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Abstract: The preparation of thioesters through the lipase-catalysed transesterification reaction of
thiols with vinyl carboxyl esters is described. The reactions were carried out by Lipase TL IM from
Thermomyces lanuginosus as a catalyst and performed under a continuous flow microreactor. We first
found that lipase TL IM can be used in the reaction of thioester synthesis with high efficiency. Various
reaction parameters were investigated including substrate molar ratio, reaction time, and temperature.
Maximum conversion (96%) was obtained under the optimal condition of a substrate molar ratio of
1:2 (4-methylbenzyl mercaptan:vinyl esters) at 50 ◦C for about 30 min. Compared with other methods,
the salient features of this work include mild reaction conditions (50 ◦C), short reaction times (30 min),
high yields, and environment-friendliness.
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1. Introduction

Flow chemistry [1–7] has attracted significant attention from researchers from both academia
and industry. Various benefits over conventional batch processes include increased controllability,
safety, and selectivity because of improved heat and mass transfer and shorter residence times.
In particular, utilizing immobilized enzyme catalysts in microreactors is recognized as the most
prioritized consideration of key green engineering areas for chemical synthesis [8–14]. In recent
years, there has been demand for enzymatic microreaction devices in several fields, especially for
biotransformation. Several enzymatic syntheses in microreactors have been reported [15–20].

Thioesters are important building blocks for organic synthesis [21] and chemical biology [22].
They are valuable intermediates in food, medicinal, and cosmetic chemistry, and in the production of
new materials [23–25]. Many works on the synthesis of thioesters have been reported [26–31]. The most
common catalysts reported for organic transformation of thioesters are triflates [32], Lewis acids [33], or
lanthanide catalysts [34], etc. Unfortunately, with very few exceptions, all of these methods implicate
toxic and hazardous reagents, harsh conditions, or uncommon starting materials. Therefore, it is
important to find a new, simple, and environmentally friendly method for the preparation of thioesters.

Biocatalysis as an efficient and green biotransformation tool in organic synthesis that has attracted
much attention of chemists and biochemists [35–38]. Especially, catalytic promiscuity in biocatalysis,
which means using old enzymes to form new bonds and follow new pathways, was greatly extended
and expanded rapidly [39–41]. Some enzymes, such as D-amino acylase from Escherichia coli (DA),
have been applied to the synthesis of thioesters, but it requires a longer reaction time (48 h) to achieve
the desired result [42]. Additinoally, only amino acylase was suitable for the synthetic reaction of
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thioesters, while lipase from Candida antarctica catalysed the reaction to Markovnikov addition. In the
interest of developing mild methodologies for the synthesis of thioesters, we envisaged modifying
our procedure to achieve a continuous flow microreactor protocol for the synthesis of thioesters.
Specifically, we directed our attention towards the development of an enzymatic microreactor strategy
involving lipase TL IM from Thermomyces lanuginosus as a catalyst (Scheme 1). The aim of this paper is
to investigate, under a continuous-flow microreactor, the effect of various reaction parameters on the
reaction conversion.
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Scheme 1. Enzymatic synthesis of thioesters from thiols and vinyl esters in a continuous flow microreactor.

2. Results and Discussion

2.1. Experimental Setup

The enzymatic synthesis of thioesters from thiols and vinyl esters in a continuous-flow microreactor
is described in Figure 1. We first examined the reactions using a continuous-flow microreactor system
composed of a Y-shaped micromixer (Φ = 1.8 mm; M) and a microtube reactor (R) shown in Figure 1.
A 3.1 mL PFA reactor coil (2 mm I. D.) was constructed and reagents were introduced by two separate
feed streams. Reagent feed 1 (10 mL) with the thiol solution and reagent feed 2 (10 mL) with vinyl
esters were mounted in DMSO, respectively. Lipozyme TL IM from Thermomyces lanuginosus (catalyst
reactivity: 250 IUN·g−1, particle diameter: 0.3–1.0 mm) was filled in the microtube (R). A water bath
was applied to control the temperature of this reaction by immersion of reactor coil in water. After initial
optimization, it was found that the target thioesters (3a–3l) could be obtained, after only a thirty minutes
residence time, in excellent yield (~86%) after separation and purification (Table 1).
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Table 1. Shaker and continuous flow synthesis of thioesters catalysed by Lipozyme TL IM.
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a Reactions and the structure of the products (3a–3l) see Scheme 1. b Method A: Shaker reactor, benzyl mercaptan
(1 mmol) and vinyl esters (3 mmol) were added to 5 mL DMSO at 50 ◦C. Lipozyme TL IM (0.22 g, 44 mg mL−1),
24 h. Method B: continuous flow microreactor, 10.4 µL min−1 feed 1 (4 mmol thiol derivatives in 10 mL DMSO)
and 10.4 µL min−1 feed 2 (8 mmol vinyl esters in 10 mL DMSO) at 50 ◦C (residence time 30 min), Lipozyme TL IM
(0.87 g, 44 mg mL−1). c Isolated yield.
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2.2. Molar Ratio (Thiols:Vinyl Esters) Effect

