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Abstract: A cascade strategy for the catalytic valorization of aqueous solutions of levulinic acid
as well as of γ-valerolactone to 2-methyltetrahydrofuran or to monoalcohols, 2-butanol and
2-pentanol, has been studied and optimized. Only commercial catalytic systems have been employed,
adopting sustainable reaction conditions. For the first time, the combined use of ruthenium and
rhenium catalysts supported on carbon, with niobium phosphate as acid co-catalyst, has been
claimed for the hydrogenation of γ-valerolactone and levulinic acid, addressing the selectivity
to 2-methyltetrahydrofuran. On the other hand, the use of zeolite HY with commercial Ru/C
catalyst favors the selective production of 2-butanol, starting again from γ-valerolactone and levulinic
acid, with selectivities up to 80 and 70 mol %, respectively. Both levulinic acid and γ-valerolactone
hydrogenation reactions have been optimized, investigating the effect of the main reaction parameters,
to properly tune the catalytic performances towards the desired products. The proper choice of both
the catalytic system and the reaction conditions can smartly switch the process towards the selective
production of 2-methyltetrahydrofuran or monoalcohols. The catalytic system [Ru/C + zeolite HY]
at 200 ◦C and 3 MPa H2 is able to completely convert both γ-valerolactone and levulinic acid, with
overall yields to monoalcohols of 100 mol % and 88.8 mol %, respectively.

Keywords: levulinic acid; γ-valerolactone; 2-methyltetrahydrofuran; 2-butanol; 2-pentanol;
hydrogenation; ruthenium; rhenium; niobium phosphate

1. Introduction

Nowadays, the development of clean energy sources is a principal benchmark and renewable
biomasses represent ideal starting materials for this purpose. In fact, as a stable and independent
alternative to fossil fuels, biomass has emerged as a potentially inexhaustible resource for
the production of energy, transportation fuels and chemicals [1,2]. Biomass resources can
be advantageously converted into interesting platform chemicals, such as 2-furaldehyde [3,4],
5-hydroxymethyl-2-furaldehyde [5–7], levulinic acid (LA) [8,9] and γ-valerolactone (GVL) [10,11].
Focusing on the last two mentioned bio-chemicals, LA is a versatile bio-product, being considered
as one of the United States Department of Energy’s (DOE’s) top 12 bio-derived feedstocks. It can
be used as a solvent, antifreeze, food flavoring agent and it can be employed for the synthesis of
pharmaceuticals, plasticizers, biofuels and many other high-value chemicals [9,12]. Instead, GVL
is one of the most important products deriving from LA hydrogenation, currently exploited for
the production of both energy and carbon-based consumer products [13–17]. In this sense, it is
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a renewable and safe-to-store potential biofuel employed as replacement of ethanol in gasoline/ethanol
blends [18,19]. Furthermore, it can be used for the production of promising food additives [13],
solvents [20] and it is an intermediate for the synthesis of many other fine-chemicals such as valeric
biofuels, butene, 4-hydroxypentanol, 2-methyltetrahydrofuran and acrylic polymers [12,21–23]. In the
literature, multiple interesting pathways for the production of LA and GVL have been reported [24–26].
In this context, the possibility of upgrading these already valuable chemical intermediates into other
classes of more added-value compounds, such as 2-methyltetrahydrofuran (2-MeTHF) and 2-butanol
(2-BuOH), represents a smart challenging possibility. Regarding the first one, it is a versatile aprotic
and hydrophobic organic solvent, which is non-toxic and non-ozone depleting in nature [27] and
a promising biofuel [28], being identified as a key component for P-series fuels [29]. On the other
hand, 2-BuOH is mainly used for the synthesis of methylethylketone, but very recently it has found
other applications both as solvent and fuel additive, thanks to its high octane number [30]. Regarding
the possible synthesis of 2-MeTHF, some processes use furfural as the key intermediate, whereas
some methods adopt LA. 2-MeTHF synthesis starting from furfural has been investigated more
in-depth [31–34]. Concerning the other possible route, the presence of 2-MeTHF was reported for the
first time as a by-product of the LA hydrogenation with CuCr2O3 [35]. Afterward, many works have
been published on this topic, which have partially clarified the reaction mechanism, and significantly
improved the catalytic performances for the synthesis of 2-MeTHF [36–45]. Two reaction mechanisms
have been proposed for 2-MeTHF synthesis from LA, the first one occurring by LA dehydration
via angelicalactone (AGL) (path A, Scheme 1), whereas the second one by LA hydrogenation to
4-hydroxypentanoic acid (HPA) (path B, Scheme 1), both reported in Scheme 1.
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Scheme 1. Reaction pathways for levulinic acid (LA) conversion to 2-methyltetrahydrofuran (2-MeTHF).

Pathway A was proposed by Thomas and Barile [46] and, more recently, Al-Shaal et al. [47]
have demonstrated that the presence of AGL as starting material was beneficial for the one-pot
conversion to 2-MeTHF, adopting a commercial Ru/C catalyst. However, the AGL path and
its positive role for the 2-MeTHF production was proposed under solvent-free conditions [47],
whilst the hydrogenation path (path B) in water medium occurs by a different mechanism through
HPA intermediate, which has been extensively ascertained and demonstrated [48,49]. LA catalytic
hydrogenation may give different reaction products, depending on the kind of the adopted catalyst
and experimental conditions (path B, Scheme 1). The reaction proceeds by LA reduction to HPA,
which readily dehydrates to GVL. The hydrogenation of GVL into 1,4-pentanediol (1,4-PDO) is
reported to be strongly inhibited by water [42], thus highlighting evident difficulties to perform this
reaction in water already at this backward step and, even with greater difficulty, for the final 1,4-PDO
dehydration to 2-MeTHF [45]. Main by-products of this reaction include pentanoic acid and 1-pentanol.
In greater detail, LA transformation into GVL, 1,4-PDO, and 2-MeTHF consists of consecutive series of
hydrogenation/dehydration paths, both occurring via the formation of well-defined but short-lived
intermediates [38], as shown in Scheme 2.
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(1,4-PDO) and 2-MeTHF.

