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Abstract: A visible-light photoredox functionalization of 3,4-dihydro-1,4-benzoxazin-2-ones through
a Friedel-Crafts reaction with indoles using an inexpensive organophotoredox catalyst is described.
The reaction uses a dual catalytic system that is formed by a photocatalyst simple and cheap,
9,10-phenanthrenedione, and a Lewis acid, Zn(OTf)2. 5W white LEDs are used as visible-light
source and oxygen from air as a terminal oxidant, obtaining the corresponding products with
good yields. The reaction can be extended to other electron-rich arenes. Our methodology
represents one of the most valuable and sustainable approach for the functionalization of
3,4-dihydro-1,4-benzoxazin-2-ones, as compared to the reported procedures. Furthermore, several
transformations were carried out, such as the synthesis of the natural product cephalandole A and a
tryptophol derivative.

Keywords: visible-light photocatalysis; organophotoredox catalysis; Friedel-Crafts reaction; indoles;
1,4-benzoxazin-2-ones

1. Introduction

Visible-light (sunlight) is a safe, renewable, abundant, inexpensive, and non-polluting source
of energy, which means that sunlight is the most “green” energy source that we can use. Therefore,
the development of methodologies using visible-light has become one of the greatest challenges in
the scientific community in the last century [1,2]. In this context, the development of methodologies
to increase the use of visible-light to control chemical reactivity and achieve molecular complexity
with higher levels of efficiency have become a hot topic in the last years and many challenging organic
reactions have been described [3–9]. For this purpose, intensive research has been devoted to develop
photoredox catalysts that are capable of absorbing visible light and transfer this energy to the organic
molecules. Many elegant works on photocatalysis have been reported using transition metal ruthenium
or iridium polypyridyl complexes as efficient photosensitizers [10–13]. However, these transition
metals are expensive and they have potential toxicity that has limited their usefulness. Therefore,
for the development of more sustainable visible-light photoredox methodologies the use of organic
dyes is more convenient due to the low cost, high availability, and low toxicity that offer this kind of
catalyst. However, some of the organophotoredox catalysts are expensive, such as pyrilium [14–18]
or acridinium [19–24] salts (Figure 1). Organic dyes, such as Rose Bengal and Eosin Y, are more
convenient due to their lower cost [25–31]. Nevertheless, the development of new methodologies
using simpler organophotoredox catalysts that improve the sustainability of the “green” chemical
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process is highly desirable. In this context, α-diketones represent a class of compounds that can exhibit
absorption bands in the visible range and that have been used for photochemical processes [32–34].
For example, 9,10-phenanthrenedione is an inexpensive organic compound with very low molecular
weight (Figure 1) when compared with other organophotoredox catalysts. This α-diketone has
absorption bands in the visible region (412 and 505 nm in acetonitrile, see Supplementary Materials for
further details) and therefore could be excited by visible-light. However, it has been rarely used in
visible-light photochemical processes [35–37].
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Figure 1. Comparison of commercially available common visible-light photoredox catalysts and
9,10-phenanthrenedione (source: Sigma-Aldrich (2018)).

On the other hand, tertiary amines represent an important class of compounds in organic
synthesis, where functionalization is of great interest for the chemical community, medicinal chemistry,
pharmaceutical, and agrochemical industry. In this context, the combination of visible-light catalysis
and C-H bond functionalization adjacent to a tertiary amine has been successfully developed in
the last years [38–41]. Normally, this sp3-C-H functionalization involves the oxidation of the amine
to iminium ion, which can be attacked by various kind of nucleophiles. Nonetheless, the major
number of examples are regarded to the functionalization of N-aryl tetrahydroisoquinolines [42–52],
N,N-dimethylanilines [53–57], and N-aryl glycine derivatives [58–62]. Hence, exploring other
substrates is highly desirable. In this context, 1,4-dibenzoxazinone skeleton is present in a wide
number of compounds with biological activities and its functionalization could be significant and
interesting for medicinal chemistry [63–69]. Very recently, Huo described the iron catalyzed sp3-C-H
functionalization of 3,4-dihydro-1,4-benzoxazin-2-ones [70,71] using as a terminal oxidant tert-Butyl
hydroperoxide (TBHP) [70] or 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) [71]. We envisioned that
this functionalization could be achieved by a visible-light photochemical process. Herein, continuing
with our interest in the synthesis of multisubstituted 1,4-dihydrobenzoxazin-2-ones [72] and the
Friedel-Crafts reactions with indoles [73–75], we described the visible-light photoredox Friedel-Crafts
reaction of indoles with benzoxazin-2-ones using as catalyst a simple and cheap diketone such as
the 9,10-phenanthrenedione, and oxygen as terminal oxidant. During our experimental work and
the preparation of manuscript, a photoredox functionalization of 3,4-dihydro-1,4-benzoxazin-2-ones
was reported [76,77]. In both cases, the expensive Ru(bpy)2Cl2 was used as photocatalyst. Besides,
unlike the photoredox catalytic system described earlier [76], the results that were obtained with our
method are not affected by the steric hindrance around the C3 carbon atom of the indole skeleton.
The second paper [77] deals with the functionalization of 3,4-dihydro-1,4-quinoxalin-2(1H)-one
skeleton and only one example of 3,4-dihydro-1,4-benzoxazin-2-ones was reported with low
yield (44%).
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2. Results

Initially, we choose the Friedel-Crafts reaction between indole 1a and 4-benzyl-3,4-dihydro-2H
-benzo[b][1,4]oxazin-2-one 2a in acetonitrile at room temperature under air atmosphere and the
irradiation of white LEDs (5W). Under these conditions, a survey of photocatalyst were screened,
and the results are summarized in Table 1. In a preliminary study of the photocatalyst (entries
1–6), Ru(bpy)2Cl2 (A), Rose Bengal (B), Fukuzumi photocatalyst (E), and 9,10-phenanthrenedione (F)
afforded product 3aa with similar yields, around 30%, after 24 h. With these catalysts, we decided to
change the molar ratio of 1a:2a from 0.15:0.1 to 0.1:0.15 (entries 7–10). The best yield for compound
3aa was obtained when Rose Bengal (B) and 9,10-phenanthrenedione (F) were used as photocatalyst
(53% yield in both cases). In view of the good performance of the photocatalyst F, we decided to carry
out the reaction using another α-diketone, such as benzyl (G), however the yield of 3aa drop to only
15%. In view of the results, we decided to continue the optimization of the reaction conditions using
9,10-phenanthrenedione as a photocatalyst, due to its low molecular weight and its lower price in
relation to the other photocatalysts tested.

Table 1. Preliminary optimization of the reaction conditions a.
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Entry Photocatalyst (mol%) 1a (mmol) 2a (mmol) t (h) Yield of 3aa (%) b

1 A (1%) 0.15 0.1 24 28
2 B (5%) 0.15 0.1 27 38
3 C (5%) 0.15 0.1 46 27
4 D (5%) 0.15 0.1 48 13
5 E (5%) 0.15 0.1 48 35
6 F (10%) 0.15 0.1 25 33
7 A (1%) 0.1 0.15 24 48
8 B (5%) 0.1 0.15 24 53
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a Reaction conditions: 1a, 2a, x mol% of photocatalyst in 1 mL of CH3CN at rt under white LEDs 5W irradiation
and air atmosphere. b Isolated yield of 3aa.

