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Abstract: Nowadays catalytic technologies are widely used to purify indoor and outdoor air from
harmful compounds. Recently, Ag–CeO2 composites have found various applications in catalysis due
to distinctive physical-chemical properties and relatively low costs as compared to those based on
other noble metals. Currently, metal–support interaction is considered the key factor that determines
high catalytic performance of silver–ceria composites. Despite thorough investigations, several
questions remain debating. Among such issues, there are (1) morphology and size effects of both
Ag and CeO2 particles, including their defective structure, (2) chemical and charge state of silver,
(3) charge transfer between silver and ceria, (4) role of oxygen vacancies, (5) reducibility of support
and the catalyst on the basis thereof. In this review, we consider recent advances and trends on the
role of silver–ceria interactions in catalytic performance of Ag/CeO2 composites in low-temperature
CO oxidation, soot oxidation, and volatile organic compounds (VOCs) abatement. Promising photo-
and electrocatalytic applications of Ag/CeO2 composites are also discussed.
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1. Introduction

Air pollution is a major environmental problem. According to the World health organization,
ambient air pollution contributes to 6.7 percent of all deaths worldwide [1], and the emissions of
harmful compounds from industrial plants and motor vehicles in crowded urban areas are getting
more attention. By reducing the level of air pollution, countries can reduce the morbidity rates of
heart disease, lung cancer, chronic and acute respiratory diseases, etc. Many substances cause air
pollution, including carbon monoxide (CO), particulate matter, ozone, nitrogen dioxide, soot, sulfur
dioxide, organic dyes, etc., with CO being the most common among these pollutants. Volatile organic
compounds (VOCs) comprising organic compounds with an initial boiling point inferior or equal to
250 ◦C (measured at a standard pressure of 101.3 kPa) also impact pollution of indoor and outdoor
air [2]. In a recent review [3], the authors consider several main classes of VOCs, including halogenated
VOCs, aldehydes, aromatic compounds, alcohols, ketones, polycyclic aromatic hydrocarbons, etc.

Therefore, air cleaning is a pivotal challenge, and new solutions are required. Catalytic total
oxidation of organic pollutants into CO2 and water is the most effective way to address this challenge.
Metal/ceria-based catalysts were found promising heterogeneous catalysts for CO, soot and VOCs
oxidation, and the highly dispersed noble metals (Me = Au, Pt, Pd, Ru, etc.) were used as the
active components of these catalysts. The ceria-supported catalysts containing Pd [4–11], Pt [12–16],
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Au [17–23], Ru [24,25], Rh [26–29], and Cu [30,31] were proposed. Metal oxide-based catalysts
(Co3O4 [32], MnOx [33], etc.) also attracted wide interest. However, a significant part of the developed
catalysts has limited use under real conditions due to high costs of noble metals (the loading of
palladium, platinum, gold is of 2–10 wt. %), relatively low stability to “hard” conditions of oxidation
processes causing the loss of active component and reduction of the catalyst activity and selectivity.
Therefore, the development of high-performance affordable and stable catalysts for low-temperature
total oxidation of harmful compounds is still challenging. Efficiency and costs of such catalysts are
connected with proper selection of the type of active component, support, and preparation method [34].

Recently, supported silver catalysts have brought about wide interest due to their high activity
in low-temperature oxidation processes. Different supports are studied (SiO2, CeO2, MnOx, TiO2,
Al2O3, ZrO2, etc.) [35–38]. It is shown that an enhanced catalytic activity of Ag-based catalysts can be
achieved by using reducible metal oxides as supports and by controlling the metal–support interaction
to provide synergistic effect between active sites of the support and noble metal [39].

Among the supports mentioned, CeO2 brings about high interest, since it combines exceptional
redox and acid-base properties with oxygen storage, which can be controlled by proper preparation
methods and treatments. Moreover, these distinctive properties of ceria cause its wide applications as
a support for catalysts. For this reason, highly active and relatively inexpensive Ag/CeO2 composite
is considered promising heterogeneous catalyst for total oxidation of harmful organic compounds,
including formaldehyde [40], CO [41–43], soot [44–49]. The Ag/CeO2 composites can also be used
in photo- [50] and electrocatalysis [51,52], reduction of NOx [41], methane oxidation reaction [53],
preferential oxidation of CO in excess of H2 (PROX CO) [54,55] as well as in biochemistry due to the
bactericidal properties of both ceria and silver [56]. It is noteworthy also that these composites are
applied in selective oxidation of organic compounds.

In this review, we provide a survey of the current state of catalytic total oxidation of CO, soot, and
VOCs over Ag/CeO2 catalysts. The reactions under consideration are discussed from the perspective
of (1) morphology and size effects of both Ag and CeO2 particles, including their defective structure,
(2) chemical and charge state of silver, (3) charge transfer between silver and ceria, (4) role of oxygen
vacancies, (5) reducibility of support and the catalyst on the basis thereof.

2. Topical Processes

2.1. CO Oxidation

CO oxidation is one of the most studied reactions in catalysis science. It is of great fundamental
and practical importance, since CO is formed as a by-product in many industrially important oxidation
reactions (e.g., methanol oxidation to formaldehyde [57], ethylene glycol oxidation to glyoxal [58], etc.).
CO seriously affects the environment and human health [59].

Ceria-based catalysts are among the most promising materials for CO oxidation [59–61].
A comparison of ceria-supported noble metals shown that Pd/CeO2 and Au/CeO2 catalysts were more
active in CO oxidation than Ag/CeO2 [62,63]. However, the relatively low activity of Ag-containing
catalysts in this case may be connected with non-optimal conditions of preparation and pre-treatment of
Ag/CeO2 catalyst. Ag/SiO2 catalysts are known to be able to catalyze low-temperature CO oxidation
even at temperatures below 0 ◦C [64–67]. Such factors as the size of Ag nanoparticles, the pre-treatment
conditions of both support and catalyst, metal–support interaction determine the catalytic activity of
silver catalysts in CO oxidation. In Ref. [68] it was shown that addition of CeO2 to Ag/SiO2 improved
the catalytic activity in CO oxidation due to the cooperation of oxidative species on Ag and ceria.
Thus, the study of Ag/CeO2 catalysts deserves special attention to reveal the reasons for high catalytic
activity and find the approaches to its regulation.

According to literature, the method of Ag/CeO2 synthesis determines the catalytic
properties. Thus, in Ref. [41] the 10% Ag/CeO2 catalysts were prepared by impregnation and
deposition–precipitation techniques. The catalysts prepared by impregnation demonstrated higher
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activity in CO and propylene oxidation. This finding was associated with formation of Ag2+ species in
these catalysts, confirmed by Electron Paramagnetic Resonance (EPR). Such species improve the redox
properties due to creation of three different redox couples: Ag2+/Ag+, Ag2+/Ag0, and Ag+/Ag0.

The effect of shape of ceria nanoparticles on the catalytic properties of ceria-based catalysts is also
discussed in the review [69]. In Ref. [70] synthesis of ceria nanopolyhedra, nanorods, and nanocubes
by a hydrothermal method is described (Figure 1). The oxygen storage capacity of CeO2 nanorods
and nanocubes was attributed to both surface and bulk oxygen species. The lowest oxygen storage
capacity for ceria nanopolyhedra was attributed to a predominance of (111) boundaries on the surface
of particles with low reaction ability toward CO. Thus, the shape-selective synthetic strategy may be
used for designing the catalysts with desired oxidative activity.
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Figure 1. TEM (a) and HRTEM (b) images of CeO2 nanopolyhedra. TEM (c) and HRTEM (d) images
of CeO2 nanorods, inset is a fast Fourier transform (FFT) analysis. TEM (e) and HRTEM (f) images
of CeO2 nanocubes, inset is a FFT analysis. Reproduced from Ref. [70] with the permission from
ACS Publications.

In Ref. [71] the catalytic activity of ceria rods, cubes and octahedra was studied in CO oxidation.
The highest activity of ceria nanorods was attributed to a predominance of (110) and (100) surfaces,
while the lowest activity of ceria octahedra was caused by a predominance of (111) surface. The activity
of different surfaces also depends on the energy of oxygen vacancy formation, which is predicted to
follow the reverse order of lattice oxygen reactivity: (110) < (100) < (111). Supporting of silver on the
surface of ceria nanoparticles with different shapes by conventional incipient wetness impregnation
followed by calcination at 500 ◦C led to creation of additional oxygen vacancies in ceria surface [43].
Ag nanoparticles were suggested to facilitate the formation of oxygen vacancies in ceria surface in
a larger extent than in case of positively charged Agn

+ clusters. Thus, Ag loading (1 and 3 wt. %) in
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Ag/CeO2 affects the amount of Ag0 and Agn
+ clusters that yields different concentrations of surface

oxygen vacancies and, hence, different activity in CO oxidation. Ag0 nanoparticles (NPs) promote the
reducibility of surface lattice oxygen and catalytic activity of CeO2 in CO oxidation. The control of the
shape of CeO2 may be used as a strategy to design the metal/CeO2 catalysts with reduced amounts of
noble metals. An increase of the Ag content from 1 to up to 3 wt. % mitigates the difference in turnover
frequency (TOF) CO for the composites based on nanocubes and nanorods that allows concluding on
the need of coexistence of charged Agn

+ species and reduced Ag0 NPs on the CeO2 surface to create
an active catalyst.