In the above scheme, the metal-catalyzed addition of H2 to the LA keto group forms a hydroxyl
acid that undergoes intramolecular etherification to give GVL. Further hydrogenation of the C=O
bond leads to the cyclic hemiacetal, which is in equilibrium with the open hydroxyl-aldehyde form.
The remaining carbonyl group is hydrogenated to afford 1,4-PDO. Acid-catalyzed dehydration leads
to cyclization of the diol by intramolecular etherification to give 2-MeTHF. A possible further reaction
is the dehydration/hydrogenation of 1,4-PDO to the monoalcohols 1- or 2-pentanol. Most of these
steps are reversible, which afford an additional challenge for the selectivity control. According to this
mechanism, in the field of homogeneous catalysis, interesting results were reported by Mehdi et al. [37],
which adopted homogeneous catalysts based on ruthenium phosphine compounds for the LA and
GVL conversion to 2-MeTHF. In the case of LA, starting from Ru(acac)3, NH4PF6 and PBu3, LA was
quantitatively converted to 2-MeTHF at a temperature of 200 ◦C, 8.2 MPa of hydrogen pressure and
extended reaction times (about 46 h). Geilen et al. [38] reported that a homogeneous Ru-based molecular
catalyst system bearing expensive phosphine ligands in combination with ionic and/or acid additives
can selectively convert bio-derived LA into 1,4-PDO or 2-MeTHF, via formation of GVL intermediate.
The authors reported the best 2-MeTHF yield of 92 mol %, employing Ru(acac)3 as the metal precursor,
triphos as the ligand, and the ionic liquid 1-butyl-2-(4-sulfobutyl)imidazolium-p-toluenesulfonate
as an additive, working at 160 ◦C for 18 h, with 10 MPa H2. Despite the promising 2-MeTHF yield,
significant drawbacks for this catalytic system remain, e.g. its non-reusability, the necessity of special
handling of metal complexes, the high cost for the catalyst preparation, as well as the tedious work-up
procedures. Heterogeneous catalysts represent the best choice, and many interesting works have been
published in this topic, such as the research of Elliot and Frye [36], which performed the hydrogenation
of a 10 wt % LA aqueous solution, at a temperature range of 200–250 ◦C, with 10 MPa H2. Working in
water, the yields to 2-MeTHF were very scarce, adopting different hydrogenation catalysts, such as 5%
Ni/C-5% Re/C, 50% Ni/C, 50% Ni/C-5% Re/C and 50% Ni/C-7.5% Re/C. However, under the same
reaction conditions, but using 1,4-dioxane instead of water as solvent, when a 50% Ni/C-7.5% Re/C
catalyst was employed, the reaction rate was significantly improved, as well as the yield to 2-MeTHF
which, however, reached the maximum value of 15 mol %, after 6 h of reaction. LA hydrogenation
with 5%Re/C - 5%Pd/C improved significantly the 2-MeTHF yield, up to 90 mol %. Heterogeneous
copper catalysts have been extensively used for LA conversion to 2-MeTHF [39,40,50]. In particular,
Upare et al. [39] investigated the vapor-phase conversion of LA to 2-MeTHF in 1,4-dioxane, employing
properly synthesized nanocomposite Cu/SiO2 catalysts. The best result was claimed with an 80%
Cu/SiO2 catalyst, obtaining in this case a maximum 2-MeTHF yield of 64 mol %, working at 265 ◦C
for 100 h on stream, with 2.5 MPa H2. Regarding the effect of the copper loading, the authors found
that a lower one favored the selective hydrocyclization of LA to GVL, while a higher one led to
further hydrogenation to 2-MeTHF and 1-pentanol, via GVL formation. The process was further
improved by promoting the catalyst with Ni, e.g., Cu(72%)-Ni(8%)/SiO2, thus achieving the best
2-MeTHF yield of 89 mol %, working at 265 ◦C for 300 h on steam, with 2.5 MPa H2. Du et al. [40]