We begin to explore the effects of various reaction parameters on the lipase-catalysed
transesterification reaction of thiols with vinyl esters performed under a continuous flow microreactor.
In our initial investigation, in order to ascertain the effect of molar ratio (thiols:vinyl esters) on the
thioesters synthesis reaction in a microreactor, the thioester synthesis reaction of benzyl mercaptan and
vinyl laurate was used as a model reaction. We tried substrate molar ratios (benzyl mercaptan:vinyl
laurate) from 1:1 to 1:4. As we can see from Figure 2, the reaction conversion is 61% when the substrate
molar ratio is 1:1. With the increase of vinyl laurate, the reaction conversion increases, too. The best
result was obtained when the molar ratio reached 1:2. Considering the optimal reaction conversion
and economy of the reaction, we decide to use the substrate molar ratio of 1:2 as the best molar ratio
for the next experiment.
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Figure 2. The influence of substrate molar ratio (benzyl mercaptan:vinyl laurate) on the enzymatic
synthesis of thioesters in a continuous flow microreactor: 10.4 µL min−1 feed 1 (4 mmol thiol derivatives
in 10 mL DMSO) and 10.4 µL min−1 feed 2 (4–16 mmol vinyl esters in 10 mL DMSO) at 50 ◦C (residence
time 30 min), Lipozyme TL IM (0.87 g, 44 mg mL−1).

2.3. Reaction Temperature Effect

The temperature is another important factor for the enzymatic reactions, due to their effects on the
enzyme stability and reaction rate, especially when the reaction conducted in a microreactor. After we
find the optimum substrate molar ratio of the reaction, we continue to examine the effect of temperature
on the lipase-catalysed thioester synthesis under a continuous flow microreactor. We adjusted the
temperature from 40 ◦C to 60 ◦C to find the effect of temperature on the reaction conversion. As we
can see from Figure 3, when the reaction was carried out at 40 ◦C, the reaction conversion is only 65%.
With the increase of reaction temperature, the reaction conversion has also been obviously improved.
When the reaction is controlled at 50 ◦C, the thioester synthesis can achieve the optimal conversion
of 88%. Considering the optimal reaction conversion and the safety and operability of the reaction,
we choose 50 ◦C as the most suitable reaction temperature for the following study of the enzymatic
thioester synthesis in a continuous flow microreactor.
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Figure 3. The influence of reaction temperature (◦C) on the enzymatic synthesis of thioesters in a
continuous flow microreactor: 10.4 µL min−1 feed 1 (4 mmol thiol derivatives in 10 mL DMSO) and
10.4 µL min−1 feed 2 (8 mmol vinyl esters in 10 mL DMSO) at different reaction temperature (residence
time 30 min), Lipozyme TL IM (0.87 g, 44 mg mL−1).

2.4. Reaction Time/Flow Rate Effect

Reaction time/flow rate often play an important role in enzymatic reaction performed in a
continuous flow microreactor. The lipase-catalysed thioester synthesis from benzyl mercaptan and
vinyl laurate under a continuous flow microreactor was conducted in 20–40 min and the results are
shown in Figure 4. It was found that the best conversion can be reached in 30 min, at a flow rate of
20.8 µL min−1. Thus, we chose 30 min (flow rate 20.8 µL min−1) as the optimum reaction time for the
following study of enzymatic thioester synthesis in a continuous flow microreactor.
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Figure 4. The influence of reaction time (min) on the enzymatic synthesis of thioesters in a continuous
flow microreactor.

