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Abstract: This article reviews studies regarding the total synthesis of phaeosphaerides A and B,
nitrogen-containing bicyclic natural products isolated from an endophytic fungus. Numerous
synthetic efforts and an X-ray crystal structure analysis of phaeosphaeride A have enabled revision
of its originally proposed structure. In addition, a successful protic acid-mediated transformation of
phaeosphaeride A to phaeosphaeride B revealed the hypothetical biosynthesis of phaeosphaeride B
from phaeosphaeride A. Structure–activity relationship studies of phaeosphaeride derivatives are
also discussed.
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1. Introduction

Signal transducer and activator of transcription 3 (STAT3), which belongs to the STAT family
of proteins [1], regulates cell proliferation, differentiation, and survival [2]. Non-activated STAT3 is
generally localized in the cytoplasm. Once phosphorylated at Tyr705 in the Janus kinase (JAK)/STAT
signaling pathway, STAT3 dimerizes, translocates to the nucleus, and binds to a target DNA sequence
to induce transcriptional activation [3,4].

Unusual activation of STAT3 is frequently found in various types of tumor cells, leading to
apoptosis resistance and tumor cell proliferation via enhanced expression of gene encoding proteins
such as Bcl-2, Bcl-xL, and cyclin D1 [5,6]. Therefore, STAT3 has gained considerable interest as
a potential target for anticancer therapy. In fact, various STAT3 inhibitors including synthetic small
molecules and natural products have been evaluated as prospective anticancer chemotherapeutic
agents [7].

In 2006, phaeosphaerides A (proposed structure 1a) was isolated from the endophytic fungus FA39
(Phaeosphaeria avenaria) by Clardy and co-workers as an inhibitor of STAT3-DNA binding (Figure 1) [8].
Phaeosphaeride A possesses a bicyclic structure with three contiguous stereocenters in its dihydropyran
ring. Phaeosphaeride A inhibits STAT3 activity with an IC50 of 0.61 mM and also inhibits cell growth
in STAT3-dependent U266 multiple myeloma cells with an IC50 of 6.7 µM. Therefore, phaeosphaeride
A is expected to be a potential lead compound for anticancer drug candidates. On the other hand,
phaeosphaeride B (1b), the C-8 stereoisomer of phaeosphaeride A, was reported to have no STAT3
inhibitory activity.
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In 2011, our group accomplished the first total synthesis of the proposed structure of 
phaeosphaeride A (1a; Schemes 1 and 2) [9]. In this synthesis, to construct the C-7 and C-8 
stereocenters, we used a typical E-selective Horner–Wadsworth–Emmons reaction followed by 
Sharpless asymmetric dihydroxylation using AD-mix-β to obtain the requisite diol (2S,3R)-4 in high 
yield. In this step, the absolute configuration and the high enantiomeric excess of diol 4 were 
confirmed by a modified Mosher’s method. After appropriate conversion of diol 4 to secondary 
alcohol 5, we found good reaction conditions for an oxy-Michael addition of alcohol 5 to dimethyl 
acetylenedicarboxylate: Use of a catalytic amount of n-BuLi cleanly afforded the desired Michael 
adduct (E)-6 along with the (Z)-isomer in 76% and 18% yields, respectively. The remaining C-6 
stereogenic center was installed by a vinyl-anion aldol reaction of aldehyde 7 using sodium 
bis(trimethylsilyl)amide (NaHMDS), providing the desired dihydropyran derivative 8 via the 
plausible transition state shown in Scheme 1. 
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Figure 1. Structures of phaeosphaerides.

The promising biological activity of phaeosphaeride A as well as its simple and unique molecular
structure has attracted much attention from the synthetic community. In addition, structure–activity
relationship (SAR) studies of STAT3 inhibitory activity should be of significant importance for potential
anticancer therapy.