Catalysts 2018, 8, 277 4 of 16

investigated the catalytic performances of a series of synthesised copper-zirconia catalysts for the
hydrogenolysis of GVL in ethanol at 200 ◦C with 6 MPa H2, finding that a yield to 2-MeTHF of 6 mol %
was produced when the reaction was performed at 220 ◦C. A further increase of the temperature up
to 240 ◦C led to an increase in the 2-MeTHF yield up to about 13 mol %. In the attempt to improve
the 2-MeTHF yield, subsequent runs were focused on the same reaction at 240 ◦C over a series of 30%
Cu/ZrO2 catalysts with modified acidic properties of the catalyst surface obtained by calcination in
air at different temperatures (300–700 ◦C), for 4 h. In the best case, a remarkable 2-MeTHF yield was
improved up to 91 mol %, after 6 h of reaction. The authors proposed that the surface acidic sites in
the Cu-based catalysts play a key role in the hydrogenolysis mechanism of lactones and the authors
concluded that a synergistic cooperation between dispersed Cu and the acid sites of the catalyst surface
was essential to facilitate the direct reduction of the carbonyl group in the GVL molecule or accelerate
the subsequent dehydration of intermediate 1,4-PDO to give 2-MeTHF. Al-Shaal et al. [42] used Ru/C
as the only catalyst, under solvent-free conditions, for the one-pot LA conversion into 2-MeTHF,
achieving the complete conversion at 190 ◦C and 10 MPa H2, with a maximum 2-MeTHF yield of
61 mol %. Upare et al. [44] used Ru over graphene oxide for the study of LA conversion in 1,4-dioxane,
producing a stable 48 mol % 2-MeTHF yield, operating at 265 ◦C and 2.5 MPa H2. Mizugaki et al. [43]
used a Pt-Mo supported on acidic supports for the conversion of LA to 2-MeTHF. The most active
synthesised catalyst was Pt(3.9%)-Mo(0.13%)/H-β zeolite, which allowed the maximum 2-MeTHF
yield of 86 mol %, working in water at 130 ◦C for 24 h, with 5 MPa H2. Obregón et al. [51] studied
the one-pot LA conversion to 2-MeTHF, with Ni/Al2O3, Cu/Al2O3 and Ni-Cu/Al2O3 catalysts in
green solvents, such as water and biomass-derived alcohols, such as EtOH, 1-BuOH, and 2-PrOH.
The best catalytic performances were achieved with bimetallic Ni-Cu/Al2O3 catalysts, achieving the
maximum 2-MeTHF yield of 56 mol %, working in 2-PrOH, at 250 ◦C for 5 h, with 7 MPa H2. Lastly,
in a subsequent work, Obregón et al. [45] reported the complete LA conversion, with a maximum
2-MeTHF yield of 80 mol %, adopting a Ni-Cu/Al2O3 catalyst, in 2-PrOH as solvent, after 20 h at
250 ◦C and 4 MPa H2.

Regarding 2-BuOH, at the moment its traditional industrial production is carried out through
the acid-catalyzed hydration of 1- or 2-butene, both obtained from the C4 fraction arising from steam
cracking of oil-derived hydrocarbons [52]. In recent years, the possibility of obtaining 2-BuOH from
renewable resources has been evaluated. It is noteworthy that Shabaker et al. [53] patented the catalytic
decarboxylation of LA to methyl ethyl ketone, which was subsequently hydrogenated to 2-BuOH,
employing copper faujasite as decarboxylation catalyst, and nickel or ruthenium as hydrogenation one.
Al-Shaal et al. [42] reported a total LA conversion, under solvent-free conditions, with a selectivity
to 2-BuOH close to 40 mol %, adopting a 5% Ru/C catalyst, and working at 190 ◦C and for 24 h,
with 10 MPa H2. Regarding the related reaction mechanism, under solvent-free conditions, 2-BuOH
is predominantly formed via subsequent hydrogenation/decarbonylation reactions of the GVL [42],
as shown in Scheme 3.
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solvent-free conditions.

Obregón et al. [45] reported the GVL hydrogenation, achieving a maximum 2-BuOH yield of
37.3 mol %, working in 2-PrOH, at 250 ◦C and 4 MPa H2. Lastly, Lv et al. [54] have recently used
nanoporous Ru for LA hydrogenation in water, reporting the combined production of both 2-BuOH
and 2-Pentanol (2-PeOH), the latter derived mainly from 1,4-PDO hydrogenation, with a total [2-BuOH
+ 2-PeOH] yield of 78.8 mol %, working at 140 ◦C for 20 h, with 6 MPa H2. Instead, when the same
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catalyst was employed at 100 ◦C and 6 MPa H2 for 15 h, a maximum 74.6 mol % yield to 1,4-PDO
was reached.

In this work, an alternative and green approach has been studied, which combines
hydrogenation-decarboxylation of LA or of GVL to selectively give [2-BuOH + 2-PeOH] or 2-MeTHF,
in the presence of commercial Ru/C and [Ru/C + Re/C] catalytic systems. The main reaction
conditions, e.g., temperature, hydrogen pressure, and presence of heterogeneous acid co-catalyst
(niobium phosphate or HY acid zeolite) have been investigated. This study has been carried out
adopting water as the only reaction solvent and heterogeneous commercial catalytic systems, which
are more economical, available, and reproducible respect to ad hoc prepared ones.

2. Results and Discussion

Starting from the previous results reached on LA hydrogenation to GVL in the presence of Ru/C
and an acid co-catalyst [55], thus research began from the GVL hydrogenation, which is considered to
be the most demanding step, owing to the high thermodynamic stability of GVL [49]. The effect of the
addition of Re/C to commercial Ru/C catalyst has been investigated, on the basis of the promising
results obtained in the literature in the presence of the bimetallic Ru-Re system employed in the
hydrogenation of levulinic acid and succinic acid where the introduction of Re amount improves
the selectivity to 1,4-PDO [56], an intermediate towards 2-MeTHF. Moreover, the addition of an acid
co-catalyst to Ru and [Ru/C + Re/C] systems has been considered because it is known that this acid
component is able to activate not only the lactone ring opening, but also the internal dehydration
of 1,4-PDO to 2-MeTHF [57–59]. For this purpose, in the first part of this work, niobium phosphate
(NBP) has been selected as co-catalyst, thanks to its well-known acidic properties, which are preserved
also in an aqueous medium, even at high temperatures [7,60]. This is an amorphous solid with
strong Brønsted and medium–strong Lewis acid sites located at the surface, due to the presence of
coordinatively unsaturated Nb5+ species. This acidity has been already exploited for the successful
dehydration of saccharides to 5-hydroxymethyl-2-furaldehyde [7,61,62], and therefore its use for the
2-MeTHF synthesis appeared really promising. The results of this first group of experiments are
reported in Table 1.

Table 1. Hydrogenation of γ-valerolactone (GVL) with Ru/C, Re/C catalysts, and niobium phosphate
(NBP) as acid co-catalyst. Reaction conditions: GVL: 1.68 g; Ru: 2 mg (GVL/Ru: 847.63 mol/mol);
H2O: 40 mL; PH2: 9.0 MPa.