2.5. Benzyl Mercaptan Donor Structure Effect

Having obtained the favorable results given above, we then investigated the substrate structure
effect on the enzymatic thioesters synthesis reaction in a microreactor. The effect of different substituted
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groups on the benzyl mercaptan was examined, as shown in Figure 5. Reaction of 4-methylbenzyl
mercaptan (1b) to vinyl laurate (2b) afforded a higher yield (94%, entry 6) than benzyl mercaptan
(88%, entry 2) (Scheme 1) in a short time, indicating that an electron-donating group improves the
transesterification reactivity of the benzyl mercaptan. Oppositely, the reaction of 4-chlorobenzyl
mercaptan (1c) and vinyl esters afforded a lower yield (entries 9–12). Under the same condition,
the thioesters synthesis of benzyl mercaptan and vinyl laurate was more rapid than that using
4-chlorobenzyl mercaptan as the reactant, while lower than that using 4-methylbenzyl mercaptan as
the donor.
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Figure 5. The effect of different substituted groups on benzyl mercaptan on the enzymatic synthesis
of thioesters in a continuous flow microreactor. 10.4 µL min−1 feed 1 (4 mmol thiol derivatives in
10 mL DMSO) and 10.4 µL min−1 feed 2 (8 mmol vinyl esters in 10 mL DMSO) at 50 ◦C (residence time
30 min), Lipozyme TL IM (0.87 g, 44 mg mL−1).

2.6. Vinyl Ester Acceptor Structure Effect

We have also investigated the acceptor structure effect on the enzymatic thioester synthesis
and found the longer the vinyl ester carboxyl group chain, the higher the conversion. Using benzyl
mercaptan as the donor, the decrease of conversion was detected with the increase of carboxyl group
chain. The conversion yield was less than 65% in the reaction of benzyl mercaptan and vinyl acetate
(Figure 6).

Finally, to explore the scope and limitations of this new synthetic approach in a continuous-flow
microreactor, three thiol derivatives, benzyl mercaptan (1a), 4-methylbenzyl mercaptan (1b), and
4-chlorobenzyl mercaptan (1c), and four vinyl esters (2a–d), were subjected to the general reaction
conditions, using both a single-mode shaker reactor and a continuous-flow microreactor (Scheme 1).
For the shaker experiments, reaction time needed about 24 h or more to obtain ideal yields (Method A).
Using lipase-catalysed thioesters synthesis reaction of thiol under continuous-flow conditions,
12 thioesters were synthesized in parallel in a single experiment at the same flow rate (Method B).
The results were better with flow microreactor processing than with the single-mode shaker (Table 1,
entries 1–12). Importantly, applying flow microreactor processing, yielded a conversion of thioester
derivatives to 82% or more. This allows us to reduce the reaction time and simplify the purification
of products.
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Figure 6. The effect of acceptor structures on the enzymatic synthesis of thioesters in a continuous
flow microreactor. 10.4 µL min−1 feed 1 (4 mmol thiol derivatives in 10 mL DMSO) and 10.4 µL min−1

feed 2 (8 mmol vinyl esters in 10 mL DMSO) at 50 ◦C (residence time 30 min), Lipozyme TL IM (0.87 g,
44 mg mL−1).

3. Materials and Methods

3.1. Materials

Unless otherwise stated, all chemicals were obtained from commercial sources and used without
further purification. Lipase TL IM from Thermomyces lanuginosus was purchased from Novo Nordisk
(Copenhagen, Denmark). Vinyl acetate (>99%), vinyl laurate (>99%), vinyl palmitate (>96%), and
divinyladipate (>96%) were all purchased from Tokyo Chemical Industry Co., LTD. (Tokyo, Japan).
Benzyl mercaptan (98%), 4-methylbenzyl mercaptan (97%), and 4-chlorobenzyl mercaptan (98%) were
all purchased from Aladdin (Shanghai, China). Harvard Apparatus PHD 2000 syringe pumps were
purchased from Harvard Apparatus (Cambridge, MA, USA).