The role of oxygen vacancies of Ag/CeO2 catalysts in CO oxidation is also discussed in Ref. [72].
Using Raman spectroscopy, it was shown that Ag promoted the formation of oxygen vacancies in ceria.
This effect is pronounced, when CeO2 and Ag/CeO2 were reduced in CO/N2 atmosphere up to 300 ◦C
(Figure 2a,b). Treatment in oxygen atmosphere leads to the decreased amount of oxygen vacancies
(Figure 2c,d). Thus, the introduction of Ag into CeO2 promotes the activation of lattice oxygen of ceria
and formation of oxygen vacancies that is the main reason for enhanced catalytic activity of Ag/CeO2

in CO oxidation.
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Figure 2. Raman spectra of different catalysts under different reaction conditions (a) Ag/CeO2— 5 vol%
CO/N2, (b) CeO2—5 vol% CO/N2, (c) Ag/CeO2–O2, (d) CeO2–O2. Reproduced from Ref. [72] with
the permission from Springer.

The role of the shape of ceria nanoparticles in CO oxidation over Ag/CeO2 was also discussed
in terms of the complex or hierarchical structure of ceria. The Ag-based catalysts supported on
mesoporous CeO2 prepared by hard-template method and surfactant-template method was studied
in CO oxidation in Ref. [42]. Mesoporous ceria was prepared by hard-template method using the
SBA-15 material as a template, which was etched by NaOH. Hexadecyl trimethyl ammonium bromide
(CTAB) was used as a classical soft template to synthesize ceria by surfactant-template method.
Mesoporous ceria prepared by hard-template method was the preferable support for Ag catalysts,
and total conversion of CO (200 mg catalyst, 1% CO, a gas flow of 30 mL/min) for this catalyst was
achieved at 65 ◦C. High activity of this catalyst was attributed to oxygen vacancies in mesoporous
CeO2 support, which stabilizes dispersed silver and facilitates the transfer of electrons from Ag to
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CeO2 via the Ag–CeO2 interface. However, one cannot exclude the participation of SiO2 used as
a template to produce mesoporous CeO2 in formation of Ag-containing species highly reactive toward
low-temperature CO oxidation.

In Ref. [73] Ag/CeO2 catalysts with the Ag loading from 5 to 20 wt. % were prepared by the
HCl etching of CuO/CeO2/Ag2O mixed oxides followed by CuO removal. The formation of Ag
nanoparticles inside the ultrafine nanoporous CeO2 with sizes of pore channels below 20 nm was
observed after reduction by glucose in solution. The obtained composites also showed enhanced
catalytic activity in CO oxidation in comparison with CeO2–Ag composite prepared by co-precipitation
method, and the highest catalytic activity was observed for catalysts with 10 wt. % loading of Ag
(T50% ≈ 130 ◦C, 1% CO and 10% O2, WHSV of 60,000 mL g−1 h−1).

The CeO2 mesoporous spheres with a diameter of ~100 nm and Ag catalysts on the basis thereof
were synthesized in Ref. [74] (Figure 3). CeO2 mesoporous spheres were synthesized using glycol as
a solvent with addition of C2H5COOH in an autoclave at 180 ◦C for 200 min. Ag NPs were prepared
separately, and their dispersion in cyclohexane was stirred together with CeO2 mesoporous spheres.
The catalysts were characterized by high surface area (216 m2/g) and regular morphology. Ag molar
content was 10%. CO conversion achieved 96.5% at 70 ◦C (100 mL/min) and the enhanced catalytic
performance in CO oxidation was attributed to the unique structure of ceria support.
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by a Ag nanoparticle catalyst. (c) Darkfield scanning TEM image of a single CeO2 mesoporous sphere.
(d) Compositional line profile across the single sphere (from A to B) probed by Energy Dispersive X-ray
Analysis (EDXA) line scanning. Reproduced from Ref. [74] with the permission from the ACS Publisher.

The catalysts with core-shell and yolk–shell structures also attract attention [75,76]. The Ag@CeO2

catalysts with a core-shell structure were prepared by surfactant-free method with subsequent
annealing redox reaction between silver and ceria precursor during co-deposition [77]. The particles
with metallic Ag cores with a diameter of 50–100 nm CeO2 shell with a thickness of 30–50 nm were
tested in CO oxidation (catalyst mass was 100 mg, 1% CO, a gas flow of 20 mL/min). The calcination of
Ag@CeO2 at 500 ◦C in air flow led to the growth of catalytic activity (100% CO conversion at ~120 ◦C)
in comparison with freshly deposited precipitate and catalyst after hydrothermal treatment and drying
at 80 ◦C. This growth of activity was attributed to the strengthened interfacial interactions between Ag
core and CeO2 shell during the calcination process (confirmed by TPR-H2) and to the fast desorption of
CO2 from the surface of catalyst that was shown by Fourier Transform Infrared (FTIR) spectroscopy
of adsorbed CO2. The charge transfer due to enhanced metal–support interaction from Ag to CeO2
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was shown by XPS [39]. It is noteworthy that one-, two- and three-coordinated OH groups were shown
to exist over CeO2 surface [78], and their effect cannot be neglected.

Thus, according to the literature, Ag/CeO2 composites are promising catalysts for CO oxidation.
The method of catalyst preparation, shape of ceria nanoparticles, and morphology of ceria are the
factors determining the catalytic properties of the composites. Special attention is given to oxygen
vacancies, and their concentration depends on the shape of ceria particles, amount of silver and charge
states of its clusters/nanoparticles as well as pre-treatment conditions. Certainly, the presence of
silver on the surface of ceria promotes the formation of oxygen vacancies and facilitates the growth
of catalytic activity in CO oxidation. The features of interfacial interaction also should be considered
since the transfer of electronic density from silver NPs to ceria accompanies metal–support interaction
in Ag/CeO2 catalysts. These phenomena may play a key role in oxidative catalysis [79,80], reduction
of nitroarenes [81], photocatalysis [82]. Different synthetic strategies may be developed to synthesize
Ag/CeO2 with high activity in CO oxidation and find real application in industrial or indoor air
purification from CO and VOCs.

2.2. Soot Oxidation

Soot is an amorphous impure carbon formed during incomplete combustion of fuels and
hydrocarbons in internal combustion engines, coal burning, power-plant boilers, etc. It is formed as
a by-product impairing the normal operation of combustion engines by fouling of exhaust systems,
generation of exhaust plumes, blocking the pipes, etc. [83]. Soot particles are harmful to the human
respiratory system since they cannot be filtered by upper airways. Thus, the development of materials
that prevent the harmful impact of soot on the environment and human health is an important research
and technology challenge. The soot combustion of diesel exhaust particulate occurs at temperatures
above 600 ◦C, while typical diesel engine exhaust temperatures are in the range of 200–500 ◦C [84,85].
Therefore, the decreasing of the temperature of soot combustion is the main requirement for catalysts
in this reaction.

The contact between soot and catalyst plays a key role in solid–solid reactions, and the observed
catalytic activity depends on the gas–solid–solid interaction [86]. The contact conditions between soot
and catalyst determine the combustion performance. In the literature two types of catalyst–soot contact
studies under laboratory conditions are proposed: tight contact (TC) and loose contact (LC) [85–87].
The LC mode comprises a mixing or shaking of the catalyst–soot mixture with a spatula providing
conditions for contact between soot particle and catalyst similar to those over diesel filter. TC mode is
achieved by milling (ball or mortar milling) of the mixture during several minutes. Compared to the
LC mode, the TC mode is less representative of the real contact conditions but is required to better
understand and discriminate the morphologies [86,88].

Many effective catalytic systems have been proposed for soot combustion and other oxidation
reactions [83,89]. Due to their unique physical-chemical properties, especially high redox properties
and the lability of lattice oxygen, ceria and ceria-based materials also show high catalytic activity
in total oxidation reactions, and soot oxidation to carbon dioxide is not an exception. Ceria also
possesses high oxygen storage capacity (OSC), which allows using the oxide not only as a support
or modifying additive, but also as a catalyst for soot oxidation. A selection of CeO2-based catalysts
for soot oxidation is presented in Table 1. In Ref. [90] the catalytic activity of pure ceria prepared by
co-precipitation method was described. Precipitation of aqueous solution of HNO3 and Ce(NO3)3