Run Catalytic System GVL/Re
mol/mol

T
(◦C)

t
[h]

Conv. GVL
(mol %)

Selectivity (mol %)

2-MeTHF 2-BuOH 2-PeOH 1,4-PDO

1 Ru/C 5% - 210 6 traces - - - -
2 Ru/C 5% + NBP (1 g) - 200 3 31.7 35.2 42.2 5.7 12.2
3 Ru/C 5% + NBP (1 g) - 200 6 40.5 38.9 34.0 6.5 14.0
4 Ru/C 5% + NBP (1 g) - 180 6 3.6 49.2 27.0 0.1 5.4
5 Ru/C 5% + NBP (1 g) - 210 6 71.1 21.0 66.8 7.7 0.4
6 Re/C 10% (10 mg) 312.33 210 6 traces - - - -

7 Ru/C 5% + Re/C 10% (5 mg) +
NBP (1 g) 624.66 200 3 35.9 43.0 31.5 8.7 14.1

8 Ru/C 5% + Re/C 10% (10 mg) +
NBP (1 g) 312.33 200 3 36.3 47.2 23.0 6.1 18.8

9 Ru/C 5% + Re/C 10% (20 mg) +
NBP (1g) 156.16 200 3 36.1 57.5 11.1 4.6 21.3

10 Ru/C 5% + Re/C 10% (20 mg),
no NBP 156.16 200 3 27.3 22.1 6.1 3.6 63.8

11 Ru/C 5% + Re/C 10% (20 mg) +
NBP (250 mg) 156.16 200 3 30.8 44.6 7.1 5.1 30.2

12 Ru/C 5% + Re/C 10% (20 mg) +
NBP (500 mg) 156.16 200 3 39.3 64.9 7.3 3.7 21.5
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The negligible activity ascertained in the experiment carried out in the presence of only Ru/C
(run 1, Table 1) respect to that of the runs with [Ru/C + NBP] (runs 2–5, Table 1) confirm that the
presence of the acid NBP co-catalyst is essential for GVL conversion, 2-MeTHF, and 2-BuOH being the
main reaction products, together with lower amounts of 1,4-PDO and 2-PeOH, in agreement with the
literature data [42]. Thus, the acid character of the co-catalyst favors the interaction with the carboxylic
group of the lactone, enhancing in this way its ring opening and subsequent conversion [58,63–65].
In the first run carried out in the presence of [Ru/C + NBP] (run 2, Table 1), a moderate GVL conversion
and a well-balanced selectivity to both 2-MeTHF and 2-BuOH were ascertained, which could be
selectively tuned to one of these products, by a further optimization of the reaction parameters, in
particular reaction time and temperature. First, the effect of the reaction time was investigated, keeping
constant the reaction temperature, but adopting a longer reaction time (run 3, Table 1), and it was
found that this parameter has certainly a positive, albeit modest, effect on the 2-MeTHF selectivity,
whilst 2-BuOH has rapidly formed already at the first stages of the reaction. On the other hand,
the selectivities to 2-PeOH and 1,4-PDO progressively increase during the progress of the reaction but
long reaction times are required, in agreement with other previous investigations [37,38].

The effect of temperature on 2-MeTHF and 2-BuOH formation was also investigated, adopting
a reaction time of 6 h, which resulted a good compromise between the catalytic activity and the
simultaneous selectivity to 2-MeTHF and 2-BuOH. For this purpose, hydrogenation runs were carried
out, at lower (180 ◦C), and at higher (210 ◦C) temperature (runs 4 and 5, respectively, Table 1).
As a result, GVL conversion was improved with the temperature increase, being clearly unsatisfactory
for the experiment at 180 ◦C (run 4, Table 1). Instead, regarding the selectivity parameter, it was found
that a lower reaction temperature favored the selectivity to 2-MeTHF, whereas a higher one has favored
the formation of both 2-BuOH and 2-PeOH, thus supporting that the dehydration is favored by a lower
temperature [58,63–65].

Starting from the acquired results, the effect of the addition of a commercial rhenium-based
catalyst (10% Re/C) to the catalytic system composed of Ru/C and NBP was investigated. As in the
case of Ru/C, also the Re/C catalyst alone (run 6, Table 1) was not active to the GVL hydrogenation,
even adopting higher temperature (210 ◦C) and longer reaction time (6 h). Instead, its synergistic effect
with [Ru/C + NBP] improves the GVL conversion and the selectivity to 2-MeTHF and 1,4-PDO, to the
detriment of 2-BuOH, already with low amounts of Re/C (compare runs 7 and 2, Table 1), revealing
that rhenium plays a key synergistic role in this reaction, addressing towards the diol cyclization to
2-MeTHF [36,56]. On this basis, the amount of rhenium was increased, and the corresponding catalytic
performances were evaluated (runs 8 and 9, Table 1). Taking into account the achieved results, it is
possible to highlight that the increase of the rhenium amount improves the selectivity to 2-MeTHF,
and 1,4-PDO, in agreement with the literature data [56], whilst the selectivity to 2-BuOH drastically
decreases, proving that it is possible to address the reaction towards the desired product, by selecting
the appropriate catalytic system. The further increase of the amount of Rhenium does not allow the
corresponding improvement of the catalytic performances to 2-MeTHF, thus highlighting the achieved
optimization, under the adopted reaction conditions. Similarly, the effect of the NBP on the catalytic
performances was studied, without NBP and with 250, 500 and 1000 mg of it (runs 9–12, Table 1).
From the obtained data, it is possible to note that GVL conversion was the highest when 500 mg
of NBP were employed and, under the same reaction conditions, also the selectivity to 2-MeTHF
was the highest (64.9 mol %). On the other hand, the amount of NBP does not affect the selectivity
to 2-BuOH and 2-PeOH, thus confirming that the overall catalytic system favors the dehydration
path. For this reason, in order to obtain 2-MeTHF, the amount of 500 mg of NBP was selected for the
subsequent investigation.