2. Synthetic Approach toward Phaeosphaeride A

2.1. Synthesis of the Proposed Structure of Phaeosphaeride A

In 2011, our group accomplished the first total synthesis of the proposed structure of
phaeosphaeride A (1a; Schemes 1 and 2) [9]. In this synthesis, to construct the C-7 and C-8 stereocenters,
we used a typical E-selective Horner–Wadsworth–Emmons reaction followed by Sharpless asymmetric
dihydroxylation using AD-mix-β to obtain the requisite diol (2S,3R)-4 in high yield. In this step,
the absolute configuration and the high enantiomeric excess of diol 4 were confirmed by a modified
Mosher’s method. After appropriate conversion of diol 4 to secondary alcohol 5, we found good
reaction conditions for an oxy-Michael addition of alcohol 5 to dimethyl acetylenedicarboxylate:
Use of a catalytic amount of n-BuLi cleanly afforded the desired Michael adduct (E)-6 along with the
(Z)-isomer in 76% and 18% yields, respectively. The remaining C-6 stereogenic center was installed
by a vinyl-anion aldol reaction of aldehyde 7 using sodium bis(trimethylsilyl)amide (NaHMDS),
providing the desired dihydropyran derivative 8 via the plausible transition state shown in Scheme 1.
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The construction of the five-membered ring in phaeosphaeride A was followed by regioselective
installation of the exo-methylene group to furnish the proposed structure of phaeosphaeride A
(1a; Scheme 2). However, the 1H and 13C NMR spectra of synthetic 1a did not match those reported
for natural phaeosphaeride A. Therefore, this synthesis revealed that the structure of phaeosphaeride
A had been incorrectly assigned.
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For natural phaeosphaeride A, the Clardy group observed nuclear Overhauser effect spectroscopy
(NOESY) correlations between H-6 and H-8, and between H-15 and both H-6 and H-8 (Figure 2) [8].
The correlation between H-6 and H-8 clearly indicates a pseudodiaxial relationship between these
hydrogens. However, the correlations between H-15 and both H-6 and H-8 do not provide information
about the configuration of the C-7 stereocenter. Hence, the correct structure of phaeosphaeride A was
presumed to be the C-7 epimer 1c of the originally proposed structure, or the epimer’s enantiomer 1d.
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Figure 2. Results of NOESY experiments by Clardy.

In 2012, Sarli’s group also succeeded in the total synthesis of the proposed structure of
phaeosphaeride A (1a) [10]. Their synthesis involved a strategy similar to ours, in which
dihydroxylation of unsaturated ester (E)-11 using catalytic OsO4 and 4-methylmorpholine N-oxide
(NMO) was used to form the C-7 and C-8 stereocenters. Then, the C-6 center was stereochemically
controlled by the anti-selective addition of a vinyllithium species to aldehyde 13 via the Felkin–Ahn
transition state. After establishing the three contiguous stereocenters, sequential oxy-Michael
addition/methanol elimination followed by selective dehydration furnished (±)-1a (Scheme 3).
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Scheme 3. Sarli’s total synthesis of (±)-1a.

They also synthesized both enantiomers of 1a, (6R,7R,8R)-1a and (6S,7S,8S)-1a, by Sharpless
asymmetric dihydroxylation of (E)-11 in the first step using AD-mix-β and AD-mix-α, respectively.
They obtained the crystal structure of synthetic (6R,7R,8R)-1a using synchrotron radiation,
which proved their structural assignment of 1a by NMR. Their studies also pointed to the structural
revision of phaeosphaeride A to 1c or its enantiomer 1d (Scheme 4).
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2.2. Stereochemical Determination of Natural (−)-Phaeosphaeride A

