore structure, surface area, and electrical conductivity, are significantly
important to enhance their ORR performance. Generally, 3D porous structure can provide a high
surface area with abundant exposed active sites and large pore volume with multidimensional electron
transport pathways, and hence facilitate mass (e.g., ions, oxygen and discharge products) diffusion
and electron transfer, further accelerating reaction kinetics. As discussed above, great progress has
been made via designing 3D porous structures to achieve outstanding ORR performance. However,
a detailed relationship between the pore structure and mass transport capability in different media is
yet to be determined, and detailed models describing the transport of reactants and products within
the active sites are still unclear. (3) Additionally, future efforts in the research and development of 3D
nanocarbon catalysts toward ORR should focus on the tradeoffs between electrical conductivity and
surface density of active sites. With continuous research in this promising field, we look forward to
the bright future of 3D heteroatom-doped nanocarbon catalysts as well as the breakthroughs in the
understanding of the nature of the ORR on these carbon-based metal-free ORR catalysts.
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