In order to improve the yield of 3aa, we decided to investigate a dual catalytic protocol combining
Brønsted or Lewis acid catalysis and visible-light photoredox catalysis [58] (Table 2). For this purpose,
different Brønsted acids, such as PhCO2H or AcOH, were tested, however product 3aa was obtained
with lower yield (entries 2 and 3, respectively). After we decided to test Zn salts as Lewis acid,
obtaining an improvement of the catalytic performance when we used 10 mol% of Zn(OTf)2. In these
conditions, the functionalized benzoxazinone 3aa was obtained in 76% after 9 h (entry 5). Other Lewis
acids, such as Fe(OTf)2, Cu(OTf)2, and Sc(OTf)3 were evaluated (entries 6–8), obtaining lower yields
for the corresponding product 3aa. The lowering of the catalyst loading of Zn(OTf)2 to 5 mol%
did not influence in the yield of product 3aa (entry 10). Subsequently, different solvents such as
toluene, CH2Cl2, DMF, THF, or MeOH were screened (entries 11–14), obtaining the functionalized
benzoxazinone 3aa with much lower yields. We could diminish the photocatalyst and Lewis acid
loadings maintaining the yield of product 3aa (entries 15 and 16). Finally, some control experiments
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were carried out. Thus, in the absence of visible-light (entry 19) or 9,10-phenanthrenedione (entry 20),
the product 3aa was not detected or the conversion was very low.

Table 2. Optimization of the reaction conditions a.
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With the optimized reaction conditions in hand (entry 13, Table 2), the scope of the Friedel-Crafts
reaction was explored with a range of indoles 1 with several substituents in different positions
(Scheme 1). Indoles bearing electron-donating (Me, Ph, OMe, OH) or electron-withdrawing (F, Cl, Br)
groups furnished the corresponding functionalized benzoxazinones 3 in 54–80% yield, independently
of the position or the electronic character of the substituents. Moreover, disubstituted indoles, such as
1n–1p, afforded the corresponding products 3na–3pa, with high yields (up to 77%). It is interesting
to note the good results that were obtained with 2- and 4-substituted indoles, despite the steric
hindrance around the reactive carbon atom. Thus, for example, 2-methyl- and 4-methylindol gave
the corresponding reaction products with yields of 58% and 64%, respectively (versus 13% and 26%
described in the literature [76]). Also 2-phenyl-, 4-fluoro-, and 1,2-dimethylindole give yields of 80%,
79%, and 70%, respectively.

Afterwards, we examined the scope of the Friedel-Crafts alkylation with a range of
3,4-dihydro-1,4-benzoxazin-2-ones 2 using indole 1a as nucleophile (Scheme 2). An assortment of
derivatives with different groups on the benzyl moiety reacted smoothly in the optimized reaction
conditions, obtaining the corresponding products 3ab–3ad with good yields (56–88%). A thienylmethyl
group on the nitrogen of the benzoxazinone 1e could be used in the Friedel-Crafts reaction obtaining the
corresponding product 3ae with a high yield (77%). Additionally, 3,4-dihydro-1,4-benzoxazin-2-ones
1g and 1h, with methyl substituents at 6 and 7 positions worked well in this Friedel-Crafts reaction.
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conditions: 1a (0.1 mmol), 2 (0.15 mmol), F (5 mol%), and Zn(OTf)2 (2.5 mol%) in 1 mL of CH3CN at rt
under white LEDs irradiation. Isolated yields after column chromatography.

We also extended our methodology to other electron-rich arenes, such as pyrrole (4a),
N-methylpyrrole (4b), and 1,3,5-trimethoxybenzene (5) (Scheme 3), which were reacted with
3,4-dihydro-1,4-benzoxazin-2-ones 2a under the optimized reaction conditions, obtaining the
corresponding functionalized benzoxazinones 6a, 6b, and 7 with good yields (55–83%). Again, it is
interesting to note the good result obtained with 1,3,5-trimethoxybenzene, a starting material with a
large steric hindrance. The reaction product was obtained with a yield of 83% (versus 23% described
in the literature [76]).
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Furthermore, in order to demonstrate the sustainability of our visible-light photoredox
methodology, the reaction was performed using sun-light (Scheme 4). Therefore, when the
Friedel-Crafts reaction was placed outdoors under sun-light irradiation, the corresponding product
3aa was obtained with 87% yield in 5 h.
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Scheme 4. Friedel-Crafts alkylation of indole 1a with benzoxazinone 2a using sun-light irradiation.
Reaction conditions: 1a (0.1 mmol), 2a (0.15 mmol), F (5 mol%) and Zn(OTf)2 (2.5 mol%) in 1 mL of
CH3CN at rt under sun-light irradiation. Isolated yield after column chromatography.

Based on previous literature reports [3,70] and control experiments (see Supplementary
Materials for further details) a possible mechanism for the reaction is proposed in Scheme 5.
Initially, under visible-light irradiation, 9,10-phenanthrenedione F is excited to F*. Subsequently,
this excited state, by a single-electron transfer (SET), transforms 4-benzyl-3,4-dihydro-2H
-benzo[b][1,4]oxazin-2-one 2a into a nitrogen radical cation I, with the consequent reduction of F* to
the radical anion F.-, which can be oxidized by molecular oxygen (O2) regenerating the photocatalyst
F. On the other hand, deprotonation of the nitrogen radical cation I can generate the α-amino radical
II, which can be further oxidized to the iminium ion III. After the nucleophilic attack of indole 1a to
the iminium ion III, product 3aa is obtained. The radical mechanism was confirmed by an experiment
control using a radical scavenger (TEMPO). Under these conditions, a trace amount of product 3aa
was observed by 1H NMR of the crude reaction mixture and the corresponding adduct formed from
radical II and TEMPO was detected by HRMS. In this mechanism, the O2 is the terminal oxidant that
is reduced in H2O2. The role of molecular oxygen was also studied in a control experiment. When we
performed the photocatalyzed Friedel-Crafts reaction under argon atmosphere, the conversion to
product 3aa was very low (12%). However, the role of Zn(OTf)2 is not clear, with this Lewis acid,
the reaction is accelerated, activating either the electrophile or the nucleophile, or both.

To showcase the utility of our catalytic protocol, we performed several synthetic transformations
(Scheme 6). Compound 3aa was catalytically deprotected using H2 and 10% Pd/C in THF/EtOH,
and then the addition of 1 equivalent of DDQ for 1 h, allowed us to obtain the natural product
cephalandole A [78] (8) in 91% yield in a one-pot reaction. Moreover, compounds 3 can be used
to prepare tryptophol derivatives by a reduction of the carbonyl group of the benzoxazin-2-one.
Tryptophols are a class of indoles bearing a 3-(hydroxyethyl) side chain. These class of compounds have
been isolated from a variety of natural sources, and some of them possess biological activity [79–82].
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Therefore, compound 3aa has been reduced with LiAlH4 affording tryptophol derivative 9 with
57% yield.Catalysts 2018, 8, x FOR PEER REVIEW  7 of 22 

 

 
Scheme 5. Pausible mechanism for the visible-light photoredox Friedel-Crafts alkylation of 1a with 2a. 