was carried out using the 0.4 M NaOH solution and 0.4 M Na2CO3. Combustion temperature of pure
oxide samples was achieved in the region of 445–560 ◦C. The acidification of cerium precursor at the
stage of catalyst preparation improved the catalytic performance of the obtained materials. The sample
prepared by precipitation method using HNO3/Ce(NO3)3 = 2 had the highest catalytic activity with
Tm = 465 ◦C. It is noteworthy that the use of large amounts of alkali metals at the stage of synthesis
may significantly influence on the morphology and defective structure of cerium oxide, which will
impact on the observed catalytic activity [91].
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Morphology is known to play an important role in solid–solid reactions, where the number of
contact points is a crucial criterion of activity. In Ref. [92] three different morphologies of pure cerium
oxide were studied in soot oxidation reaction. The materials comprised (1) ceria nanofibers that
capture the soot particles in several contact points, while having low specific surface area (~ 4 m2/g),
(2) solution combustion synthesis ceria having an uncontrolled morphology, but higher specific surface
area (31 m2/g), and (3) three-dimensional self-assembled (SA) ceria stars having high specific surface
area (105 m2/g) and highly available contact points. The latter showed the highest catalytic activity,
and the temperature of soot oxidation reduced from 614 to up to 403 ◦C for TC and to up to 552 ◦C in
case of LC (Figure 4).
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× 150,000 (b) level of magnifications. Reproduced from Ref. [92] with the permission from the Royal
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Comparing to the morphologies in groups 1 and 2, the three-dimensional shape of SA stars may
involve more of the soot cake layer that can be a reason for enhancement of the total number of contact
points and higher catalytic activity (Figure 5). SA stars also keep their high intrinsic activity after aging.
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A comparison of the catalytic performance of pure ceria with different morphology under LC
conditions was carried in [60], and the results were compared to those reported in Refs. [46,93–95].
The activity was shown to decrease in the following order: nanorod > nanocube > fiber > flake, and
the lowest temperature of complete combustion of 485 ◦C is observed for nanorod samples.
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In Ref. [96] hydrothermal and solvothermal methods were used to prepare nanostructured ceria
with different morphology (nanorod, nanoparticle, and flake). The nanorod sample showed the
best catalytic activity (soot combustion temperatures for TC and LC modes were 368 and 500 ◦C,
respectively) that was attributed to the maximal amount of adsorbed oxygen species on its surface.
Moreover, the high specific surface area, determined by BET (Brunauer Hemmet Teller) method,
was pointed out to have a positive effect in improving the activity under the LC mode. In Ref. [97]
hydrothermal method was used to prepare conventional polycrystalline ceria and single-crystalline
ceria nanorods and nanocubes. The obtained samples differ by the surface formed ((100) surfaces were
typical for nanocubes, a mixture of (100), (110) and (111) surfaces for nanorods, while (111) surface was
obtained for conventional polycrystalline ceria). More reactive exposed surfaces demonstrated higher
catalytic activity and soot oxidation becomes a surface-dependent reaction. Soot, while located at the
soot–ceria interface, can reduce ceria, and such surface becomes the source of active superoxide ions.
The formation energy of a surface oxygen vacancy is considered important for activity enhancement.

According to Ref. [48], the redox properties of ceria are an important, but not the major factor
for catalytic soot oxidation. A comparison of fluorite-type oxides CeO2, Pr6O11, CeO2–ZrO2, ZrO2

characterized by high oxygen capacity revealed that the reactivity rather than quantity of oxygen
species involved in oxygen release/storage processes is a favorable factor for low-temperature soot
oxidation. CeO2 was shown to be much more active in soot oxidation, than Pr6O11 and CeO2–ZrO2

that had higher OSC values than pure CeO2. Using the electron spin resonance (ESR) method it
was demonstrated that the reason was connected with the ability of the CeO2 surface to generate
superoxide ions (O2

−) that can rapidly react with neighboring carbon or recombine to yield O2.
Despite unique physical-chemical properties, it is often not feasible to use pure ceria,

since a significant loss of specific surface may occur due to thermal sintering, deactivation of redox
pair, reduction of OSC leading to deterioration of catalytic activity [98], etc. Even small sintering
causes a large impact on the crystallite sizes and the presence of oxygen vacancies, which significantly
reduces the catalytic activity. The presence of metal ions in the ceria lattice allows reducing the effects
of sintering and loss of catalytic activity along with a significant increase of OSC [99,100].

Special attention should be paid to the effect of introduction of Ag into the CeO2 structure.
Loading of Ag NPs on CeO2 improves the reactivity of CeO2 lattice oxygen toward soot oxidation.
Kinetic studies showed [45] that lattice oxygen of ceria interacting with Ag NPs had similar reactivity
to the one of lattice oxygen in Ag2O. Ag NPs enhance reducibility of ceria (which was also shown
in [101] and was attributed to reverse spillover of oxygen atoms from the Ag–CeO2 boundary to the Ag
NPs along with other possible interpretations), but not the reoxidation ability of reduced ceria surface
by dioxygen. Silver can become an agent that allows rapid formation of Ox

−. In Ref. [102] using
cyclic H2-TPR and Raman studies, it was shown that both dissociative adsorption of gaseous oxygen
and migration of bulk oxygen of ceria can be facilitated by silver. This results in a rapid generation
of atomic oxygen over silver, which under the TC mode can transfer onto soot particle and lead to
catalytic oxidation reaction [103]. If not, its spillover onto the ceria surface occurs, and the oxygen
transforms to Ox

− through 2O–O2
−–2O− –2O2− over the oxygen vacancies [45,49,57,104,105]. On the

other hand, silver is proposed to participate in the reverse transformation of O− to O2
− [105].
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Table 1. A selection of CeO2-based catalysts for soot oxidation.

Catalyst Preparation Method CeO2
Morphology SBET, m2/g

Particle Size, nm
Ce3+/Ce4+ Ratio

Catalyst/Soot
Ratio Contact Mode Reaction Conditions T10, ◦C T50, ◦C T90/Tmax, ◦C Ref.Ag CeO2

CeO2-NC hydrothermal nanocubes 11 - 100 0.45 4:1
(mass.) TC

1% O2/N2 500 mL/min,
isothermal reactions at

300 ◦C and 350 ◦C

- 430 -
[105]CeO2-NP thermal decomposition irregular shaped 71 - 15 0.57 - 458 -

CeO2-Sp hydrothermal spindles 79 - 25 0.53 - 527 -

CeO2-30 precipitation at 30 ◦C
irregular shaped

49 - 11 0.52 4:1
(mass.) LC 20% O2/80% N2

- - 598
[106]CeO2-50 precipitation at 50 ◦C 41 - 15 0.51 - 542 -

CeO2-70 precipitation at 70 ◦C 49 - 15 0.50 - 542 -

Ce-R hydrothermal nanorods 80 - 250 nm × 2 µm Ce3+ 25.1 at. %

9:1
(mass.)

LC

10 vol%O2/N2

356 500 554

[96]

TC 286 368 400

Ce-P solvothermal irregular shaped 88 - 30–40 Ce3+ 16.5 at. %
LC 413 521 573
TC 320 433 474

Ce-F solvothermal flakes 62 - 25 Ce3+ 19.1 at. %
LC 433 554 622
TC 306 383 440

Ce-SAS hydrothermal route in a batch stirred-tank
reactor

SA stars 124 - 10 N/A
45:5

(mass.)
LC 50% air/ 50% N2 constant

100 mL min−1
450 560 610

[107]TC 385 415 505

Ce-NC hydrothermal nanocubes 4 - 54 N/A
45:5

(mass.)
LC 420 465 575

[93]
TC 370 385 430

Ce-ND thermal decomposition irregular shaped 72 - 7–35 N/A
45:5

(mass.)
LC 50% air/ 50% N2 100 mL

min−1
475 530 600

TC 360 390 498

Ce-NC hydrothermal nanocubes 4 - 54 Ce3+ 27.6 at. %

45:5
(mass.)

LC

10% of O2/N2 at rate of
100 cm3 min−1

417 477 584

[88]

TC 396 400 425

Ce-NR hydrothermal nanorods 4 - 43 Ce3+ 25.5 at. %
LC 429 536 623
TC 381 416 455

Ce-M improved grafting mesoporous 75 - 5 Ce3+ 25.5 at. %
LC 398 538 604
TC 374 464 510

Ce-SCS solution combustion mesoporous 69 - 35 Ce3+ 36.1 at. %
LC 436 580 633
TC 392 476 558

CeO2-CP1-F co-precipitation
irregular shaped

52.6 - 8.46 Ce3+ 21.71 at. % 45:5
(mass.) LC 5% O2/Ar, 200 mLmin−1

- - 545
[90]

CeO2-CP2-F modified co-precipitation
HNO3/Ce(NO3)3 = 0.5 (mol) 22.7 - 7.87 Ce3+ 12.77 at. % - - 530

CeO2-CP3-F modified co-precipitation
HNO3/Ce(NO3)3 = 1 (mol) 24.6 - 6.05 Ce3+ 11.90 at. % - - 480

CeO2-CP4-F modified co-precipitation
HNO3/Ce(NO3)3 = 2 (mol) irregular shaped 30.13 - 6.07 Ce3+ 10.58 at. %

45:5
(mass.) LC 5% O2/Ar, 200 mLmin−1

- - 465

[90]CeO2-CP4-A CeO2-CP4 calcined at 750 ◦C for 6 h
irregular shaped

1.80 - 47.18 Ce3+ 15.60 at. % - - 440
CeO2-S-F solid combustion 77.1 - 9.63 Ce3+ 26.58 at. % - - 540

CeO2-CA-F citric acid sol–gel 45.0 - 9.68 Ce3+ 30.76 at. % - - 560

CeO2-500 electrospinning with calcination at 500 ◦C

nanofibers

20.4 - 241–253 N/A

95:5
(mass.)

LC

21% O2 and 79% N2, 100
mL/min

596

[47]

TC - - 429

CeO2-800 electrospinning calcination at 800 ◦C 3.45 - 241–253 N/A
LC - - 633
TC - - 504

CeO2-1000 electrospinning calcinations at 1000 ◦C 3.40 - 241–253 N/A
LC - - 639
TC - - 513

CeO2 precipitation irregular-shaped 45 - N/A N/A 20:1
(mass.) TC 10% O2/N2 10 ◦C min−1 - - 393 [48]
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Table 1. Cont.

Catalyst Preparation Method CeO2
Morphology SBET, m2/g

Particle Size, nm
Ce3+/Ce4+ Ratio

Catalyst/Soot
Ratio Contact Mode Reaction Conditions T10, ◦C T50, ◦C T90/Tmax, ◦C Ref.Ag CeO2

CeO2 precipitation/ripening nanofibers 4 - 72 N/A 45:5
(mass.)