3.2. Thioester Synthesis Operating Conditions

3.2.1. General Procedure for Thioesters Synthesis under Shaker Conditions

Method A: Benzyl mercaptan (1 mmol) and vinyl laurate (3 mmol) were added to 5 mL DMSO.
The biocatalyst lipozyme TL IM (44 mg mL−1, 0.22 g) was then added and the suspension maintained
at 50 ◦C for 24 h under Shaker Conditions. The mixture was cooled and filtered. Then evaporated
under reduced pressure and the residue was submitted to column chromatography on silica gel
(200–300 mesh). The products were eluted with a gradient of normal petroleum ether/ethyl acetate
(20:1, by vol). The purification was monitored by TLC. The fractions containing the main products
were pooled, the solvent evaporated, and the residue analysed by 1H NMR, 13C NMR, and ESI-MS.

3.2.2. General Procedure for Thioester Synthesis in Continuous Flow Microreactors

Method B: Four millimoles of the benzyl mercaptan were dissolved in 10 mL DMSO (feed 1)
and 8 mmol vinyl laurate were dissolved in 10 mL DMSO (feed 2). Lipozyme TL IM (0.87 g) was
weighed, then filled the PFA reactor coil (inner diameter ID: 2.0 mm, length: 1 m). Feeds 1 and 2
were mixed together at a flow rate of 10.4 µL min−1 in a Y-mixer at 50 ◦C, and the resulting stream
(20.8 µL min−1) was connected to a sample vial which was used to collect the final mixture. The final
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mixture was then evaporated, and the residue was submitted to column chromatography on silica gel
(200–300 mesh). The products were eluted with a gradient of normal petroleum ether/ethyl acetate
(20:1, by vol). The purification was monitored by TLC. The fractions containing the main products
were pooled, the solvent evaporated, and the residue analysed by 1H NMR, 13C NMR, and ESI-MS.
In order to examine the reproducibility of the method, we repeated the reaction five times, the result
are illustrate in Figure S1.

3.3. Analytical Methods

3.3.1. Thin-Layer Chromatography

Analytical TLC was performed on silica gel 60 plates (Yantai Jiangyou Silicone Development
Co., LTD., Yantai, China) using petroleum ether/ethyl acetate (20:1, by vol) as the eluent. Spots were
detected by ultraviolet irradiation at 254 nm.

3.3.2. High-Performance Liquid Chromatography (HPLC)

The reaction was monitored by HPLC analysis using a 4.6 × 250 mm, 5 µm XBridge C18 column
with a gradient of methanol/water. For the analysis of products, methanol/water: 85/15 (v/v) was
used as the mobile phase (flow rate, 0.6 mL min−1), thiol and thioester derivatives were detected at
254 nm. The conversion yield was defined as the ratio between the molar concentration of thioester
derivatives and the initial molar concentration of the thiol derivatives used.

3.3.3. Nuclear Magnetic Resonance (NMR) Analysis

After purification of the synthesized products by column chromatography, the chemical structures
of thioesters were determined by 1H NMR, 13C NMR and ESI-MS.

S-Benzyl thioacetate (3a): Light yellow oil; 1H NMR (500 MHz, CDCl3): δ 7.32–7.26 (m, 5H), 4.15 (s,
2H), 2.37 (s, 3H). 13C NMR (125 MHz, CDCl3): δ 195.0, 137.6, 128.8, 128.6, 127.2, 33.4, 30.2. ESI-MS:
m/z = 189.1 [M + Na]+.

S-Benzyl thiododecanoate (3b): White crystals; 1H NMR (500 MHz, CDCl3): δ 7.36–7.27 (m, 5H), 4.17 (s,
2H), 2.61 (t, J = 7.5 Hz, 2H), 1.73 (m, 2H), 1.35 (m, 16H), 0.98 (t, J = 6.0 Hz, 3H). 13C NMR (125 MHz,
CDCl3): δ 198.2, 137.7, 128.6, 128.4, 127.0, 43.6, 32.9, 31.8, 29.5, 29.4–29.1, 28.8, 25.5, 22.6, 14.0. ESI-MS:
m/z = 329.2 [M + Na]+.