To showcase the utility of our catalytic protocol, we performed several synthetic transformations 
(Scheme 6). Compound 3aa was catalytically deprotected using H2 and 10% Pd/C in THF/EtOH, and 
then the addition of 1 equivalent of DDQ for 1 h, allowed us to obtain the natural product 
cephalandole A [78] (8) in 91% yield in a one-pot reaction. Moreover, compounds 3 can be used to 
prepare tryptophol derivatives by a reduction of the carbonyl group of the benzoxazin-2-one. 
Tryptophols are a class of indoles bearing a 3-(hydroxyethyl) side chain. These class of compounds 
have been isolated from a variety of natural sources, and some of them possess biological activity 
[79–82]. Therefore, compound 3aa has been reduced with LiAlH4 affording tryptophol derivative 9 
with 57% yield. 

 
Scheme 6. Synthetic transformations. Isolated yields after column chromatography. 

3. Materials and Methods 

3.1. General Information 

Reactions were carried out in 5 mL vials under air, unless otherwise indicated. Commercial 
reagents were used as purchased. Reactions were monitored by thin-layer chromatography (TLC) 
analysis using Merck Silica Gel 60 F-254 (Sigma-Aldrich, St. Louis, MO, USA) thin layer plates and 
these are visualized using both an UV lamp (254 nm) and then a CAM solution (an aqueous solution 
of ceric ammonium molybdate). Flash column chromatography was performed on Merck Silica Gel 
60 (Sigma-Aldrich, St. Louis, MO, USA), 0.040–0.063 mm. NMR (Nuclear Magnetic Resonance) 
spectra were run in a Bruker DPX300 spectrometer (Bruker, Billerica, MA, USA) at 300 MHz for 1H 
and 75 MHz for 13C using residual nondeuterated solvent as internal standard (CHCl3: δ 7.26 and δ 
77.00 ppm, respectively, MeOH: δ 3.34 ppm and δ 49.87 ppm, respectively, Acetone: δ 2.05 ppm and 
δ 29.84 ppm, respectively). Chemical shifts are given in ppm. The carbon multiplicity was established 
by DEPT (Distortionless Enhancement by Polarization Transfer) experiments. High resolution mass 
spectra (HRMS-ESI) were recorded on a TRIPLETOFT5600 spectrometer (AB Sciex, Warrington, UK), 
equipped with an electrospray source with a capillary voltage of 4.5 kV (ESI). 

Scheme 5. Pausible mechanism for the visible-light photoredox Friedel-Crafts alkylation of 1a with 2a.

Catalysts 2018, 8, x FOR PEER REVIEW  7 of 22 

 

 
Scheme 5. Pausible mechanism for the visible-light photoredox Friedel-Crafts alkylation of 1a with 2a. 

To showcase the utility of our catalytic protocol, we performed several synthetic transformations 
(Scheme 6). Compound 3aa was catalytically deprotected using H2 and 10% Pd/C in THF/EtOH, and 
then the addition of 1 equivalent of DDQ for 1 h, allowed us to obtain the natural product 
cephalandole A [78] (8) in 91% yield in a one-pot reaction. Moreover, compounds 3 can be used to 
prepare tryptophol derivatives by a reduction of the carbonyl group of the benzoxazin-2-one. 
Tryptophols are a class of indoles bearing a 3-(hydroxyethyl) side chain. These class of compounds 
have been isolated from a variety of natural sources, and some of them possess biological activity 
[79–82]. Therefore, compound 3aa has been reduced with LiAlH4 affording tryptophol derivative 9 
with 57% yield. 

 
Scheme 6. Synthetic transformations. Isolated yields after column chromatography. 

3. Materials and Methods 

3.1. General Information 

Reactions were carried out in 5 mL vials under air, unless otherwise indicated. Commercial 
reagents were used as purchased. Reactions were monitored by thin-layer chromatography (TLC) 
analysis using Merck Silica Gel 60 F-254 (Sigma-Aldrich, St. Louis, MO, USA) thin layer plates and 
these are visualized using both an UV lamp (254 nm) and then a CAM solution (an aqueous solution 
of ceric ammonium molybdate). Flash column chromatography was performed on Merck Silica Gel 
60 (Sigma-Aldrich, St. Louis, MO, USA), 0.040–0.063 mm. NMR (Nuclear Magnetic Resonance) 
spectra were run in a Bruker DPX300 spectrometer (Bruker, Billerica, MA, USA) at 300 MHz for 1H 
and 75 MHz for 13C using residual nondeuterated solvent as internal standard (CHCl3: δ 7.26 and δ 
77.00 ppm, respectively, MeOH: δ 3.34 ppm and δ 49.87 ppm, respectively, Acetone: δ 2.05 ppm and 
δ 29.84 ppm, respectively). Chemical shifts are given in ppm. The carbon multiplicity was established 
by DEPT (Distortionless Enhancement by Polarization Transfer) experiments. High resolution mass 
spectra (HRMS-ESI) were recorded on a TRIPLETOFT5600 spectrometer (AB Sciex, Warrington, UK), 
equipped with an electrospray source with a capillary voltage of 4.5 kV (ESI). 

Scheme 6. Synthetic transformations. Isolated yields after column chromatography.

3. Materials and Methods

3.1. General Information

Reactions were carried out in 5 mL vials under air, unless otherwise indicated. Commercial
reagents were used as purchased. Reactions were monitored by thin-layer chromatography (TLC)
analysis using Merck Silica Gel 60 F-254 (Sigma-Aldrich, St. Louis, MO, USA) thin layer plates and
these are visualized using both an UV lamp (254 nm) and then a CAM solution (an aqueous solution
of ceric ammonium molybdate). Flash column chromatography was performed on Merck Silica Gel 60
(Sigma-Aldrich, St. Louis, MO, USA), 0.040–0.063 mm. NMR (Nuclear Magnetic Resonance) spectra
were run in a Bruker DPX300 spectrometer (Bruker, Billerica, MA, USA) at 300 MHz for 1H and 75 MHz
for 13C using residual nondeuterated solvent as internal standard (CHCl3: δ 7.26 and δ 77.00 ppm,
respectively, MeOH: δ 3.34 ppm and δ 49.87 ppm, respectively, Acetone: δ 2.05 ppm and δ 29.84 ppm,
respectively). Chemical shifts are given in ppm. The carbon multiplicity was established by DEPT
(Distortionless Enhancement by Polarization Transfer) experiments. High resolution mass spectra
(HRMS-ESI) were recorded on a TRIPLETOFT5600 spectrometer (AB Sciex, Warrington, UK), equipped
with an electrospray source with a capillary voltage of 4.5 kV (ESI).