With the aim of adopting milder reaction conditions, in terms of hydrogen pressure and
temperature, an increase of the ruthenium amount from 2 up to 10 mg was studied and the obtained
results are summarized in Table 2.



Catalysts 2018, 8, 277 7 of 16

Table 2. GVL hydrogenation reactions in the presence of different catalytic systems: effect of hydrogen
pressure, temperature, and presence of an acid co-catalyst (NBP or HY zeolite). Reaction conditions:
GVL: 2.52 g; H2O: 40 mL; Ru: 10 mg (GVL/Ru: 254.29 mol/mol); Re: 20 mg (GVL/Re: 234.25 mol/mol),
when present; NBP: 500 mg, when present; HY zeolite: 500 mg, when present; time: 3 h.

Run Catalyst and
co-catalyst

Reaction
conditions T,

PH2

Conv. GVL
(mol %)

Sel. 2-MeTHF
(mol %)

Sel. 2-BuOH
(mol %)

Sel. 2-PeOH
(mol %)

Sel. 1,4-PDO
(mol %)

13 5% Ru/C NBP 200 ◦C, 9.0 MPa 98.9 8.5 75.7 15.8 -
14 5% Ru/C NBP 200 ◦C, 5.0 MPa 77.9 5.7 83.3 10.9 0.1
15 5% Ru/C NBP 180 ◦C, 5.0 MPa 26.6 9.7 60.6 4.2 20.7

16 5% Ru/C
10% Re/C NBP 180 ◦C, 5.0 MPa 48.3 37.8 36.6 7.5 18.1

17 5% Ru/C HY 180 ◦C 5.0 MPa 66.3 21.3 63.3 13.8 1.6
18 5% Ru/C HY 200 ◦C 3.0 MPa 100 - 81.3 18.7 -

19 5% Ru/C
10% Re/C HY 200 ◦C 3.0 MPa 100 35.7 47.6 16.7 -

Adopting the catalytic system [Ru/C + NBP], the increased amount of Ru allows us to reach
almost complete GVL conversion (run 13, Table 2), and comparison between runs 13 and 14 confirms
the possibility of working at milder reaction conditions, in terms of hydrogen pressure, still achieving
a satisfactory GVL conversion together with a high selectivity to 2-BuOH. On the basis of the obtained
results (run 13, Table 2 and runs 2–5, Table 1), in the presence of 10 mg of Ru, in order to obtain
2-MeTHF, it is necessary to decrease the reaction temperature and the hydrogen pressure. In fact, when
the reaction was carried out at a lower temperature, 180 ◦C (run 15, Table 2), a lower GVL conversion
was achieved but, after 3 h of reaction, the selectivities to 2-MeTHF and 1,4-PDO were higher than
those at 200 ◦C, thus remarking that the dehydration reaction is favored by a lower temperature,
as previously stated. Again, the synergistic effect of [Ru/C + Re/C + NBP] was considered (run 16,
Table 2), thus confirming that the co-presence of rhenium was beneficial for both GVL conversion and
2-MeTHF selectivity: in fact, the 2-MeTHF selectivity increases after 3 h from 9.7 mol %, in the absence
of Re, up to 37.8 mol %, in its presence. In this set of hydrogenation runs, also the effect of the addition
of a zeolite HY as acid co-catalyst, instead of NBP, on GVL hydrogenation was investigated, in the
presence of Ru or [Ru/C + Re/C] catalytic systems. This acid catalyst is well-known for the strong
Brønsted acidity, due to the bridging Si—(OH)—Al sites, generated by the presence of aluminium
inside the silicate framework and the balancing proton [66]. In addition, working in aqueous medium
at high temperatures, the zeolite catalytic systems, in particular those with low Si/Al ratio, are able to
maintain their stability [67], despite new acid sites are formed, as the result of Si—O—Si hydrolysis,
ion exchange with charge compensating aluminum cations, and/or dissociative adsorption of water
on framework independent alumina [67]. Preliminary runs in the presence of different amounts of
HY zeolite were carried out with the [Ru/C + Re/C] catalytic system in order to compare the HY
zeolite with NBP at the same total acidity level under the best reaction conditions evidenced in Table 1
(Ru: 2 mg; Re: 20 mg; GVL: 1.68 g, 200 ◦C, 9.0 MPa H2, 3h). On the basis of these results, which have
shown that HY zeolite resulted more selective towards [2-BuOH+2-PeOH] than NBP, the right amount
of HY zeolite able to maximize the selectivity to [2-BuOH + 2-PeOH] was investigated. Under the
same employed reaction conditions (Ru: 2 mg; Re: 20 mg; GVL: 1.68 g, 200 ◦C, 9.0 MPa H2, 3h), a HY
zeolite amount of 500 mg was found to be the best one in terms of GVL conversion and selectivity to
[2-BuOH + 2-PeOH]. For this reason, in order to obtain [2-BuOH + 2-PeOH], this amount of HY zeolite
was employed for the subsequent investigation. The hydrogenation run carried out in the presence of
zeolite HY co-catalyst and Ru/C at 180 ◦C and 5.0 MPa H2 (run 17, Table 2) shows that the presence of
this different acid component significantly enhances GVL conversion respect to the corresponding
experiment with Ru/C and NBP (run 15, Table 2), as well as the selectivity to 2-MeTHF and 2-PeOH,
to the detriment of 1,4-PDO. Further balancing the temperature and H2 pressure (200 ◦C, 3.0 MPa)
a total conversion of GVL can be reached (run 18, Table 2) with complete selectivity to [2-BuOH
+ 2-PeOH]. This different behavior is due to the preferential reaction pathway, which follows the
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decarboxylation route, which is known to occur in the presence of faujasite zeolites [53,68], according
to the Scheme 4.
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The occurred decarboxylation was confirmed by qualitative analysis of the gaseous phase, which
revealed the presence of carbon dioxide as the main reaction product. It is remarkable that the
reaction conditions adopted in run 18 allowed us to reach a productivity to [2-BuOH+2-PeOH] of
840 mmoles·g·Ru−1·h−1.