LC

10% O2/N2

480 555 560

[92]
TC 383 439 445

CeO2 solution combustion
uncontrolled
nanopowders 31 - 45 N/A

LC 483 562 562
TC 358 411 417

CeO2 hydrothermal three-dimensional
SA stars

105 - 9 N/A 45:5
(mass.)

LC

10% O2/N2

435 543 552

[92]
TC 354 410 403

CeO2 SA stars aged 5 h at 600 ◦C Aged SA stars 50 - 15 N/A
LC 473 559 559
TC 381 453 465

AgCe-NC incipient wetness impregnation (Ag-5 wt. %) nanocubes 10 1.5–3.5 100 0.34 4:1
(mass.) TC

1% O2/N2 500 mL/min
100,000 h−1, isothermal

reactions at 300 ◦C

- 376 -
[105]AgCe-NP incipient wetness impregnation (Ag-5wt. %) irregular shaped 64 1.5–3.5 16 0.52 - 389 -

AgCe-Sp incipient wetness impregnation (Ag-5 wt. %) spindles 69 1.5–3.5 27 0.37 - 411 -

Ag/CeO2-30
incipient wetness impregnation (Ag-5 wt. %) irregular shaped

37 5 15 0.29 4:1
(mass.) LC 1% O2/N2 after 4 cycles

522 606 691
[106]Ag/CeO2-50 33 8 20 0.27 488 596 660

Ag/CeO2-70 37 8 15 0.23 504 602 675

Ag/CeO2-500 electrospinning calcination at 500 ◦C (Ag-4.5 wt. %)

nanofibers

5.07 10 241–253 N/A

95:5
(mass.)

LC

21% O2, 79% N2, 100
mL/min

- - 481

[47]

TC - - 429

Ag/CeO2-800 electrospinning calcination at 800 ◦C (Ag-4.5 wt. %) 3.07 10 241–253 N/A
LC - - 485
TC - - 484

Ag/CeO2-1000 electrospinning calcinations at 1000 ◦C (Ag-4.5 wt. %) 2.74 10 241–253 N/A
LC - - 514
TC - - 496

Ag/CeO2 incipient wetness impregnation (Ag-10wt. %) irregular shaped N/A N/A N/A N/A 20:1
(mass.) TC 10% O2/N2 10 ◦C·min−1 - - 345 [48]

CeO2–Ag co-precipitation (Ag-39 wt. %) rice-ball 14.7 36 16 N/A

19:1
(mass.)

LC

10% O2/He at 50 mL/min

- - 376

[49]

TC 315

Ag(39)/CeO2 impregnation (Ag-39 wt. %)

irregular shaped

30.1 89 21 N/A
LC - - 563
TC 381

Ag(10)/CeO2 impregnation (Ag-10 wt. %) 52.0 60 20 N/A
LC - - 526
TC 362

Ag(3.2)/CeO2 impregnation (Ag-3.2 wt. %) 59.2 28 20 N/A
LC - - 550
TC 371

Ag(1.9)/CeO2 impregnation (Ag-1.9 wt. %) 70.0 20 20 N/A
LC - - 596
TC 414

Ag(0.95)/CeO2 impregnation (Ag-0.95 wt. %) 78.1 n.d 20 N/A
LC - - 610
TC 466
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In Figure 6 an effect of silver loading on the catalytic activity of ceria in soot oxidation is
represented. The temperature of soot combustion shifted from 668 ◦C in case of combustion of
pure soot to 393 ◦C for CeO2 and to up to 345 ◦C for the case of Ag/CeO2 [48].
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with a weight ratio of 1/20 were heated in 10% O2/N2 at the rate of 10 ◦C·min−1. Reproduced from
Ref. [48] with the permission from the American chemical society.

By comparing the onset temperature, Ti, of soot oxidation over various metal-loaded CeO2 with
different loadings (Figure 7) it results that Ti can be lowered with an increase of Ag loading from 357 to
324 ◦C (20 wt %). On the contrary, loading other metals, such as Pd, Pt, and Rh, could not improve the
activity. This result supports that superoxides activated over silver are the active species responsible
for low-temperature soot oxidation.
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10 ◦C·min−1. Reproduced from Ref. [48] with the permission from the American chemical society.

The catalysts for soot combustion have two main drawbacks, i.e. poor soot/catalyst contact
and restricted amount of active site. The promising composites should possess relatively low
specific surface area and have no micropores and small mesopores, which will provide the presence
of a maximal number of active sites on the external surface of the grain and will facilitate the
effectiveness of catalyst performance. Various preparation technique can be used to create such
active surfaces. While the impregnation method still can be used [48], the relatively simple and
economically feasible co-precipitation technique is considered the major way to prepare Ag/CeO2

catalysts for soot oxidation [44,49,104,108]. As a result, an opportunity exists to design favorable
structure to transfer/diffuse the activated oxygen species to reaction zones of the catalyst and promote
better catalyst–soot contact.

Among the catalysts prepared by co-precipitation technique, special interest is devoted to those
with the “rice-ball” core-shell structure [49,104] comprising metallic Ag particles in the core surrounded
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by CeO2 particles. These catalysts possess a unique agglomerated structure with a diameter of about
100 nm, where large Ag particles (30–40 nm) and a large interface between the Ag and CeO2 particles
cause its excellent catalytic performance in soot oxidation due to this morphological compatibility
(the oxidation proceeds below 300 ◦C).

A less common way to prepare Ag/CeO2 catalysts for soot oxidation is the electrospinning
method [47]. CeO2 nanofibers with diameters of 241–253 nm were produced using this method
(Figure 8).
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fabricated through the electrospinning of spinnable Ce/PVP in a DMF/EtOH precursor solution
followed by thermal treatment. Ag was then loaded on the surfaces of the CeO2 nanofibers. Reproduced
from Ref. [47] with the permission from the Elsevier.

The Ag/CeO2 and CeO2 fibrous catalysts calcined at 500 ◦C exhibited an improved catalytic
performance in soot oxidation caused by their large pore sizes related to the macroporous characteristics
of the porous structure in CeO2. Large surface areas of CeO2 and Ag metallic species can contribute to
high soot oxidation activity (Figure 9).
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(e) Ag/CeO2-800, and (f) Ag/CeO2-1000. Reproduced from Ref. [47] with the permission from
the Elsevier.

In Ref. [106] it is pointed out that under oxygen-rich conditions the activity of Ag/CeO2 catalysts
is caused by oxygen vacancies near Ag particles, while under oxygen-poor conditions it is controlled
by bulk oxygen vacancies. The generation and transfer of active oxygen are affected by combinations
of both types of oxygen vacancies.

The mechanism of soot oxidation over Ag/CeO2 composites is also debating. Soot oxidation is
a solid–solid–gas reaction, and there are two points of views on the predominant reaction mechanisms
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of soot oxidation in the literature [48,109–111]. On one hand, soot oxidation is initiated by the
surface-active oxygen (peroxide and superoxide (O− and O2

−) species), which may be activated by the
oxygen vacancies. From the other hand, surface active oxygen comes from the bulk by migration of
lattice oxygen. Ref. [99,108] describes a mechanism of metal oxide catalyst participation in redox cycle,
where metal is subjected to repeated oxidation and reduction according to the following reaction set:

Mred + Ogas →Moxd—Oads (1)

Moxd—Oads + Cf →Mred + SOC (2)

SOC→ CO/CO2, (3)

where Mred and Moxd–Oads represent the reduced and oxidized states of the catalyst, respectively;
Ogas and Oads are gaseous O2 and surface adsorbed oxygen species, respectively; Cf denotes a carbon
active site or free site on the carbon surface, and SOC represents a surface carbon-oxygen complex.

According to this mechanism, atomic Oads species is formed through dissociative adsorption of
gas-phase oxygen on the metal oxide surface, and then attacks the reactive free carbon site Cf yielding
an oxygen-containing active intermediate. CO/CO2 are formed through the reaction between the
intermediate and either Oads or gas-phase O2. The authors [45,99,108] suggest that in this mechanism
the surface adsorbed oxygen species play the key role in soot oxidation, in contrast to CO oxidation
that occurs through the Mars-van Krevelen mechanism. However, some researchers consider that
the second reaction mechanism is prevalent in soot oxidation over ceria-based catalysts under real
conditions [48] (Figure 10).
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In case of reverse CeO2–Ag catalyst [49], a synergistic effect of Ag and CeO2 particles causes
adsorption of gas-phase O2 followed by formation of atomic oxygen species and the process is
facilitated due to large Ag–CeO2 interface. The O species on the silver surface migrates to the surface of
ceria particles through the interface and transforms into On

x− species (Figure 11). These atomic oxygen
species exist in equilibrium during soot oxidation. Then the mobile active On

x− species migrates onto
soot particle through the soot–ceria contact and completely oxidizes the soot into CO2.
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Another important problem that occurs in particulate filters under real conditions is connected
with the loss of contact between the catalyst and solid reactant (e.g., unreactive ash). In Ref. [104] the
catalytic soot oxidation was shown to occur, when a physical barrier of ash deposit exists between
the catalyst and the solid soot, and the reaction proceeds without a direct catalyst–soot contact or
any external energy applied (Figure 12). A CeO2–Ag catalyst prepared by the co-precipitation and
a Ag/CeO2 catalyst prepared by impregnation showed catalytic activity for remote oxidation of soot
separated by the deposition of alumina or calcium sulfate, while CeO2 catalyst did not. The remote
oxidation effect is extended to more than 50 µm for both the CeO2–Ag and Ag/CeO2 catalysts, with the
highest effect over the former catalyst. Based on the results of the ESR experiments, a mechanism for
the observed phenomenon was proposed, in which a superoxide ion (O2