All photocatalysts, indoles, and related arenes were commercially available.
3,4-dihydro-benzoxazin-2-ones derivatives 2a, 2b, and 2c were synthesized according to a
procedure that was published in the literature and the spectroscopic data (1H-NMR and 13C-NMR)
match with those reported. 3,4-dihydro-benzoxazin-2-ones derivatives 2d, 2e, 2f, 2g, and 2h were
synthesized according to the same procedure and were characterized by 1H-NMR, 13C-NMR,
and HRMS (see Supplementary Materials for further details).
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3.2. General Procedure: Friedel-Crafts Reaction between 4-Benzyl-3,4-Dihydro-1,4-Benzoxazin-2-Ones and
Indoles, Pyrroles and 1,3,5-Trimethoxybenzene

In a 5 mL vial were placed the proper aromatic compound (1, 4, or 5, 0.10 mmol), the proper
4-benzyl-3,4-dihydro-1,4-benzoxazin-2-one (2, 0.15 mmol), Zn(OTf)2 (1.0 mg, 0.0025 mmol, 2.5 mol%),
and 9,10-phenanthrenedione (F, 1.0 mg, 0.005 mmol, 5 mol%). Subsequently, the mixture was dissolved
in non-dried acetonitrile (1 mL) and was placed at two centimetres from the white LEDs. The reaction
was monitored by TLC and was stopped when the corresponding indole was consumed (NOTE: It is
important to analyse frequently the conversion and to stop the reaction in the precise moment to
avoid product decomposition. The reaction should not be left overnight under irradiation conditions).
The resulted reaction mixture was purified by column chromatography using hexane:EtOAc mixtures
(from 95:5 to 85:15) to afford pure product 3, 6, or 7.

3.3. Characterization Data for Compounds 3, 6 and 7

4-Benzyl-3-(1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3aa)
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0.058 mmol, 58% yield) after 15 h as a white solid. 1H NMR (300 MHz, CDCl3) δ 7.48 (dt, J = 8.0, 1.0 Hz,
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The spectroscopic data match with those reported in the literature [70].
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Using 2-methylindole (1c, 13.1 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one
(2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3ca was obtained (21.2 mg,
0.058 mmol, 58% yield) after 11 h as a white solid. 1H NMR (300 MHz, CDCl3) δ 7.98 (bs, 1H), 7.29–7.22
(m, 4H), 7.18 (dd, J = 7.9, 1.5 Hz, 1H), 7.16–7.03 (m, 5H), 6.95 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H), 6.89 (td,
J = 7.7, 1.4 Hz, 1H), 6.80 (dd, J = 8.1, 1.4 Hz, 1H), 5.34 (s, 1H), 4.59 (d, J = 16.1 Hz, 1H), 3.98 (d, J = 16.1 Hz,
1H), 2.02 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 166.0 (C), 140.7 (C), 136.6 (C), 135.4 (C), 135.2 (C), 134.6
(C), 128.7 (CH), 127.3 (CH), 127.2 (CH), 126.5 (C), 125.5 (CH), 121.7 (CH), 120.2 (CH), 119.1 (CH), 118.7
(CH), 117.0 (CH), 113.2 (CH), 110.5 (CH), 106.0 (C), 55.8 (CH), 49.9 (CH2), 11.6 (CH3). The spectroscopic
data match with those reported in the literature [70].

4-Benzyl-3-(4-methyl-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3da)
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(CH), 125.3 (CH), 123.3 (d, JC-F = 7.9 Hz, CH), 123.1 (CH), 119.8 (CH), 116.4 (CH), 115.2 (d, JC-F = 19.4 
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Using 4-methylindole (1d, 13.1 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one
(2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3da was obtained (23.6 mg,
0.064 mmol, 64% yield) after 12 h as a yellow oil. 1H NMR (300 MHz, CDCl3) δ 8.07 (bs, 1H), 7.34–7.29
(m, 3H), 7.21 (dd, J = 6.6, 3.0 Hz, 2H), 7.19–7.04 (m, 4H), 6.97–6.83 (m, 3H), 6.64 (d, J = 2.5 Hz, 1H), 5.70
(s, 1H), 4.63 (d, J = 14.4 Hz, 1H), 4.07 (d, J = 14.4 Hz, 1H), 2.48 (s, 3H); 13C NMR (75 MHz, CDCl3) δ
164.8 (C), 141.5 (C), 136.0 (C), 135.7 (C), 134.6 (C), 130.8 (C), 128.8 (CH), 128.1 (CH), 127.8 (CH), 125.4
(CH), 124.8 (C), 122.7 (CH), 122.6 (C), 122.4 (CH), 119.7 (CH), 116.5 (CH), 113.4 (CH), 110.2 (C), 109.2
(CH), 55.3 (CH), 51.0 (CH2), 20.5 (CH3). The spectroscopic data match with those reported in the
literature [70].

4-Benzyl-3-(4-fluoro-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ea)
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(2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3ea was obtained (29.4 mg,
0.079 mmol, 79% yield) after 14 h as a colourless oil. 1H NMR (300 MHz, CDCl3) δ 8.28 (s, 1H), 7.14
(dd, J = 7.9, 1.6 Hz, 1H), 7.11–7.08 (m, 2H), 7.00 (td, J = 7.7, 1.6 Hz, 1H), 6.89 (td, J = 7.7, 1.5 Hz, 1H),
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JC-F = 3.2 Hz, CH), 51.7 (d, JC-F = 1.5 Hz, CH2); HRMS (ESI) m/z: 373,1342 [M + H]+, C23H18FN2O2

required 373,1347.

4-Benzyl-3-(5-methyl-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3fa)
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4-Benzyl-3-(5-methyl-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3fa) 

 
Using 5-methylindole (1f, 13.1 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3fa was obtained 
(23.2 mg, 0.063 mmol, 63% yield) after 11 h as a brown oil. 1H NMR (300 MHz, CDCl3) δ 8.01 (bs, 1H), 
7.37–7.27 (m, 5H), 7.24 (dd, J = 1.6, 0.8 Hz, 1H), 7.20 (dd, J = 8.3, 0.7 Hz, 1H), 7.12 (dd, J = 7.9, 1.5 Hz, 
1H), 7.04 (ddd, J = 9.4, 8.0, 1.6 Hz, 2H), 6.92 (td, J = 7.7, 1.5 Hz, 1H), 6.82 (dd, J = 8.0, 1.4 Hz, 1H), 6.67 
(d, J = 2.5 Hz, 1H), 5.37 (d, J = 0.7 Hz, 1H), 4.61 (d, J = 14.8 Hz, 1H), 4.12 (d, J = 14.8 Hz, 1H), 2.41 (s, 
2H); 13C NMR (75 MHz, CDCl3) δ 164.6 (C), 141.9(C), 136.1 (C), 134.3 (C), 134.1 (C), 129.7 (C), 128.8 
(CH), 127.9 (CH), 127.8 (CH), 126.4 (C), 125.3 (CH), 124.4 (CH), 122.9 (CH), 119.8 (CH), 118.7 (CH), 
116.5 (CH), 113.9 (CH), 110.9 (CH), 108.2 (C), 55.8 (CH), 51.5 (CH2), 21.4 (CH3). The spectroscopic data 
match with those reported in the literature [70]. 