On the other hand, the addition of rhenium, together with zeolite HY (run 19, Table 2), favors the
2-MeTHF formation, in agreement with the previous experiments with NBP.

From all the catalytic results, it is possible to underline that the two employed metals (Ru and
Re) play a synergic role in this reaction. In this regard, Di et al. [69] studied the employment of Ru/C,
Re/C and bimetallic Ru-Re/C catalysts in the hydrogenation of succinic acid and γ-butyrolactone
in water at 200 ◦C and 8.0 MPa, finding that Ru metal positively contributes to the hydrogenolysis
mechanism, whereas Re metal to the hydrogenation one. A similar role of the two metals can be
proposed for the present study. In particular, starting from GVL, in the presence of [Ru/C + acid
co-catalyst], the Ru species can promote the conversion of GVL (assisted by the presence of the acid
co-catalyst which favors the ring-opening) to 2-BuOH through the formation of the intermediate HPA,
or to 1,4-PDO (through the hydrogenation), which can be converted to 2-MeTHF, in the presence
of the acid co-catalyst. The conversion of GVL to 2-BuOH requires the break of C–C bond with the
formation of CO2 (decarboxylation route). This hypothesis is confirmed by our experimental results:
in fact, as reported in runs 2–5 in Table 1 for NBP, the main products result 2-BuOH deriving from the
decarboxylation route of GVL through the break of C–C bond of the intermediate HPA, and 2-MeTHF
deriving from the internal dehydration of 1,4-PDO obtained by hydrogenation. The same behavior
is also observed in the presence of HY zeolite (run 17, Table 2). When Re/C is added to [Ru/C +
acid co-catalyst], the second metal component (Re/C) promotes the hydrogenation of GVL through
its opening-ring and hampers the decarboxylation path, thus causing the increase of the amount of
1,4-PDO, precursor of 2-MeTHF, and, as a consequence, the formation of 2-MeTHF. In fact, in the case
of NBP, comparing run 2 with run 9 (Table 1), the addition of Re/C causes a decrease of 2-BuOH
selectivity, from 42.2 to 11.1 mol %, thus limiting the decarboxylation route, together with an increase of
2-MeTHF and 1,4-PDO selectivities, from 35.2 to 57.5 mol %, and from 12.2 to 21.3 mol %, respectively.
Also, for the runs (runs 18 and 19, Table 2) carried out in the presence of HY zeolite, it is possible to
highlight the same trend: in fact, the addition of Re/C causes a decrease of 2-BuOH selectivity, from
81.3 to 47.6 mol %, and an increase of 2-MeTHF selectivity, from 0 to 35.7 mol %.

The most promising experiments for the production of 2-MeTHF and [2-BuOH + 2-PeOH] (runs 16
and 18, Table 2, respectively) were considered as references for the evaluation of the catalyst reusability.
The stability of the adopted systems, [Ru/C + Re/C + NBP] and [Ru/C + HY], under the adopted
reaction conditions, was verified, showing constant catalytic performances, even after five recycling
tests. In addition, the ruthenium and the rhenium catalysts have shown a good resistance to leaching,
as confirmed by ICP-OES analysis, which has excluded metal releases in solution.

Taking into account that GVL can be obtained by LA, with the aim of developing a direct
cascade process LA to 2-MeTHF or LA to monoalcohols, occurring through the formation of the GVL
intermediate but without its isolation, the [Ru/C + NBP] catalytic system was tested also for the
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one-pot LA conversion, investigating the effect of the reaction temperature. The results are reported
in Table 3.

Table 3. LA hydrogenation reactions carried out in the presence of [Ru/C, NBP] catalytic system,
at different reaction temperatures. Reaction conditions: LA: 1.99 g; Ru: 2 mg (LA/Ru: 866.12 mol/mol);
NBP: 1 g; H2O: 40 mL; PH2: 9.0 MPa; time: 3 h.

Run Catalyst and
Co-Catalyst

T
(◦C)

Conv. LA
(mol %)

Sel. GVL
(mol %)

Sel. 2-MeTHF
(mol %)

Sel. 2-BuOH
(mol %)

Sel. 2-PeOH
(mol %)

Sel. 1,4-PDO
(mol %)

20 5% Ru/C,
NBP 200 99.7 73.4 8.8 9.9 0.9 1.3

21 5% Ru/C,
NBP 210 99.9 70.6 8.7 13.8 1.5 1.7

The chosen reaction conditions guarantee the almost complete LA conversion, and the reaction
is very selective towards GVL, thus confirming the real possibility to build a cascade process.
The selectivity to the reaction products is almost constant in the two experiments (200 and 210 ◦C),
therefore suggesting the adoption of the lower reaction temperature. Afterward, on the basis of
the obtained results, this reaction was studied in more detail, increasing the Ru amount from 2 to
10 mg, and employing different reaction conditions, in terms of temperature and hydrogen pressure.
Also, in this case, the effect of the acid co-catalyst was considered. The obtained results are summarized
in Table 4.