−) generated on the catalyst
surface first migrated to the ash surface and then to the soot particles and then subsequently oxidizes it.
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In [112] several model Ag/CeO2 catalysts with uniform structures and diverse surface oxygen
vacancy (VO–s) contents were prepared by solution combustion method, and the processes of their
activation and deactivation were considered (Figure 13). The VO–s content, conditions of catalyst–soot
contact and extra oxygen supplier were pointed out as the most important structural factors in the
activity of soot oxidation catalysts. The dioxygen concentration in the reaction atmosphere was
assumed to influence the VO–s content, while ceria reduction was mentioned to occur around the
catalyst–soot contact points and did not take place in the presence of O2. Moderate amounts of VO–s

were shown to boost the catalytic activity by generating more Ox
n− species, while their excess yields

O2− instead of O2
− that hinders the process. The interfacial reduction of ceria and insufficient O2

−

delivery and regeneration were suggested to determine the catalyst performance. The deactivation
can be postponed by noble metal addition, resulting in accelerated soot combustion over noble
metal-containing catalysts.
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Thus, the development of catalysts with a special state of the deposited phase, characterized
by a strong metal–support interaction, makes it possible to stop the migration of the deposited
particles of the active phase, preventing the process of thermal aging (sintering) of the catalyst,
which is one of the main problems in the operation of catalytic systems for cleaning emissions of
internal combustion engines, both gasoline and diesel. The synergistic effect of Ag/CeO2 catalysts
is determined by high activity, stability and is achieved by decreasing the costs for use of expensive
metals, e.g., platinum [113–115], with saving of efficiency in the processes of catalytic cleaning of
emissions of internal combustion engines. In this way, Ag/CeO2 composites are considered promising
catalysts for soot oxidation.

2.3. VOCs Abatement

VOCs are a large group of organic chemicals having high vapor pressure and low boiling
point at atmospheric pressure (these include, but are not limited to aldehydes, alcohols, aromatic
compounds, etc.). These properties cause evaporation or sublimation of these compounds from
liquid or solid state and entering the indoor and outdoor air. VOCs are known to possess
high toxicity, poison the atmosphere and have a negative impact on human health and the
environment [34]. To date, numerous ways to solve the challenge of air pollution, such as combustion
of wastes, biodegradation [116], adsorption [117], plasmochemical decomposition [118], photocatalytic
oxidation [119], ozonation [120], etc., have been proposed. The main drawback of these methods is
the high-energy consumption that may be accompanied by the formation of formaldehyde and CO
as well as the complexity of regeneration of the active phase (bacteria, adsorbents, photocatalysts).
Catalytic oxidation of VOCs to carbon dioxide and water are considered the most promising methods
to control the emissions [121–124]. The use of catalysts allows carrying out VOCs oxidation at relatively
low temperatures at complete conversion. As a rule, two main types of effective catalysts for total
oxidation of VOCs are developed, including supported metals (e.g., Au, Pt, Pd, Ag) [125–130] and
transition metal oxides (CeO2, MnO2, Co3O4) [130–133]. The combination of noble metal and transition
metal oxide used as a support or modifier is promising to increase the effectiveness of catalytic
composites [134–136].

Currently, Ag–CeO2 composites represent both scientific and practical interest as catalysts for
VOCs abatement, in particular oxidation of formaldehyde, methanol, toluene, acetone, etc. A selection
of literature data on Ag/CeO2 composites used in VOCs abatement is presented in Table 2. Several
articles were published on formaldehyde oxidation over Ag/CeO2 catalysts [40,137–139]. One of the
pioneer works in this field was carried out by S. Imamura et al. [140], who suggested using Ag/CeO2

as catalysts for formaldehyde oxidation. High activity of the Ag/CeO2 composite was suggested to
be governed by high dispersion of active silver on CeO2 and easier removal of surface oxygen as
compared to the one over individual Ag or CeO2 components. The authors pointed out that compared
to other group VIII metals, silver is less expensive and more abundant and shows high activity and
durability, when high temperatures are not required.
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Table 2. Literature data on catalytic VOCs abatement over Ag/CeO2 composite catalysts.

Type of VOC Preparation
Method

Loading of Ag,
wt. % TVOC conv., ◦C S, m2/g

Mean Ag NP
Diameter (nm) Reaction Conditions TOF × 103, s−1 T, ◦C Ref.

CH2O CP

61.3
28.4
15

7.69

80%: 150 40.5 to 84.4 N/A

1 mL of catalyst, CH2O: 0.42%, methanol: 0.074%,
H2O: 19.9%, N2: 62.7%,

O2: 16.9% GHSV = 21,000 h−1

Trange: 423–573 K

- - [140]

CH2O WI 8 100%: 125 113.7 N/A

110 ppm of CH2O 20% O2, N2 balance
GHSV = 100,000 mL (gcat·h)−1 Kinetic studies: 1400 ppm

of CH2O.
GHSV = 302,000 mL (gcat·h)−1

6.8 100 [137]

CH2O WI 1 100%: 100 70.8 <3 50 mg of catalyst 600 ppm CH2O
20.0 vol% O2, N2 balance GHSV = 120,000–360,000 h−1 1.8 100 [138]

CH2O HT
WI 2 100%: 110 HT: 125.4.

WI: 55.5

nanospheres
HT: 14.8
WI: 2.4

50 mg of catalyst powder mixed with quartz sand 810 ppm
of CH2O 20% O2, N2 balance GHSV = 84,000 h−1 5.0 110 [40]

CH2O HT
WI 5

100%: 110 (nr)
50%:

nr: 74
np: 89
nc: 108

nr: 128.46
np: 104.74
nc: 72.63

np: 4.0
nr: 6.0 ± 2.0 nm

and 50.0–100.0 nm

50 mg of catalyst 810 ppm of CH2O
GHSV = 84,000 h−1 contact time was 0.34 s

Trange: 30–240

1.9 *
TOFAg
nr: 71.0
np: 46.0
nc: 31.0

100 [139]

propylene WI
DP 10

50%:
WI: 173
DP: 261

WI:92
DP:84 N/A 100 mg of fine catalyst powder, air and

6000 ppm of C3H6, reactive flow of 100 mL min−1
WI: 2.2

DP: 0.13 170 [41]

propylene
WI

DPU
IRC

4

50%:
WI: 221

DPU: 260
IRC: 200

WI: 149
DPU: 123
IRC: 99

N/A

200 mg of catalyst
6000 ppm of C3H6

a total flow of 100 mL/min
Trange: 60–400

WI: 0.27
DPU: 0.22
IRC: 0.14

170 [141]

propylene
WI
DP

2.14
50%:

WI: 220
DP: 245

WI: 98
DP: 118

N/A

100 mg of fine catalyst powder
6000 ppm of C3H6

a total flow of 100 mL min−1

Trange: 100–400

WI: 0.8
DP: 0.5 170

[142]

toluene 50%:
WI: 240 2000 ppm of C7H8 0.34 170
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Table 2. Cont.

Type of VOC Preparation
Method

Loading of Ag,
wt. % TVOC conv., ◦C S, m2/g

Mean Ag NP
Diameter (nm) Reaction Conditions TOF × 103, s−1 T, ◦C Ref.

toluene

DP
CP

4.8
4.7

50%:
DP: 265
CP: 260

DP: 112
CP: 130

DP: 7.1–6.7
CP: <4–3.3

0.7 vol.% VOC
10 vol.% O2
He balance

GHSV = 7.6 × 10−3 molVOC h−1 gcat −1

- -

[54]
methanol

50%:
DP: 131
CP: 113

- -

acetone
50%:

DP: 225
CP: 220

- -

naphthalene WI 1 100%: 240
50%: 175 (1 wt. % Ag) 143 8.7

120 ppm naphthalene
10% O2, N2 balance

total gas flow rate was 400 mL/min
GHSV = 175,000 h−1

Trange: 160–300

1.5 170 [143]

WI—wetness impregnation, DP—deposition–precipitation, DPU—deposition–precipitation with urea, IRC—impregnation–reduction with citrate, HT—hydrothermal synthesis,
nr—nanorod, np—nanoparticle, nc—nanocube. *—the calculation was carried out as a ratio of mole of converted formaldehyde per mole of Ag loading in the catalysts.
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Thus, in Refs. [137,138] a comparison of Ag/CeO2 catalysts with Ag-containing catalysts
supported on various supports and the those with different active components supported on CeO2 was
considered. Catalytic activity toward formaldehyde oxidation was shown to strongly depend on the
Ag particle size and dispersion and the amount of active oxygen species [137]. The 100% formaldehyde
conversion was achieved above 125 ◦C. In Ref. [138] the defective sites of mesostructured CeO2

support prepared by pyrolysis of oxalate precursor were suggested to increase oxygen vacancies
able to absorb and activate dioxygen, and highly dispersed silver particles promote this process.
This allowed achieving the complete formaldehyde conversion at 100 ◦C and was accompanied by
a strong synergistic interaction between active component and CeO2 support causing enhancement of
redox capability of the catalyst.

L. Ma et al. [40] also pointed out the synergistic interaction between Ag and CeO2 that caused
an activity enhancement of Ag/CeO2 nanosphere catalysts with average sizes around 80–100 nm
composed of small particles with a crystallite size of 2–5 nm as compared to normal Ag/CeO2 particle
catalysts prepared by conventional impregnation method. The complete formaldehyde conversion
was achieved above 110 ◦C, which was also explained by the fact that surface chemisorbed oxygen can
be easily formed on the Ag/CeO2 nanosphere catalysts. Silver facilitated oxygen activation, which was
considered an important aspect of formaldehyde oxidation.