4-Benzyl-3-(5-methoxy-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ga) 

 
Using 5-methoxyindole (1g, 14.7 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3ga was obtained 
(26.1 mg, 0.068 mmol, 68% yield) after 11 h as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.05 (bs, 
1H), 7.40–7.27 (m, 5H), 7.19 (dd, J = 8.8, 0.7 Hz, 1H), 7.13 (dd, J = 7.9, 1.5 Hz, 1H), 7.08 (ddd, J = 8.0, 7.5, 
1.5 Hz, 1H), 6.91 (ddd, J = 7.5, 1.5 Hz, 1H), 6.88–6.79 (m, 3H), 6.72 (dd, J = 2.6, 0.6 Hz, 1H), 5.34 (d, J = 
0.6 Hz, 1H), 4.62 (dd, J = 14.7, 0.8 Hz, 1H), 4.10 (d, J = 14.7 Hz, 1H), 3.72 (s, 3H); 13C NMR (75 MHz, 
CDCl3) δ 164.7 (C), 154.6 (C), 141.8 (C), 136.1 (C), 134.3 (C), 130.8 (C), 128.8 (CH), 127.9 (CH), 127.8 
(CH), 126.4 (C), 125.5 (CH), 123.7 (CH), 119.8 (CH), 116.6 (CH), 113.7 (CH), 113.6 (CH), 112.1 (CH), 
108.7 (C), 100.3 (CH), 55.8 (CH), 55.7 (CH3), 51.3 (CH2). The spectroscopic data match with those 
reported in the literature [70]. 

4-Benzyl-3-(5-hydroxy-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ha) 

 
Using 5-hydroxyindole (1h, 13.3 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3ha was obtained 
(24.4 mg, 0.066 mmol, 66% yield) after 11 h as a colourless oil. 1H NMR (300 MHz, CDCl3) δ 8.05 (bs, 
1H), 7.38–7.23 (m, 5H), 7.13 (d, J = 8.7 Hz, 1H), 7.11–7.02 (m, 2H), 6.89 (td, J = 7.7, 1.4 Hz, 1H), 6.86–
6.79 (m, 2H), 6.76 (dd, J = 8.7, 2.3 Hz, 1H), 6.67 (d, J = 2.5 Hz, 1H), 5.28 (s, 1H), 4.60 (d, J = 14.9 Hz, 1H), 
4.12 (d, J = 14.9 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 164.7 (C), 150.1 (C), 141.7 (C), 136.1 (C), 134.1 
(C), 131.0 (C), 128.8 (CH), 127.8 (CH), 126.7 (C), 125.4 (CH), 123.8 (CH), 119.8 (CH), 116.6 (CH), 113.9 
(CH), 112.8 (CH), 112.0 (CH), 108.0 (C), 103.6 (CH), 56.0 (CH), 51.6 (CH2); HRMS (ESI) m/z: 371,1393 
[M + H]+, C23H19N2O3 required 371,1390. 
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Using 5-methylindole (1f, 13.1 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one
(2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3fa was obtained (23.2 mg,
0.063 mmol, 63% yield) after 11 h as a brown oil. 1H NMR (300 MHz, CDCl3) δ 8.01 (bs, 1H), 7.37–7.27
(m, 5H), 7.24 (dd, J = 1.6, 0.8 Hz, 1H), 7.20 (dd, J = 8.3, 0.7 Hz, 1H), 7.12 (dd, J = 7.9, 1.5 Hz, 1H),
7.04 (ddd, J = 9.4, 8.0, 1.6 Hz, 2H), 6.92 (td, J = 7.7, 1.5 Hz, 1H), 6.82 (dd, J = 8.0, 1.4 Hz, 1H), 6.67 (d,
J = 2.5 Hz, 1H), 5.37 (d, J = 0.7 Hz, 1H), 4.61 (d, J = 14.8 Hz, 1H), 4.12 (d, J = 14.8 Hz, 1H), 2.41 (s,
2H); 13C NMR (75 MHz, CDCl3) δ 164.6 (C), 141.9(C), 136.1 (C), 134.3 (C), 134.1 (C), 129.7 (C), 128.8
(CH), 127.9 (CH), 127.8 (CH), 126.4 (C), 125.3 (CH), 124.4 (CH), 122.9 (CH), 119.8 (CH), 118.7 (CH),
116.5 (CH), 113.9 (CH), 110.9 (CH), 108.2 (C), 55.8 (CH), 51.5 (CH2), 21.4 (CH3). The spectroscopic data
match with those reported in the literature [70].

4-Benzyl-3-(5-methoxy-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ga)
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4-Benzyl-3-(5-methyl-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3fa) 

 
Using 5-methylindole (1f, 13.1 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3fa was obtained 
(23.2 mg, 0.063 mmol, 63% yield) after 11 h as a brown oil. 1H NMR (300 MHz, CDCl3) δ 8.01 (bs, 1H), 
7.37–7.27 (m, 5H), 7.24 (dd, J = 1.6, 0.8 Hz, 1H), 7.20 (dd, J = 8.3, 0.7 Hz, 1H), 7.12 (dd, J = 7.9, 1.5 Hz, 
1H), 7.04 (ddd, J = 9.4, 8.0, 1.6 Hz, 2H), 6.92 (td, J = 7.7, 1.5 Hz, 1H), 6.82 (dd, J = 8.0, 1.4 Hz, 1H), 6.67 
(d, J = 2.5 Hz, 1H), 5.37 (d, J = 0.7 Hz, 1H), 4.61 (d, J = 14.8 Hz, 1H), 4.12 (d, J = 14.8 Hz, 1H), 2.41 (s, 
2H); 13C NMR (75 MHz, CDCl3) δ 164.6 (C), 141.9(C), 136.1 (C), 134.3 (C), 134.1 (C), 129.7 (C), 128.8 
(CH), 127.9 (CH), 127.8 (CH), 126.4 (C), 125.3 (CH), 124.4 (CH), 122.9 (CH), 119.8 (CH), 118.7 (CH), 
116.5 (CH), 113.9 (CH), 110.9 (CH), 108.2 (C), 55.8 (CH), 51.5 (CH2), 21.4 (CH3). The spectroscopic data 
match with those reported in the literature [70]. 

4-Benzyl-3-(5-methoxy-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ga) 

 
Using 5-methoxyindole (1g, 14.7 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3ga was obtained 
(26.1 mg, 0.068 mmol, 68% yield) after 11 h as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.05 (bs, 
1H), 7.40–7.27 (m, 5H), 7.19 (dd, J = 8.8, 0.7 Hz, 1H), 7.13 (dd, J = 7.9, 1.5 Hz, 1H), 7.08 (ddd, J = 8.0, 7.5, 
1.5 Hz, 1H), 6.91 (ddd, J = 7.5, 1.5 Hz, 1H), 6.88–6.79 (m, 3H), 6.72 (dd, J = 2.6, 0.6 Hz, 1H), 5.34 (d, J = 
0.6 Hz, 1H), 4.62 (dd, J = 14.7, 0.8 Hz, 1H), 4.10 (d, J = 14.7 Hz, 1H), 3.72 (s, 3H); 13C NMR (75 MHz, 
CDCl3) δ 164.7 (C), 154.6 (C), 141.8 (C), 136.1 (C), 134.3 (C), 130.8 (C), 128.8 (CH), 127.9 (CH), 127.8 
(CH), 126.4 (C), 125.5 (CH), 123.7 (CH), 119.8 (CH), 116.6 (CH), 113.7 (CH), 113.6 (CH), 112.1 (CH), 
108.7 (C), 100.3 (CH), 55.8 (CH), 55.7 (CH3), 51.3 (CH2). The spectroscopic data match with those 
reported in the literature [70]. 