Table 4. LA hydrogenation reactions carried out in the presence of [Ru/C + NBP (or HY zeolite)]
catalytic system, at different reaction temperatures and hydrogen pressure. Reaction conditions: LA:
1.99 g; Ru: 10 mg (LA/Ru: 173.22 mol/mol); Re: 20 mg (LA/Re: 159.57 mol/mol); NBP: 500 mg, HY
zeolite: 500 mg, when present; H2O: 40 mL; time: 3 h.

Run Catalyst and
Co-Catalyst

Reaction
Conditions

T, PH2

Conv. LA
(mol %)

Sel. GVL
(mol %)

Sel. 2-MeTHF
(mol %)

Sel. 2-BuOH
(mol %)

Sel. 2-PeOH
(mol %)

Sel. 1,4-PDO
(mol %)

22 5%Ru/C NBP 180 ◦C,
5.0 MPa 100 36.2 10.1 37.8 13.0 2.9

23 5%Ru/C HY 180 ◦C,
5.0 MPa 100 30.8 3.8 35.0 28.7 1.7

24 5%Ru/C HY 180 ◦C,
3.0 MPa 100 46.8 3.6 36.5 13.1 -

25 5%Ru/C HY 180 ◦C,
1.0 MPa 100 81.1 0.6 13.6 4.7 -

26 5%Ru/C HY 200 ◦C,
3.0 MPa 100 7.9 3.3 68.9 19.9 -

27 5%Ru/C NBP 200 ◦C
3.0 MPa 100 25.8 7.0 52.0 15.2 -

28 5%Ru/C10%R/C,
NBP

180 ◦C
5.0 MPa 100 35.1 27.8 19.5 6.0 11.6

Working at 180 ◦C and 5.0 MPa of hydrogen, after 3 h of reaction, the higher amount of Ru
allowed the complete LA conversion. The selectivity to 2-MeTHF has decreased from 10.1 to 3.8 mol %
when NBP was replaced by zeolite HY, whilst 2-BuOH remained the main reaction product (runs
22 and 23, Table 4). On the basis of these results, taking into account that 2-BuOH derives from the
decarboxylation reaction, the following study with the [Ru + HY] system was carried out decreasing
the hydrogen pressure (compare runs 23, 24 and 25, Table 4). The decrease of hydrogen pressure
below 3.0 MPa has evidenced a significant reduction of GVL successive reactions, and therefore this
pressure value was kept for the subsequent reaction runs. When the temperature was increased from
180 to 200 ◦C (run 26, Table 4), an increase of selectivity to 2-BuOH and 2-PeOH was ascertained,
as previously observed for the GVL conversion tests in the presence of an acid co-catalyst (runs 3 and
4, Table 1). Moreover, adopting these new optimized reaction conditions, the comparison between
zeolite HY and NBP was investigated (runs 26 and 27, Table 4). The presence of zeolite HY provides
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a higher GVL conversion: the remaining GVL at the end of the reaction was higher for run 27 (in
the presence of NBP), rather than for run 26, where the total yield to monoalcohols was 88.8 mol %,
with a productivity of 510 mmoles·g·Ru−1·h−1. Up to now, the best overall [2-BuOH + 2-PeOH] yield
reported in the literature amounts to 78.8 mol %, reached for LA hydrogenation in water at 140 ◦C and
6.0 MPa H2 in the presence of synthesized nanoporous Ruthenium [54]. Now the experimental finding
confirms that the adopted acid zeolite HY enhances the subsequent hydrogenation/decarboxylation
reaction towards the formation of 2-BuOH and 2-PeOH. Lastly, taking into account that the formation
of 2-MeTHF is boosted in the presence of NBP, the addition of Re/C, together with Ru/C and NBP acid
co-catalyst was investigated (run 28, Table 4). The result allowed a further increase of the selectivity
to 2-MeTHF (compare runs 23 and 28, Table 4), thus confirming the positive role of rhenium for the
2-MeTHF production, already observed in the corresponding GVL conversion run (compare runs
15 and 16, Table 2). The reaction experiments with the highest [2-BuOH + 2-PeOH] and 2-MeTHF
selectivities (runs 26 and 28, Table 4, respectively) were considered as references for performing
subsequent recycling tests, as reported in Figure 1.
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Figure 1. Recycling tests for LA hydrogenation of: A) [Ru/C + HY] catalyst (run 26, Table 4, as direct
run); B) [Ru/C + Re/C + NBP] catalyst (run 28, Table 4, as direct run).

The above data confirm the good performances of the adopted [Ru/C + HY] and [Ru/C + Re/C +
NBP] catalysts, even after five recycling tests. Moreover, the catalyst shows no significant leaching,
thus further justifying its stability and reusability.
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3. Materials and Methods

3.1. Materials

Ru/C (5 wt %) (50% moisture) was purchased from Engelhard (Iselin, NJ, United States) (average
diameter: 2.0 nm), 10 wt % Re/C was purchased from Strem (average diameter: 10.4 nm) and
both used as received. Levulinic acid, γ-valerolactone, 2-methyltetrahydrofuran and 2-butanol were
obtained by Sigma Aldrich (St. Louis, MO, USA) and used as received. Zeolite HY (CBV 500)
was purchased from Zeolyst International (Valley Forge, PA, USA) (ratio SiO2/Al2O3 mol/mol: 5.2;
acidity: 1.5 mmol/g measured by NH3-TPD) [70] and it was treated at 510 ◦C for 2 h before its use.
Instead, niobium phosphate (acidity: 0.33 mmol/g measured by an acid-base titration in water using
2-phenyl-ethylamine as the basic probe) [24] was kindly provided from CBMM Companhia Brasileira
de Metalurgia e Mineracão (Araxá, Minas Gerais, Brasil), and treated at 255 ◦C for 6 h, under high
vacuum (5 Pa) before its use [7].