Based on the above achievements by our group and Sarli’s group, the C-7 epimer 1c of the
originally proposed structure or the epimer’s enantiomer 1d needed to be synthesized to resolve the
issue of the stereochemistry of natural phaeosphaeride A. To access 1c by a synthetic strategy similar
to those shown in Schemes 1 and 2, (Z)-α,β-unsaturated ester (Z)-3 was first prepared instead of the
(E)-ester by Still–Gennari olefination using phosphonate 17. The ester (Z)-3 was converted into the
diol (2R,3R)-18 via Sharpless dihydroxylation using AD-mix-β. According to the previous route with
slight modification, the intermediate diol (2R,3R)-18 was successfully converted via dihydropyran
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intermediate 19 into 1c, the 1H and 13C NMR spectra of which completely matched the literature data
for natural phaeosphaeride A, and the optical rotation of the synthetic compound had the opposite sign
to that of the natural product. The correct structure of natural (−)-phaeosphaeride A was thus shown
to be the enantiomer 1d of synthetic 1c [11]. Then, natural (−)-phaeosphaeride A was synthesized by
using AD-mix-α instead of AD-mix-β in the first step (Scheme 5) [12].
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Scheme 5. Kobayashi and Kogen’s total synthesis of 1c and 1d.

After the reports, Abzianidze et al. reported the crystal structure of natural phaeosphaeride
A [13]. This crystal structure clearly supported the results of stereochemical revision by these
synthetic approaches.

3. Synthetic Approach toward Phaeosphaeride B

The first total synthesis of (±)-phaeosphaeride B (1b) was reported by Sarli’s group in 2014 [14].
Their synthetic strategy for 1a (Scheme 3) could be applied to the preparation of (±)-1b. In their
synthesis, conversion of (E)-11 to an allylic alcohol followed by epoxidation and subsequent
regioselective Ti(O-iPr)4-mediated epoxide ring-opening of 20 with allyl alcohol enabled introduction
of the C-7 and C-8 stereocenters of (±)-1b. The key anti-selective nucleophilic addition of a vinyllithium
species to aldehyde 22 delivered the required C-6 stereocenter through the polar Felkin–Ahn transition
state. Then, the lactam and dihydropyran rings and exo-methylene group were assembled to complete
the total synthesis of (±)-phaeosphaeride B (1b) (Scheme 6).
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They also developed an improved synthetic scheme for (±)-1b, in which bis-TMS ether aldehyde
25, derived from diol (±)-12 via cyclic sulfate 24, was used in the reaction with α-lithio tetronate to
form 26a along with the TMS-migrated product 26b. Subsequent conversion via their established route
effectively yielded (±)-1b (Scheme 7).
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After the successful total synthesis of (±)-phaeosphaeride B by Sarli, we demonstrated
a biomimetic transformation from (−)-phaeosphaeride A to (−)-phaeosphaeride B [12]. We posited
that phaeosphaerides A and B would be biosynthetically interconverted under acidic conditions.
In testing this hypothesis, treatment of synthetic (−)-phaeosphaeride A (1d) with trifluoroacetic acid
(TFA) as a protic acid gave the corresponding trifluoroacetate 27 with stereochemical inversion at C-6
stereocenter via dehydrative formation of the oxonium cation intermediate A. The labile trifluoroacetate
27 was immediately hydrolyzed with aqueous NaHCO3 in THF to yield (−)-phaeosphaeride B (1b) in
a good yield (Scheme 8). In addition, this synthesis confirmed the absolute configuration of natural
(−)-phaeosphaeride B as shown in Scheme 8.



Catalysts 2018, 8, 206 7 of 10
Catalysts 2018, 8, x FOR PEER REVIEW  7 of 10 

 

 
Scheme 8. Biomimetic transformation from (−)-phaeosphaeride A to (−)-phaeosphaeride B. 

4. Biological Evaluation of Phaeosphaerides and Their Derivatives 

Considering their potential as a seed compound for anticancer treatment, Sarli’s and 
Abzianidze’s groups evaluated the biological activities of phaeosphaerides and their synthetic 
derivatives [10,14–17]. 