4-Benzyl-3-(5-hydroxy-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ha) 

 
Using 5-hydroxyindole (1h, 13.3 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3ha was obtained 
(24.4 mg, 0.066 mmol, 66% yield) after 11 h as a colourless oil. 1H NMR (300 MHz, CDCl3) δ 8.05 (bs, 
1H), 7.38–7.23 (m, 5H), 7.13 (d, J = 8.7 Hz, 1H), 7.11–7.02 (m, 2H), 6.89 (td, J = 7.7, 1.4 Hz, 1H), 6.86–
6.79 (m, 2H), 6.76 (dd, J = 8.7, 2.3 Hz, 1H), 6.67 (d, J = 2.5 Hz, 1H), 5.28 (s, 1H), 4.60 (d, J = 14.9 Hz, 1H), 
4.12 (d, J = 14.9 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 164.7 (C), 150.1 (C), 141.7 (C), 136.1 (C), 134.1 
(C), 131.0 (C), 128.8 (CH), 127.8 (CH), 126.7 (C), 125.4 (CH), 123.8 (CH), 119.8 (CH), 116.6 (CH), 113.9 
(CH), 112.8 (CH), 112.0 (CH), 108.0 (C), 103.6 (CH), 56.0 (CH), 51.6 (CH2); HRMS (ESI) m/z: 371,1393 
[M + H]+, C23H19N2O3 required 371,1390. 
  

Using 5-methoxyindole (1g, 14.7 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one
(2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3ga was obtained
(26.1 mg, 0.068 mmol, 68% yield) after 11 h as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.05 (bs,
1H), 7.40–7.27 (m, 5H), 7.19 (dd, J = 8.8, 0.7 Hz, 1H), 7.13 (dd, J = 7.9, 1.5 Hz, 1H), 7.08 (ddd, J = 8.0, 7.5,
1.5 Hz, 1H), 6.91 (ddd, J = 7.5, 1.5 Hz, 1H), 6.88–6.79 (m, 3H), 6.72 (dd, J = 2.6, 0.6 Hz, 1H), 5.34 (d,
J = 0.6 Hz, 1H), 4.62 (dd, J = 14.7, 0.8 Hz, 1H), 4.10 (d, J = 14.7 Hz, 1H), 3.72 (s, 3H); 13C NMR (75 MHz,
CDCl3) δ 164.7 (C), 154.6 (C), 141.8 (C), 136.1 (C), 134.3 (C), 130.8 (C), 128.8 (CH), 127.9 (CH), 127.8
(CH), 126.4 (C), 125.5 (CH), 123.7 (CH), 119.8 (CH), 116.6 (CH), 113.7 (CH), 113.6 (CH), 112.1 (CH),
108.7 (C), 100.3 (CH), 55.8 (CH), 55.7 (CH3), 51.3 (CH2). The spectroscopic data match with those
reported in the literature [70].

4-Benzyl-3-(5-hydroxy-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ha)
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4-Benzyl-3-(5-methyl-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3fa) 

 
Using 5-methylindole (1f, 13.1 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3fa was obtained 
(23.2 mg, 0.063 mmol, 63% yield) after 11 h as a brown oil. 1H NMR (300 MHz, CDCl3) δ 8.01 (bs, 1H), 
7.37–7.27 (m, 5H), 7.24 (dd, J = 1.6, 0.8 Hz, 1H), 7.20 (dd, J = 8.3, 0.7 Hz, 1H), 7.12 (dd, J = 7.9, 1.5 Hz, 
1H), 7.04 (ddd, J = 9.4, 8.0, 1.6 Hz, 2H), 6.92 (td, J = 7.7, 1.5 Hz, 1H), 6.82 (dd, J = 8.0, 1.4 Hz, 1H), 6.67 
(d, J = 2.5 Hz, 1H), 5.37 (d, J = 0.7 Hz, 1H), 4.61 (d, J = 14.8 Hz, 1H), 4.12 (d, J = 14.8 Hz, 1H), 2.41 (s, 
2H); 13C NMR (75 MHz, CDCl3) δ 164.6 (C), 141.9(C), 136.1 (C), 134.3 (C), 134.1 (C), 129.7 (C), 128.8 
(CH), 127.9 (CH), 127.8 (CH), 126.4 (C), 125.3 (CH), 124.4 (CH), 122.9 (CH), 119.8 (CH), 118.7 (CH), 
116.5 (CH), 113.9 (CH), 110.9 (CH), 108.2 (C), 55.8 (CH), 51.5 (CH2), 21.4 (CH3). The spectroscopic data 
match with those reported in the literature [70]. 
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Using 5-methoxyindole (1g, 14.7 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3ga was obtained 
(26.1 mg, 0.068 mmol, 68% yield) after 11 h as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.05 (bs, 
1H), 7.40–7.27 (m, 5H), 7.19 (dd, J = 8.8, 0.7 Hz, 1H), 7.13 (dd, J = 7.9, 1.5 Hz, 1H), 7.08 (ddd, J = 8.0, 7.5, 
1.5 Hz, 1H), 6.91 (ddd, J = 7.5, 1.5 Hz, 1H), 6.88–6.79 (m, 3H), 6.72 (dd, J = 2.6, 0.6 Hz, 1H), 5.34 (d, J = 
0.6 Hz, 1H), 4.62 (dd, J = 14.7, 0.8 Hz, 1H), 4.10 (d, J = 14.7 Hz, 1H), 3.72 (s, 3H); 13C NMR (75 MHz, 
CDCl3) δ 164.7 (C), 154.6 (C), 141.8 (C), 136.1 (C), 134.3 (C), 130.8 (C), 128.8 (CH), 127.9 (CH), 127.8 
(CH), 126.4 (C), 125.5 (CH), 123.7 (CH), 119.8 (CH), 116.6 (CH), 113.7 (CH), 113.6 (CH), 112.1 (CH), 
108.7 (C), 100.3 (CH), 55.8 (CH), 55.7 (CH3), 51.3 (CH2). The spectroscopic data match with those 
reported in the literature [70]. 