S-Benzyl thiohexadecanoate (3c): White solid; 1H NMR (500 MHz, CDCl3): δ 7.34–7.25 (m, 5H), 4.14
(s, 2H), 2.58 (t, J = 7.5 Hz, 2H), 1.66 (m, 2H), 1.47–1.23 (m, 24H), 0.91 (t, J = 7.0 Hz, 3H). 13C NMR
(125 MHz, CDCl3): δ 198.9, 137.8, 129.3, 129.0, 128.8, 128.6, 127.2, 43.9, 33.1, 31.9, 29.7, 29.6–29.1, 29.0,
25.6, 22.7, 14.1. ESI-MS: m/z = 385.2 [M + Na]+.

6-oxo-6-((Benzyl)thio)-hexanoate vinyl ester (3d): Yellow oil; 1H NMR (500 MHz, CDCl3): δ 7.35–7.24 (m,
6H), 4.89 (ddd, J = 14.0, 3.4, 1.6 Hz, 1H), 4.59 (ddd, J = 6.3, 2.4, 1.7 Hz, 1H), 4.14 (s, 2H), 2.59 (m, 2H),
2.43 (m, 2H), 1.72 (m, 4H). 13C NMR (125 MHz, CDCl3): δ 198.1, 170.1, 141.1, 137.5, 128.7, 128.6, 127.2,
97.6, 43.2, 33.4, 33.1, 24.7, 23.8. ESI-MS: m/z = 301.1 [M + Na]+.

S-(4-Methylbenzyl) ethanethioate (3e): Light yellow oil; 1H NMR (500 MHz, CDCl3): δ 7.19 (d, J = 7.6 Hz,
2H), 7.12 (d, J = 7.6 Hz, 2H), 4.10 (s, 2H), 2.35 (s, 3H), 2.33 (s, 3H). 13C NMR (125 MHz, CDCl3): δ 195.0,
137.9, 134.2, 129.8, 129.7, 33.4, 30.2, 21.1. ESI-MS: m/z = 203.1 [M + Na]+.

S-(4-Methylbenzyl) thiododecanoate (3f): Yellow liquid oil; 1H NMR (500 MHz, CDCl3): δ 7.18 (d,
J = 7.6 Hz, 2H), 7.12 (d, J = 7.6 Hz, 2H), 4.10 (s, 2H), 2.57 (t, J = 7.5 Hz, 2H), 2.33 (s, 3H), 1.64 (m, 2H),
1.31 (m, 16H), 0.89 (t, J = 7.1 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ 199.1, 137.0, 134.7, 129.4, 128.8,
43.9, 32.9, 32.0, 29.7, 29.6–29.3, 29.0, 25.7, 22.8, 21.1, 14.2. ESI-MS: m/z = 343.2 [M + Na]+.
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S-(4-Methylbenzyl) thiohexadecanoate (3g): Light yellow oil; 1H NMR (500 MHz, CDCl3): δ 7.19 (d,
J = 8.0 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 4.10 (s, 2H), 2.56 (t, J = 7.5 Hz, 2H), 2.34 (s, 3H), 1.68 (m, 2H),
1.32–1.27 (m, 24H), 0.90 (t, J = 7.0 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ 199.0, 136.9, 134.7, 129.3,
128.7, 43.9, 32.9, 32.0, 29.7, 29.6–29.3, 29.0, 25.6, 22.7, 21.1, 14.1. ESI-MS: m/z = 399.3 [M + Na]+.

6-oxo-6-((4-Methylbenzyl)thio)-hexanoate vinyl ester (3h): Light yellow oil; 1H NMR (500 MHz, CDCl3): δ
7.31–7.20 (m, 5H), 4.87 (ddd, J = 14.0, 3.3, 1.7 Hz, 1H), 4.56 (ddd, J = 6.2, 2.0, 1.7 Hz, 1H), 4.11 (s, 2H),
2.59 (m, 2H), 2.41 (m, 2H), 2.39 (s, 3H), 1.71 (m, 4H). 13C NMR (125 MHz, CDCl3): δ 198.0, 170.1, 141.0,
137.5, 128.7, 128.5, 127.2, 97.6, 43.1, 33.4, 33.1, 24.7, 23.8, 23.7. ESI-MS: m/z = 315.1 [M + Na]+.