Similar idea was reported in Ref. [139], where the comparison of catalytic properties of Ag/CeO2

catalyst with different morphologies (nanorods, nanoparticles, and nanocubes) of CeO2 prepared by
hydrothermal and impregnation method was carried out. The authors pointed out shape dependence
of the chemical state of ceria-supported Ag NPs, with the catalysts supported on CeO2 nanorods
showing the highest activity caused by the highest surface oxygen vacancy concentration, high
low-temperature reducibility as well as existence of lattice oxygen species and lattice defects formed
with the participation of both silver and ceria. The electronic silver–ceria interaction yielded Ag0 in
Ag/CeO2 composites, and the Ag0/(Ag0 +Ag+) ratio was found the highest for the catalysts supported
on ceria nanorods. These results show that the catalytic activity of Ag/CeO2 composites toward
formaldehyde abatement can be regulated by engineering the proper shapes of CeO2 supports.

One of the main parameters that allows comparing the catalytic activity of different materials
is a TOF. Table 2 presents the TOF values calculated by the authors. Unfortunately, the differences
in calculation methods and absence of required experimental information in original papers did not
allow comparing the activity of Ag/CeO2 materials correctly.

Besides formaldehyde, Ag/CeO2 catalysts were also used to oxidize other VOCs, e.g. methanol,
toluene, acetone, and naphthalene [41,54,141–143]. In these articles, a comparison of catalysts prepared
by different methods was represented. The authors attempted to determine the influence of the
preparation method and structure of the catalyst on its catalytic activity. Thus, in Ref. [54] the properties
of catalysts prepared by deposition–precipitation and co-precipitation methods were compared in total
oxidation of methanol, acetone, and toluene. The catalysts prepared by co-precipitation method were
revealed to be more active in oxidation reactions. Small crystallites of silver and ceria enhanced the
mobility and reactivity of oxygen species over ceria surface, which participated in the said reactions
through the Mars-van Krevelen mechanism. The reactivity of the VOCs changed in a row: methanol >
acetone > toluene.

In Refs. [41,142] the comparison of the catalytic activity of M/CeO2 composites (M = Au, Cu,
Ag) prepared by conventional wet impregnation and deposition–precipitation methods was carried
out in propylene oxidation. It was shown that the Ag-containing catalyst prepared by conventional
wet impregnation method possessed higher catalytic activity. In Ref. [142] the presence of silver in
high oxidation state was considered responsible for high catalytic activity of Ag/CeO2 composites.
Using EPR technique it was shown that this is connected with the presence of Ag2+ ions (isotopes
107Ag2+ and 109Ag2+ were detected) along with Ag+ and Ag0 in the Ag/CeO2-Imp sample, while this
was not observed in case of Ag/CeO2-DP (Figure 14, A) [41].
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In the presence of Ag2+ ions, a mobility of some oxygen species increases, which sets conditions
for the formation of three redox couples (Ag2+/Ag+, Ag2+/Ag0, and Ag+/Ag0). Nitrate precursor
decomposition with the participation of O2− of ceria lattice was considered a source of Ag2+ ions,
while the regeneration of oxygen vacancy may occur either from nitrate or from gaseous oxygen:(
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In Figure 14B the catalytic conversion of propylene over CeO2, Ag/CeO2-Imp and Ag/CeO2-DP
is shown. Adding Ag to CeO2 enhanced the catalytic activity, moreover, the performance of the Imp
catalyst was better than that for the DP. In order to evaluate the stability of the catalyst over time,
the authors also presented both static (isothermic conditions at 175 ◦C) and dynamic (7 consecutive
cycles vs temperature in the range from 50 to up to 300 ◦C) aging tests for the activity of the 10%
Ag/CeO2 (Imp) sample in propene oxidation. Moreover, EPR studies were carried out for the samples
before and after catalysis. It was stated that after catalysis the Ag2+ ions retained on the ceria surface.
This allows formulating the key role of Ag2+/Ag+ and Ag2+/Ag0 redox couples as active species in
propene oxidation over 10% Ag/CeO2 by prepared impregnation method.

S. Benaissa et al. [141] prepared a mesoporous CeO2 using nanocasting pathway with SBA-15 as
a structural template and cerium nitrate as a CeO2 precursor and compared the properties of catalysts
on the basis thereof prepared by wetness impregnation (WI), deposition–precipitation with urea (DPU)
and impregnation–reduction with citrate (IRC) methods, with the latter being the most active and stable
(the catalytic activity and selectivity did not significantly change after 50 h). The authors connected
this with higher surface lattice oxygen mobility over this catalyst and with strong silver–mesoporous
ceria interaction.

The authors [143] carried out isothermal naphthalene oxidation comparing the activity of catalysts
with different Ag content (0.5–5 wt. %), with the sample containing 1 wt. % Ag being the most
active one. This was explained by the balance between two factors: oxygen availability and oxygen
regeneration capacity. Introduction of Ag to CeO2 was shown to increase both factors. Regeneration
capacity was related to the number of oxygen vacancies in bulk ceria, and Ag facilitated the process
by reverse spillover effect. Cex+ ions were suggested to be the main active sites. Impregnated silver
was claimed to serve as a “pump” and increase bulk oxygen vacancies, while reducing the surface
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ones, which resulted in oxygen availability and determined the oxygen regeneration. Spillover effect
was proposed to reduce the regeneration ability of active oxygen, when Ag loading is high, which was
connected with lower concentration of surface oxygen vacancies.

Of particular interest is the approach to locate the Ag/CeO2 composition on the inert support,
which is usually represented by alumina or silica [144,145]. Thus, H. Yang et al. [144] used 3DOM
CeO2–Al2O3 as a support for Ag catalysts for toluene oxidation. This support was prepared using the
Pluronic F127 (EO106PO70EO106) and PMMA as soft and hard templates, respectively. The obtained
support showed high-quality 3DOM architecture with a diameter of macropores of 180–200 nm,
where ordered mesopores with a diameter of 4–6 nm were formed on the skeletons of macropores.
Such structure allowed producing the particles of active component with sizes of 3–4 nm that were
evenly distributed on the catalyst surface. The 50% and 90% toluene conversion (1000 ppm) over
0.81Ag/3DOM 26.9CeO2–Al2O3 sample was achieved at 308 and 338 ◦C, respectively.

In Ref. [145] silica gel prepared by sol–gel method and subjected to hydrothermal treatment was
used as a primary support. Ceria and then silver were supported onto silica gel using consecutive
impregnation method. The activity of the obtained catalysts was studied in formaldehyde oxidation
reaction. The author pointed out that the activity of Ag/CeO2/SiO2 catalysts was significantly higher
than the one of Ag/SiO2 sample, which was attributed to synergetic action between silver and ceria.
The results obtained for the silver catalyst with small amounts of ceria were not significantly inferior
to silver supported over bulk ceria (Figure 15). Thus, the silica-supported ceria-modified silver catalyst
can be used for formaldehyde oxidation.
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To conclude, Ag/CeO2 catalysts are promising materials for VOCs abatement. Even though their
activity is inferior to the one of catalysts based on noble metals, their use still represents wide interest
due to lower costs. Moreover, the opportunity to increase their activity due to the application of
various preparation methods as well as changing of Ag/Ce ratio forms the ground for future research
in this field. It is noteworthy that in the literature there is no consensus on the effect of preparation
method of Ag/CeO2 composites on their catalytic activity in VOCs abatement.
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3. Ag/CeO2 Composites: Insights from Theory

Due to low amounts of silver that are usually used in the preparation of highly effective
Ag/CeO2 composites for total oxidation of VOCs, soot, and CO, not all experimental techniques
can provide a representation of silver–ceria interface and the ways it works in the said catalytic
transformations. Thus, Ag/CeO2 composites have attracted the attention of theoretical chemists.
Two main directions are considered: (1) adequate representation and modeling of regular and defective
ceria surfaces [132,146–151], (2) systematic studies of the adsorption behavior of Ag clusters on ceria
surfaces [152–160]. In the latter case, the structure of Ag–ceria interface is widely discussed, while the
adsorption behavior of adsorbates over such composites and their roles in tuning the interfacial
properties are modeled in a lesser extent [152].

Researchers point out several difficulties in terms of theoretical modeling of CeO2-based
composites. These difficulties are as follows: (1) density functional theory (DFT) does not predict
correctly the localized nature of Ce 4f states, (2) change of Ce oxidation state causes incorrect lattice
parameters, (3) the calculation results strongly depend on the used methods and functionals, and the
obtained energy values oscillate.

These issues were partially addressed by application of hybrid functionals [132,161,162] or DFT+U
approach [152,157,163]. The latter is connected with the inclusion of U term for highly correlated
Ce 4f electrons in reduced ceria providing partial occupancy of the corresponding atomic level and
increasing the accuracy of modeling of the on-site Coulomb interactions in CeO2-based materials.
The values for U are usually selected semiempirically. The formalism by Dudarev et al. [164] is usually
used. A combination of local density approximation (LDA) and generalized gradient approximation
(GGA) in periodic calculations is shown to adequately describe geometry and energy parameters [165]
under this approach. However, it is noteworthy that the results of DFT+U calculations depend on
many parameters (e.g., lattice constants), which requires special attention to their interpretation.