4-Benzyl-3-(5-hydroxy-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ha) 

 
Using 5-hydroxyindole (1h, 13.3 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3ha was obtained 
(24.4 mg, 0.066 mmol, 66% yield) after 11 h as a colourless oil. 1H NMR (300 MHz, CDCl3) δ 8.05 (bs, 
1H), 7.38–7.23 (m, 5H), 7.13 (d, J = 8.7 Hz, 1H), 7.11–7.02 (m, 2H), 6.89 (td, J = 7.7, 1.4 Hz, 1H), 6.86–
6.79 (m, 2H), 6.76 (dd, J = 8.7, 2.3 Hz, 1H), 6.67 (d, J = 2.5 Hz, 1H), 5.28 (s, 1H), 4.60 (d, J = 14.9 Hz, 1H), 
4.12 (d, J = 14.9 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 164.7 (C), 150.1 (C), 141.7 (C), 136.1 (C), 134.1 
(C), 131.0 (C), 128.8 (CH), 127.8 (CH), 126.7 (C), 125.4 (CH), 123.8 (CH), 119.8 (CH), 116.6 (CH), 113.9 
(CH), 112.8 (CH), 112.0 (CH), 108.0 (C), 103.6 (CH), 56.0 (CH), 51.6 (CH2); HRMS (ESI) m/z: 371,1393 
[M + H]+, C23H19N2O3 required 371,1390. 
  

Using 5-hydroxyindole (1h, 13.3 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one
(2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3ha was obtained (24.4 mg,
0.066 mmol, 66% yield) after 11 h as a colourless oil. 1H NMR (300 MHz, CDCl3) δ 8.05 (bs, 1H),
7.38–7.23 (m, 5H), 7.13 (d, J = 8.7 Hz, 1H), 7.11–7.02 (m, 2H), 6.89 (td, J = 7.7, 1.4 Hz, 1H), 6.86–6.79 (m,
2H), 6.76 (dd, J = 8.7, 2.3 Hz, 1H), 6.67 (d, J = 2.5 Hz, 1H), 5.28 (s, 1H), 4.60 (d, J = 14.9 Hz, 1H), 4.12 (d,
J = 14.9 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 164.7 (C), 150.1 (C), 141.7 (C), 136.1 (C), 134.1 (C), 131.0
(C), 128.8 (CH), 127.8 (CH), 126.7 (C), 125.4 (CH), 123.8 (CH), 119.8 (CH), 116.6 (CH), 113.9 (CH), 112.8
(CH), 112.0 (CH), 108.0 (C), 103.6 (CH), 56.0 (CH), 51.6 (CH2); HRMS (ESI) m/z: 371,1393 [M + H]+,
C23H19N2O3 required 371,1390.

4-Benzyl-3-(5-bromo-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ia)
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4-Benzyl-3-(5-bromo-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ia) 

 
Using 5-bromoindole (1i, 19.6 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one 
(2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3ia was obtained (23.4 
mg, 0.054 mmol, 54% yield) after 14 h as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.21 (s, 1H), 7.54 
(d, J = 1.8 Hz, 1H), 7.40–7.32 (m, 3H), 7.32–7.24 (m, 3H), 7.17 (d, J = 8.6 Hz, 1H), 7.15–7.05 (m, 2H), 6.93 
(td, J = 7.7, 1.4 Hz, 1H), 6.84 (dd, J = 8.0, 1.3 Hz, 1H), 6.71 (d, J = 2.6 Hz, 1H), 5.29 (s, 1H), 4.62 (d, J = 
14.6 Hz, 1H), 4.06 (d, J = 14.6 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 164.46 (C), 141.84 (C), 135.73 (C), 
134.39 (C), 134.02 (C), 128.89 (CH), 127.95 (CH), 127.73 (CH), 126.45 (C), 125.75 (CH), 125.51 (CH), 
124.02 (CH), 121.78 (CH), 120.15 (CH), 116.60 (CH), 114.07 (CH), 113.75 (C), 112.73 (CH), 108.37 (C), 
55.32 (CH), 51.54 (CH2). The spectroscopic data match with those reported in the literature [70]. 

4-Benzyl-3-(6-methyl-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ja) 

 
Using 6-methylindole (1j, 13.1 mg, 0,1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3ja was obtained 
(28.3 mg, 0.077 mmol, 77% yield) after 14 h as a white solid. 1H NMR (300 MHz, CDCl3) δ 7.98 (bs, 
1H), 7.43–7.26 (m, 6H), 7.16–7.07 (m, 2H), 7.06 (td, J = 7.7, 1.6 Hz, 1H), 6.96 (dd, J = 8.2, 1.4 Hz, 1H), 
6.91 (td, J = 7.7, 1.5 Hz, 1H), 6.81 (dd, J = 8.0, 1.4 Hz, 1H), 6.66 (d, J = 2.5 Hz, 1H), 5.37 (d, J = 0.7 Hz, 
1H), 4.61 (d, J = 14.8 Hz, 1H), 4.15 (d, J = 14.8 Hz, 1H), 2.44 (s, 3H): 13C NMR (75 MHz, CDCl3) δ 164.6 
(C), 141.9 (C), 136.3 (C), 136.1 (C), 134.2 (C), 132.7 (C), 128.8 (CH), 127.8 (CH), 127.7 (CH), 125.3 (CH), 
123.9 (C), 122.3 (CH), 122.2 (CH), 119.8 (CH), 118.7 (CH), 116.5 (CH), 113.8 (C), 111.2 (CH), 108.6 (C), 
56.0 (CH), 51.5 (CH2), 21.6 (CH3). The spectroscopic data match with those reported in the literature 
[70]. 

4-Benzyl-3-(7-methyl-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ka) 

 
Using 7-methylindole (1k, 13.1 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3ka was obtained 
(26.1 mg, 0.071 mmol, 71% yield) after 14 h as a yellow oil. 1H NMR (300 MHz, CDCl3) δ 8.03 (s, 1H), 
7.33 (m, 6H), 7.12 (dd, J = 7.9, 1.5 Hz, 1H), 7.09–6.98 (m, 3H), 6.91 (td, J = 7.7, 1.4 Hz, 1H), 6.81 (dd, J = 
8.1, 1.4 Hz, 1H), 6.73 (d, J = 2.6 Hz, 1H), 5.39 (d, J = 0.7 Hz, 1H), 4.61 (d, J = 14.9 Hz, 1H), 4.16 (d, J = 
14.9 Hz, 1H), 2.42 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 164.5 (C), 141.9 (C), 136.1 (C), 135.4 (C), 134.2 
(C), 128.8 (CH), 127.8 (CH), 127.8 (CH), 125.7 (C), 125.3 (CH), 123.3 (CH), 122.6 (CH), 120.7 (CH), 120.5 
(C), 119.8 (CH), 116.8 (CH), 116.5(CH), 113.9 (CH), 109.2 (C), 56.0 (CH), 51.6 (CH2), 16.4 (CH3). The 
spectroscopic data match with those reported in the literature [70]. 
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Using 5-bromoindole (1i, 19.6 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one
(2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3ia was obtained (23.4 mg,
0.054 mmol, 54% yield) after 14 h as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.21 (s, 1H), 7.54
(d, J = 1.8 Hz, 1H), 7.40–7.32 (m, 3H), 7.32–7.24 (m, 3H), 7.17 (d, J = 8.6 Hz, 1H), 7.15–7.05 (m, 2H),
6.93 (td, J = 7.7, 1.4 Hz, 1H), 6.84 (dd, J = 8.0, 1.3 Hz, 1H), 6.71 (d, J = 2.6 Hz, 1H), 5.29 (s, 1H), 4.62 (d,
J = 14.6 Hz, 1H), 4.06 (d, J = 14.6 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 164.46 (C), 141.84 (C), 135.73
(C), 134.39 (C), 134.02 (C), 128.89 (CH), 127.95 (CH), 127.73 (CH), 126.45 (C), 125.75 (CH), 125.51 (CH),
124.02 (CH), 121.78 (CH), 120.15 (CH), 116.60 (CH), 114.07 (CH), 113.75 (C), 112.73 (CH), 108.37 (C),
55.32 (CH), 51.54 (CH2). The spectroscopic data match with those reported in the literature [70].