S-(4-Chlorobenzyl) ethanethioate (3i): Light yellow oil; 1H NMR (500 MHz, CDCl3): δ 7.27 (dd, J = 8.6, 6.6
Hz, 2H), 7.23 (dd, J = 8.5, 6.1 Hz, 2H), 4.08 (s, 2H), 2.36 (s, 3H). 13C NMR (125 MHz, CDCl3): δ 195.0,
135.7, 132.7, 130.8, 128.8, 33.1, 30.5. ESI-MS: m/z = 223.0 [M + Na]+.

S-(4-Chlorobenzyl) thiododecanoate (3j): Yellow liquid oil; 1H NMR (500 MHz, CDCl3): δ 7.27 (dd, J = 8.5,
6.5 Hz, 2H), 7.23 (dd, J = 8.5, 6.0 Hz, 2H), 4.08 (s, 2H), 2.57 (t, J = 7.2 Hz, 2H), 1.66 (m, 2H), 1.29 (m,
16H), 0.90 (t, J = 6.0 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ 198.7, 141.2, 136.5, 133.0, 130.2, 128.7, 43.8,
34.0, 32.4, 31.9, 29.6–29.0, 28.9, 25.6, 24.6, 22.7, 14.1. ESI-MS: m/z = 363.2 [M + Na]+.

S-(4-Chlorobenzyl) thiohexadecanoate (3k): Yellow oil; 1H NMR (500 MHz, CDCl3): δ 7.27 (dd, J = 8.4,
6.3 Hz, 2H), 7.23 (dd, J = 8.3, 6.0 Hz, 2H), 4.23 (s, 2H), 2.58 (t, J = 7.5 Hz, 2H), 1.78 (d, J = 7.1 Hz, 2H),
1.58–1.32 (m, 24H), 0.89 (t, J = 6.8 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ 199.0, 135.9, 132.8, 131.9,
131.7, 129.2, 128.8, 44.2, 33.6, 32.9, 30.1, 29.8–29.2, 28.0, 26.5, 23.4, 14.9. ESI-MS: m/z = 419.2 [M + Na]+.

6-oxo-6-((4-Chlorobenzyl)thio)-hexanoate vinyl ester (3l): Yellow oil; 1H NMR (500 MHz, CDCl3): δ

7.32–7.20 (m, 5H), 4.89 (ddd, J = 14.0, 3.4, 1.6 Hz, 1H), 4.59 (ddd, J = 6.3, 2.4, 1.6 Hz, 1H), 4.08 (s, 2H),
2.61 (m, 2H), 2.41 (m, 2H), 1.72 (m, 4H). 13C NMR (125 MHz, CDCl3): δ 198.0, 170.2, 141.1, 136.3, 133.1,
130.2, 128.8, 97.7, 43.2, 33.4, 32.5, 24.8, 23.8. ESI-MS: m/z = 335.1 [M + Na]+.

4. Conclusions

In conclusion, we describe here the enzymatic synthesis of thioesters from thiols and vinyl esters
in a continuous-flow microreactor. The reaction conditions including reaction temperature, reaction
time/flow rate, substrate molar ratio and the substrate structure effect on the reaction were examined.
The scope of the reaction was tested by varying the thiols and vinyl esters. Compared to traditional
batch processes, continuous-flow microreactor technology offers a variety of advantages, such as
reduced reaction times, improved operational safety and much lower process costs and increased
process efficiency. The salient features of this method include mild reaction conditions (50 ◦C), short
reaction times (30 min), and high yields that make our methodology a valuable contribution to the
thioester derivatives synthesis. The method of enzymatic synthesis in a microreactor environment
described here may have general applications to synthetic organic chemistry by enzymatic catalysis
in the future. Thioester derivatives synthesis of thiophenol, furanthiol, thienyl mercaptan, and other
sulphur nucleophiles to vinyl esters catalysed by lipase TL IM from Thermomyces lanuginosus in a
continuous-flow microreactor are in progress.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/8/6/249/s1,
Figure S1: The reproducibility of the reaction on the conversion of S-Benzyl thiododecanoate catalysed by Lipozyme
TL IM in a continuous flow microreactor.
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