3.2. Hydrogenation Reactions

Hydrogenation reactions were carried out in a stainless steel 100 mL mechanically stirred Parr
4560 autoclave, equipped with a P.I.D. controller 4843. In a typical procedure, the proper amount of
the selected catalyst/catalysts, together with the acid co-catalyst (when necessary), was introduced
in the reactor under an inert atmosphere. The autoclave was closed, evacuated up to 65 Pa and
a solution of the starting feedstock in 40 mL of water was introduced by suction. The reactor was then
pressurized with hydrogen and heated to the desired temperature, maintaining a stirring speed of
500 rpm, a value which was ascertained to assure the absence of mass transfer limitations. During the
reaction, the pressure value was manually held constant at the chosen value by repeated hydrogen
feeds. The course of the reaction was monitored by periodically sampling the liquid from a sampling
valve and analyzing it by gas-chromatography Agilent Technologies (Santa Clara, CA, USA). Recycling
experiments of the commercial catalysts were carried out in a similar manner: after removing through
the sample valve the liquid reaction mixture, the autoclave containing the catalyst/catalysts was
evacuated and charged again for the subsequent catalytic cycle. All experiments were carried out in
duplicate and the composition of the reaction mixtures resulted reproducible to within ±5%.

3.3. Analysis of the Reaction Products

Quantitative analyses were performed with an HP 5890 gas-chromatograph equipped with
an HP 3396 integrator, a flame ionization detector, and a PONA capillary column (50 m × 0.2 mm ×
0.5 µm) with a stationary phase 100% dimethylpolysiloxane. The transport gas was nitrogen and
the flow was 1 mL·min−1. The adopted temperature program for G.C. separation was the following:
50 ◦C (3 min)–20 ◦C·min−1–200 ◦C (10 min). Qualitative analyses were carried out using the
gas-chromatograph Hewlett-Packard HP 6890 with an MSD HP 5973 detector, employing a G.C.
column Phenonex Zebron with a stationary phase of 100% methylpolysiloxane (length of the column:
30 m, inner diameter: 0.25 mm and thickness of the stationary phase: 0.25 µm). The transport gas
was helium and the flow was 1 mL·min−1. Gaseous phase was qualitatively analyzed by G.C. using
an Agilent HP6890 chromatograph and a Restek Shincarbon ST column (2 m × 1 mm), and a thermal
conductivity detector (TCD). The carrier gas was helium, with a constant flow rate of 15 mL min−1,
and an inlet temperature of 100 ◦C. The adopted temperature program for the analysis of a gas volume
of 100 µL was the following: 35 ◦C (5 min)–8 ◦C min−1–200 ◦C (5 min).

Conversion parameter was calculated on the basis of the adopted starting feedstock, e.g., GVL or
LA, as follows:

GVL or LA conversion (mol %) = (converted moles of GVL or LA/starting moles of
GVL or LA) × 100

(1)
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Instead, the selectivity to the main reaction products, e.g., 2-MeTHF, 2-BuOH, 2-PeOH,
and 1,4-PDO, was calculated always with respect to the starting feedstock, e.g., GVL or LA, as follows:

Selectivity to the product (mol %) = (obtained moles of product/converted moles of
GVL or LA) × 100

(2)

Lastly, catalyst productivity to give (2-BuOH + 2-PeOH) was calculated as follows:

Productivity = millimoles (2-BuOH + 2-PeOH)/(gmetal × time (hour)) (3)

Ruthenium and Rhenium leaching was established on the reaction solution by inductively
coupled plasma-optical emission spectrometry (ICP-OES), employing a Spectro-Genesis instrument
(Spectro Analytical Instruments GmbH, Cleves, North Rhine-Westphalia, Germany) and using
a software Smart Analyzed Vision (version 4, Spectro Analytical Instrument GmbH, Cleves, North
Rhine-Westphalia, Germany)

4. Conclusions

In this research, a cascade strategy for the catalytic valorization of levulinic acid and
γ-valerolactone to 2-methyltetrahydrofuran or to mono-alcohols, 2-butanol and 2-pentanol, has been
studied and optimized. In the perspective of an economic, environmental and sustainable development,
only commercial catalytic systems have been employed, adopting water as the only green medium.
It is noteworthy our choice of employing only water whilst, in most of the best-case studies reported
up to now in the literature, different organic solvents have been specially used, mainly 1,4-dioxane
or alcohols, as well as solvent-free conditions, with the aim of improving the selectivity to the target
products. Taking into account our greener perspective, both hydrogenation reactions have been
optimized, investigating the effect of temperature, hydrogen pressure, amounts of rhenium, niobium
phosphate or acid zeolite HY. The appropriate choice of the catalytic system/reaction conditions can
tune this process toward to the selective production of 2-methyltetrahydrofuran or mono-alcohols.
For the first time, the use of ruthenium and rhenium catalysts, both supported on carbon, together
with niobium phosphate as acid co-catalyst, has been claimed in the conversion of γ-valerolactone
and levulinic acid to 2-methyltetrahydrofuran, obtaining selectivities up to a maximum of about 65
and 28 mol %, respectively. On the contrary, the use of zeolite HY, together with the commercial
Ru/C catalyst, favors the selective production of the mono-alcohols 2-butanol and 2-pentanol. It is
remarkable that the catalytic system [Ru/C + zeolite HY] at 200 ◦C and 3 MPa H2 is able to completely
convert both γ-valerolactone and levulinic acid, with overall yield to monoalcohols [2-butanol +
2-pentanol] of 100 mol % and 88.8 mol %, respectively. To the best of our knowledge, these yields are
the best up to now reported for the synthesis of monoalcohols from these renewable starting materials.

These promising results allow us to move towards the next challenge passing from model
compounds to real biomass hydrolysates as starting materials.
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