In Ref. [160] using LDA+U and GGA+U DFT approaches with different U values and periodic
slab surface models, charge transfer was shown to occur from Ag to ceria with a concomitant reduction
of one Ce surface atom of the top layer, and the transferred electron was localized on Ce atoms.
For Ag-based systems, the most favorable adsorption site comprised three surface oxygen atoms.
In Ref. [159] the studies of surface structures and electrophilic states of Ag adsorbed on CeO2(111)
revealed that charge redistribution can be caused by local structural distortion effects. The distribution
of charge was not uniform over the top O layer because of Ag clusters on the underlying O ions,
which increased the ionic charge of the remaining O ions and decreased the effective cationic charge
over Ce atoms bonded with uncovered O atoms. This also influenced back on the structure of Ag
cluster. Silver clusters were shown to induce changes in the oxidation state of several Ce atoms located
in the top layer (Ce4+ to Ce3+), which are accompanied by a charge flow from metal cluster to surface
caused by electronegativity difference between Ag and O atoms [154].

In Ref. [158] charge redistribution during Ag adsorption was confirmed by construction of spin
density isosurfaces and site projected density of states. The distortions of selected Ce–O distances
were imposed to study the energetics of Ce4+ to Ce3+ reduction. Oxidation of Ag0 to Ag+ was
assumed, while the probable formation of partially oxidized AgxOy species was not considered.
Two nearest neighbor Ce3+ sites relative to Ag showed the highest Ag adsorption energy at O bridge
sites, while three nearest neighbor Ce3+ sites showed the highest Ag adsorption at Ce bridge sites.

DFT calculations were carried out for ceria-supported 4-atom transition metal (including Ag)
clusters in Ref. [155] and showed that the strength of metal–metal and metal–oxygen interactions
depended on the hybridization of d-states of metal with p-states of oxygen as well as the occupation of
antibonding Ag d-states. The interactions changed the itinerant f-states of cerium to localized ones,
which created a lateral tensile strain in the top layer of Ce on the surface. It was suggested also that the
structure of Ag cluster determined the number of cerium atoms in the localized Ce3+ oxidation state.

Combined experimental (XPS, STM) and theoretical (DFT+U) approaches were used to study
the nucleation and growth of Ag nanoparticles deposited on stoichiometric and reduced thin CeO2
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films grown on Pt(111) [157]. A direct electron transfer from Ag clusters and nanoparticles to ceria was
reported, and its extent, as well as spin, localization depended on the level of theory used. Ag atoms
or nanoparticles supported on stoichiometric CeO2 acted as electron donors and are subjected to
spontaneous direct oxidation at the expense of ceria followed by reduction of Ce ions of the support.
The energy costs to move single O atom from ceria toward adsorbed Ag nanoparticle was high, and
reverse spillover of oxygen cannot be considered a favorable mechanism of ceria reduction.

Silver–ceria interaction is often compared with the one in Au/CeO2 and Cu/CeO2 systems. Due to
relatively lower ionization potential, Ag and Cu show higher adsorption energies. Moreover, silver
nanoparticles act as a platform for oxygen diffusion leading to partially oxidized Ag nanoparticles
located on the surface of the partially reduced ceria [157]. To quantitatively explore the interactions
between silver and ceria, a method is proposed utilizing the conversion of total adsorption energy into
the interaction energy per Ag–O bond and measurement of a deviation of Ag–O–Ce bond angle from
the angle of the sp3 orbital hybridization of O atom [153]. It is noteworthy that coordination number
of O atom, although generally considered, is not included into the correlation, while in Ref. [156]
multiple adsorption configurations are shown to exist over single adsorption sites for Ag/CeO2(100),
and electron charge transfer occurs between the neutral silver atom and neighboring Ce4+ cation.

In Ref. [152] the reactivity of Ag-modified CeO2(111) surface used in soot combustion was
considered. The interactions of stoichiometric and reduced CeO2 (111) surfaces with dioxygen, carbon
clusters, isolated Ag atoms and silver clusters were studied using DFT+U approach. Carbonaceous
species yielded oxygenated carbon moieties of reduced ceria. Peroxo and superoxo species are
shown to form, when O2 is adsorbed over Ag cluster. The role of Ag atoms is to act as a donor,
which, when oxidized, donate the valence electron to ceria yielding reduced Ce3+ ions. The presence
of small Ag clusters mediates the formation of oxygen vacancies (Figure 16).
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above the Ag cluster and forms a superoxo species (less stable); (b) isomer where O2 is below the Ag
cluster and forms a peroxo group (more stable). Reproduced from Ref. [152]. Copyright© 2011, Elsevier.

The vacancies possess stronger affinity with respect to oxygen as compared to silver that leads to
refilling of the cavities with dioxygen. Co-presence of Ag clusters and reduced ceria lightens electron
transfer and activation of dioxygen molecule. Silver atoms perform as alkali metal promoters to
facilitate O2 to O2

− transition that leads to the formation of reduced Ce3+ ions. However, partial
oxidation of silver can take place in this case.

Despite thorough investigations, still there are several debating issues in the theoretical description
of Ag/CeO2 composites. Among them are the mechanism of oxygen replenishing in the support,
different behavior of CeO2 surfaces, adsorption of silver atoms over long and short O–O bridge sites,
quantitative description of Ag–CeO2 interactions, etc.
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4. Emerging Applications

4.1. Photocatalysis

The wide application of CeO2-based catalysts in oxidative catalysis is mainly attributed to
intrinsic redox properties [166]. Conversely, the interest in using ceria in photocatalysis is much lower.
This is connected with fast recombination of photoinduced electron–hole pairs and limited visible
light adsorption capacity [167]. CeO2 is an n-type semiconductor with a relatively wide bandgap
(Eg = 3.15–3.2 eV) [167,168]. On the other hand, CeO2 has emerged as a promising material for
photocatalysis owing to its chemical stability and photocorrosion resistance [169]. Redox Ce4+↔Ce3+

transition is accompanied by oxygen vacancy formation, which has high importance for both oxidative
catalysis and electron–hole separation/recombination in photocatalyst [170]. Thus, in Ref. [171]
a mesoporous nanorod-like ceria prepared by microwave-assisted hydrolysis of Ce(NO3)3*6H2O in
the presence of urea was characterized by significant shifts of adsorption to the visible region (a band
gap of 2.75 eV) that was associated with the presence of Ce3+. The growth of temperature was also
shown to result in significant reduction of the recombination of photogenerated electron–hole pairs.
The increased photocatalytic activity in gas-phase oxidation of benzene, hexane, and acetone was
found for the prepared mesoporous nanorod-like ceria due to these two phenomena. Thus, the shape
of ceria nanoparticles and the presence of Ce3+ in the structure provided a growth of photocatalytic
activity, including the one under visible light.

Various strategies are being developed to improve the photocatalytic properties of ceria-based
materials: morphology control [172,173], doping by europium or yttrium [174,175], fabrication of
heterojunctions [176], etc. Thus, in Ref. [172] the degradation of the azo dye acid orange 7 (AO7) under
ultraviolet irradiation over hierarchical rose-flower-like CeO2 nanostructures (Figure 17) is studied.
The synthesis of CeO2 sheets active under the visible light is described in Ref. [173].
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Figure 17. (a) Scanning electron microscopy image and (b) TEM image of the CeO2 nanopetaled
rose-flower-like morphology annealed at 300 ◦C for 3 h. Insets present a high-resolution TEM image
and a selected-area electron diffraction pattern of the CeO2 roses. Reproduced from Ref. [172] with the
permission from the American Institute of Physics.

Moreover, the fabrication of CeO2-based heterostructures is a more promising way to reduce the
band gap and provide improved electron–hole separation due to charge transfer through the interfacial
boundaries. Silver salts may be used in photocatalysis due to their semiconductors properties.
Thus, Ag3PO4 are characterized by relatively small band gap (2.36–2.43 eV) [177], absorb visible
light (has yellow color) and possess a good photocatalytic stability. In Ref. [178] the photocatalytic
activity of new composite Ag3PO4/CeO2 in degradation of methylene blue and phenol under visible
light and UV light irradiation was studied. The photocatalytic activity of the Ag3PO4/CeO2 composite
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was shown to be associated with the fast transfer and efficient separation of electron–hole pairs at the
interfaces of two semiconductors (CeO2 and Ag3PO4). The stability of photocatalyst was demonstrated
during five catalytic cycles.

The photocatalytic remediation of water polluted by some chemically stable azo dyes using
Ag2CO3/CeO2 microcomposite under visible light irradiation was studied in Ref. [179]. The enhanced
photocatalytic activity for the photodegradation of enrofloxacin in aqueous solutions over Ag2O/CeO2

composites under visible light irradiation was demonstrated in Ref. [167]. The composite was
synthesized by an in situ loading of Ag2CO3 on CeO2 followed by thermal decomposition. The p-n
heterojuction between two semiconductors provided efficient separation of photoinduced charges
through the contact of semiconductors that was shown by photoluminescence spectra (Figure 18a).
The formation of Ag nanoparticles was associated with photoreduction of Ag2O. The surface plasmon
resonance (SPR) on Ag NPs may lead to the formation of electrons and holes in such a way that the
electrons could migrate from Ag NPs to the conduction band (CB) of Ag2O (Figure 18b). Thus, Ag NPs
may play a specific role in photocatalytic degradation of organic pollutants.
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catalyst in degradation of enrofloxacin. Reproduced from Ref. [167] with the permission from
the Elsevier.