Initially, Sarli and colleagues biologically evaluated the stereoisomers of phaeosphaeride A, 
(6R,7R,8R)-1a and (6S,7S,8S)-1a [10]. These compounds inhibited STAT3-dependent transcriptional 
activity in a dose-dependent manner and decreased cell proliferation in breast (MDA-MB-231) and 
pancreatic (PANC-1) cancer cells in the low micromolar range. After that, they reported that the 
synthetic (6S,7S,8S)-1a and (6R,7S,8S)-phaeosphaeride had only very weak inhibitory activity 
against binding of STAT3 to its phosphotyrosine peptide ligand, suggesting that phaeosphaerides 
are upstream inhibitors of a tyrosine kinase in the JAK/STAT pathway [14]. 

Abzianidze et al. prepared and biologically evaluated the C-6 acyl derivatives 28 and 29, 
bis-methanol adducts 30a and 30b without the MeO group on the nitrogen, and hydrolyzed 
products 31a and 31b prepared from isolated natural phaeosphaeride A [15]. Compared to natural 
phaeosphaeride A (EC50 = 46 ± 5 μM), chloroacetyl derivative 29 exhibited more potent cytotoxicity 
(EC50 = 33 ± 7 μM) against the A549 cancer cell line, while synthetic 30 and 31 had no activity 
(Scheme 9). 

Scheme 8. Biomimetic transformation from (−)-phaeosphaeride A to (−)-phaeosphaeride B.

4. Biological Evaluation of Phaeosphaerides and Their Derivatives

Considering their potential as a seed compound for anticancer treatment, Sarli’s and Abzianidze’s
groups evaluated the biological activities of phaeosphaerides and their synthetic derivatives [10,14–17].

Initially, Sarli and colleagues biologically evaluated the stereoisomers of phaeosphaeride A,
(6R,7R,8R)-1a and (6S,7S,8S)-1a [10]. These compounds inhibited STAT3-dependent transcriptional
activity in a dose-dependent manner and decreased cell proliferation in breast (MDA-MB-231) and
pancreatic (PANC-1) cancer cells in the low micromolar range. After that, they reported that the
synthetic (6S,7S,8S)-1a and (6R,7S,8S)-phaeosphaeride had only very weak inhibitory activity against
binding of STAT3 to its phosphotyrosine peptide ligand, suggesting that phaeosphaerides are upstream
inhibitors of a tyrosine kinase in the JAK/STAT pathway [14].

Abzianidze et al. prepared and biologically evaluated the C-6 acyl derivatives 28 and 29,
bis-methanol adducts 30a and 30b without the MeO group on the nitrogen, and hydrolyzed
products 31a and 31b prepared from isolated natural phaeosphaeride A [15]. Compared to natural
phaeosphaeride A (EC50 = 46 ± 5 µM), chloroacetyl derivative 29 exhibited more potent cytotoxicity
(EC50 = 33 ± 7 µM) against the A549 cancer cell line, while synthetic 30 and 31 had no activity
(Scheme 9).

Additionally, they also synthesized 7-(4-methylphenyl)thiomethyl and 7-morpholylmethyl
derivatives 32 and 33, which were less cytotoxic than the parent phaeosphaeride A (Scheme 10) [16].
These results clearly indicated that the exo-methylene and N-OMe groups were essential for potent
cytotoxicity. Their studies strongly suggest that further SAR studies can provide lead compounds with
greater potency for potential use as anticancer chemotherapeutic agents.
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5. Conclusions

Phaeosphaerides A and B have attracted considerable attention due not only to their chemical
structures but also to their biological activity, and their stereochemical structures have been
unambiguously determined through the total synthesis and X-ray crystal structure analysis of
phaeosphaeride A. The promising anticancer activity of phaeosphaeride A based on inhibition of
STAT3-DNA binding indicates that this natural product is a promising seed compound for anticancer
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drug candidates. SAR studies on phaeosphaerides led to the development of more potent compounds
such as chloroacetyl derivative 29, and further SAR studies are awaited for anticancer drug discovery
research. In addition, structurally related natural products including paraphaeosphaerides [18,19],
phyllostictines [20,21], isoaigialones [22], benesudon [23], and curvupallides [24] should also attract
considerable interest as pharmaceutical targets. Further studies of phaeosphaerides are expected to
make valuable contributions to synthetic and medicinal chemistry.
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