The same effect of photoreduction of silver compounds with the formation of Ag NPs was
observed for Ag/AgCl–CeO2 catalysts [180]. The energy of hot electrons, generated on Ag NPs due
to SPR, is between 1.0 and 4.0 eV [181], and these electrons could migrate to the CB of AgCl in such
a way that the electrons and holes generated on CeO2 and Ag NPs would be efficiently separated.
Thus, in composite photocatalysts the role of Ag NPs in visible light adsorption and separation of
charges is high.

The decoration of ceria by metals (Au, Pt, Pd, Ag) provides growth of photocatalitic activity due
to increased electron–hole separation and extended time of light response of semiconductors [170].
The three main phenomena of charge transfer are involved through metal–semiconductor interface:
Schottky barrier (transfer of electrons from semiconductor to metal) (Figure 19a), metal SPR with
transfer of charge from metal to semiconductor (Figure 19b) and metal SPR—local electric field
(accompanied by recombination of electrons from metal and holes of semiconductors) (Figure 19c).
The SPR for Ag NPs is observed generally near the wave-length of 400 nm, while adsorption of Au NPs
is observed at 550 nm [181], which makes gold more attractive for photocatalysis [182,183]. However,
the position of the absorption band of nanoparticles depends on many factors, including the size and
shape of particles, interaction with surroundings. Thus, significant shift of SPR of Ag NPs from 400 nm
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to 480–500 nm is observed for Ag/CeO2 catalysts [184] that may be attributed to strong electronic
metal–support interaction between Ag and CeO2. This provides an enhanced photocatalytic activity
of Ag/CeO2 composites in the degradation of methylene blue under the simulated sunlight [50] or
visible light [185]. According to [50], Ag acts as an acceptor of photoelectrons, and then the electron
rapidly reacts with O2 yielding O2

− that reduces the probability of recombination of electron–hole
pairs. The correlation between the rate of degradation and amount of Ag NPs (active sites) was found.
High stability and high recyclability of the Ag/CeO2 heterostructure catalysts was shown.Catalysts 2018, 8, x FOR PEER REVIEW  26 of 36 
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In Ref. [186], a photocatalytic degradation of Congo Red under UV light and visible light over
three-dimensionally ordered macroporous (3DOM) Ag/CeO2–ZrO2 material was studied. It was
shown that the SPR effect of Ag particles provides the adsorption of visible light and promotes
separation of electrons and holes, reducing their recombination and improving the photocatalytic
activity. The superior photocatalytic activity of Ag/CeO2/ZnO nanostructure was shown in
degradation of azo dyes (methylene orange and methylene blue) and phenol solution under visible
light irradiation was demonstrated in Ref. [187]. It was found that formation of oxygen vacancies led
to a narrow band gap (2.66 eV), which helps to produce sufficient electrons and holes under visible
light in the ternary Ag/CeO2/ZnO nanostructure. The defect structure of composite inhibited the
electron–hole recombination and provided synergistic effect of narrow band gap. The SPR of Ag
NPs and defects (Ce3+ and oxygen vacancies) in CeO2 and ZnO resulted in superior photocatalytic
activity. In Ref. [188], the correlation between Ce3+ loading, amount of oxygen vacancies and activity
of Ag/CeO2 and Au/CeO2 catalysts in photodegradation of rhodamine blue dye in an aqueous
medium under UV–vis irradiations were found. The conditions of synthesis (pH of precipitation)
and Ag/Au loading provided different Ce3+ loading, distortion of CeO2 lattice and concentration of
vacancies. All these parameters affected on light absorbance, separation of photogenerated charges
and photocatalytic properties.

Thus, silver and its compounds supported on ceria have high importance in photocatalytic
degradation of organic pollutants. Semiconductor properties of silver compounds and SPR of Ag
NPs provide both absorbance of visible light, separation of electrons and holes and result in increased
photocatalytic activity. Several common aspects were found between classical oxidation catalysis and
photocatalysis over Ag/CeO2 composites. The interaction of silver with ceria (including electronic
metal–support interaction) influences on the catalytic activity of Ag/CeO2 due to cooperation of active
sites of Ag and ceria. The presence of Ag–CeO2 contact also leads to a growth of the amount of
oxygen vacancies in the structure of CeO2 that also promotes an enhanced catalytic/photocatalytic
activity. Generally, Ag/CeO2 composites are new for photocatalysis and poorly described. The study of
Ag/CeO2 systems in photocatalysis has high importance for fundamental research and real application
of catalysts in the purification of aqueous wastes from dyes and other organic pollutants.
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4.2. Electrocatalysis

Silver was also shown to be a promising material for electrocatalytic applications [189–191].
Recently, ceria has attracted a growing interest as a component of materials for electrocatalytic
applications [192,193]. The main reasons for this are its high oxygen storage and transfer abilities.
Application of proper amounts of noble metal improves the conductive properties of CeO2-based
materials, thus making them promising composites for electrocatalytic applications in fuel cells,
metal-air batteries, and other alternative energy transfer devices [194].

A combination of silver and ceria in Ag/CeO2 composites was used in several
publications [51,52,195,196]. In Ref. [196] the Ag/CeO2 composites comprising 30–50 nm silver
nanoparticles uniformly anchored on the surface of nanosheet-constructing porous CeO2 microspheres
were used as oxygen reduction reaction catalysts. CeO2 is known to show high oxygen storage
capability and oxygen transfer ability, and silver was added to improve the conductivity of the latter.
As a result, an enhanced activity was observed, and aluminum–air batteries based on Ag/CeO2

composites exhibited an output power density of 345 mW/cm2 and low degradation rate of 2.6% per
100 h, respectively.

In Ref. [51] a method was developed to prepare nanoporous Ag–CeO2 ribbons with
a homogeneous pore/grain structure by dealloying melt-spun Al–Ag–Ce alloy in a 5 wt. % NaOH
aqueous solution. The resulting structure comprised uniform CeO2 particles dispersed on the fine
Ag grains, with the amount of oxygen vacancies growing as the calcination temperature increases.
An enhanced Ag–CeO2 interfacial interaction was assumed to cause high performance of the
composites in electrocatalytic oxidation of sodium borohydride. In Ref. [195] Au was shown to
impair the promoting effect on these composites and decrease the reaction resistance. The activity
improvement was assumed to be caused by strengthening of interfacial interaction between the Ag–Au
solid solution and CeO2 particles due to Au effect, while the thermal stability and electron transport
properties also improved. An increase of the Au content in the precursor alloy results in the reduction
of catalytic activity and thermal stability.

In Ref. [52] 3D Ag/CeO2 nanorods with high electrocatalytic activity for NaBH4 electrooxidation
were discussed. The ongoing calcination in air resulted in the dispersion of small Ag nanoparticles on
the CeO2 surface, and well-defined Ag–CeO2 interfaces were created, where nanorods were connected
by large conductive Ag nanoparticles. The resulting mass specific current of the composite 2.5 times
exceeded the one for pure Ag in borohydride oxidation reaction. High concentration of surface
oxygen species was assumed to determine the exhibited enhanced catalytic activity along with a 3D
architecture of nanorod and strong metal–support interaction.

Thus, a variation of the chemical composition of Ag/CeO2 by using various promoters and
modifiers allows tuning the electrocatalytic activity of the composite.

5. Conclusions and Outlook

In the present review we have summarized the recent advances and trends on the role of
metal–support interaction in Ag/CeO2 composites in their catalytic performance in total oxidation of
CO, soot, and VOCs. Promising photo- and electrocatalytic applications of Ag/CeO2 composites have
also been discussed. The key function of the silver–ceria interaction is connected with the following
major aspects:

1. the catalytic performance of Ag/CeO2 composites strongly depends on the preparation method
that determines the morphology of both Ag and ceria nanoparticles, interfacial configuration and
strength of metal–support interaction;

2. active surface sites are formed at the Ag–CeO2 interface, with the interfacial O atoms exhibiting
different reactivity as compared to other surface O atoms, while oxygen species over Ag particles
are still of importance and participate in catalysis;
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3. positively charged Ag clusters facilitate the formation of surface oxygen vacancies over ceria
support, while metal Ag nanoparticles promote the reduction of CeO2 nanocrystals and enhance
their catalytic activity;

4. an enhanced activity of Ag/CeO2 materials is caused by the highest surface oxygen vacancy
concentration, high low-temperature reducibility as well as existence of lattice oxygen species
and lattice defects formed with the participation of both silver and ceria;

5. the role of impurities (such as alkali ions, carbon-containing species, etc., appeared on the surface
and/or bulk of ceria during the preparation procedure and participating in transferring of electron
density to O surface species) should be considered;

6. redox properties are caused by coexistence and interplay between Ag+/Ag0 and Ce3+/Ce4+ pairs;
7. high photocatalytic activity of Ag/CeO2 composites is caused by the ability of Ag nanoparticles

to prolong the lifetime of photogenerated electron–hole pairs due to the effect of localized SPR
and reduction of the recombination of free charges;

8. enhanced electrocatalytic activity and good electrochemical stability of Ag/CeO2 composites are
connected with strong interfacial interactions between Ag and CeO2 moieties that are caused by
their specific morphology and architecture, which hinder the particulate agglomeration during
the long-term electrocatalytic reaction.

Thus, the configuration of the silver–ceria interface provides the enhanced catalyst performance
caused by synergistic effects of silver and cerium oxide. A proper selection of preparation
method allows achieving the desired features of the composites and fine-tuning the strength of
electronic metal–support interactions that can be additionally improved by application of ordered
supports (e.g., SBA, MCM, MOFs, etc.) and promoters. This will allow rational designing of
a new generation of highly effective Ag/CeO2 composites for environmental, energy, photo- and
electrocatalytic applications.
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