4-Benzyl-3-(6-methyl-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ja)
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4-Benzyl-3-(1,2-dimethyl-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3na) 
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2-one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3na was obtained 
(26.7 mg, 0.070 mmol, 70% yield) after 12 h as a brown oil. 1H NMR (300 MHz, CDCl3) δ 7.31–7.22 (m, 
4H), 7.19–7.14 (m, 3H), 7.14–7.08 (m, 2H), 7.05 (ddd, J = 8.1, 7.4, 1.6 Hz, 1H), 6.96 (ddd, J = 8.0, 6.9, 1.1 
Hz, 1H), 6.88 (ddd, J = 7.9, 7.5, 1.4 Hz, 1H), 6.78 (dd, J = 8.1, 1.4 Hz, 1H), 5.38 (d, J = 0.5 Hz, 1H), 4.57 
(d, J = 16.2 Hz, 1H), 3.99 (d, J = 16.2 Hz, 1H), 3.63 (s, 3H), 2.12 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 
166.1 (C), 140.9 (C), 140.7 (C), 137.0 (C), 136.8 (C), 134.6 (C), 128.7 (CH), 127.2 (CH), 127.1 (CH), 125.8 
(C), 125.5 (CH), 121.3 (CH), 120.0 (CH), 119.0 (CH), 118.6 (CH), 117.0 (CH), 113.2 (CH), 109.0 (CH), 
105.3 (C), 56.2 (CH), 49.9 (CH2), 29.6 (CH3), 10.3 (CH3). The spectroscopic data match with those 
reported in the literature [70]. 
  

Using 7-chloroindole (1l, 15.2 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one
(2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3la was obtained (22.9 mg,
0.059 mmol, 59% yield) after 16 h as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.29 (bs, 1H), 7.39
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(d, J = 8.0 Hz, 1H), 7.36–7.24 (m, 5H), 7.21 (dd, J = 7.6, 0.7 Hz, 1H), 7.15–7.02 (m, 3H), 6.92 (td, J = 7.7,
1.4 Hz, 1H), 6.85 (dd, J = 8.0, 1.3 Hz, 1H), 6.80 (d, J = 2.6 Hz, 1H), 5.35 (s, 1H), 4.64 (d, J = 14.7 Hz, 1H),
4.12 (d, J = 14.7 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 164.20 (C), 141.83 (C), 135.83 (C), 134.00 (C),
133.15 (C), 128.87 (CH), 127.88 (CH), 127.45 (C), 125.48 (CH), 123.41 (CH), 122.22 (CH), 121.29 (CH),
120.13 (CH), 117.93 (CH), 116.76 (C), 116.64 (CH), 113.92 (CH), 110.01 (C), 55.73 (CH), 51.63 (CH2).
The spectroscopic data match with those reported in the literature [70].

4-Benzyl-3-(2-phenyl-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ma)
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7.54–7.46 (m, 2H), 7.42–7.32 (m, 4H), 7.22–7.14 (m, 3H), 7.11–7.05 (m, 3H), 7.04–6.96 (m, 2H), 6.96–6.91 
(m, 2H), 6.90–6.82 (m, 1H), 6.69 (dd, J = 8.1, 1.4 Hz, 1H), 5.57 (s, 1H), 4.42 (d, J = 16.2 Hz, 1H), 3.87 (d, 
J = 16.3 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 166.2 (C), 140.5 (C), 139.4 (C), 136.4 (C), 135.9 (C), 134.2 
(C), 131.3 (C), 129.0 (CH), 128.9 (CH), 128.7 (CH), 128.4 (CH), 127.0 (CH), 126.9 (CH), 126.3 (C), 125.5 
(CH), 122.9 (CH), 120.7 (CH), 120.0 (CH), 118.9 (CH), 116.9 (CH), 113.1 (CH), 111.1 (CH), 107.6 (C), 
56.1 (CH), 50.0 (CH2). The spectroscopic data match with those reported in the literature [70]. 
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Using 1,2-dimethylindole (1n, 14.5 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-
2-one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3na was obtained 
(26.7 mg, 0.070 mmol, 70% yield) after 12 h as a brown oil. 1H NMR (300 MHz, CDCl3) δ 7.31–7.22 (m, 
4H), 7.19–7.14 (m, 3H), 7.14–7.08 (m, 2H), 7.05 (ddd, J = 8.1, 7.4, 1.6 Hz, 1H), 6.96 (ddd, J = 8.0, 6.9, 1.1 
Hz, 1H), 6.88 (ddd, J = 7.9, 7.5, 1.4 Hz, 1H), 6.78 (dd, J = 8.1, 1.4 Hz, 1H), 5.38 (d, J = 0.5 Hz, 1H), 4.57 
(d, J = 16.2 Hz, 1H), 3.99 (d, J = 16.2 Hz, 1H), 3.63 (s, 3H), 2.12 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 
166.1 (C), 140.9 (C), 140.7 (C), 137.0 (C), 136.8 (C), 134.6 (C), 128.7 (CH), 127.2 (CH), 127.1 (CH), 125.8 
(C), 125.5 (CH), 121.3 (CH), 120.0 (CH), 119.0 (CH), 118.6 (CH), 117.0 (CH), 113.2 (CH), 109.0 (CH), 
105.3 (C), 56.2 (CH), 49.9 (CH2), 29.6 (CH3), 10.3 (CH3). The spectroscopic data match with those 
reported in the literature [70]. 
  

Using 2-phenylindole (1m, 19.3 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one
(2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3ma was obtained
(34.4 mg, 0.080 mmol, 80% yield) after 14 h as a yellow oil. 1H NMR (300 MHz, CDCl3) δ 8.27 (bs, 1H),
7.54–7.46 (m, 2H), 7.42–7.32 (m, 4H), 7.22–7.14 (m, 3H), 7.11–7.05 (m, 3H), 7.04–6.96 (m, 2H), 6.96–6.91
(m, 2H), 6.90–6.82 (m, 1H), 6.69 (dd, J = 8.1, 1.4 Hz, 1H), 5.57 (s, 1H), 4.42 (d, J = 16.2 Hz, 1H), 3.87 (d,
J = 16.3 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 166.2 (C), 140.5 (C), 139.4 (C), 136.4 (C), 135.9 (C), 134.2
(C), 131.3 (C), 129.0 (CH), 128.9 (CH), 128.7 (CH), 128.4 (CH), 127.0 (CH), 126.9 (CH), 126.3 (C), 125.5
(CH), 122.9 (CH), 120.7 (CH), 120.0 (CH), 118.9 (CH), 116.9 (CH), 113.1 (CH), 111.1 (CH), 107.6 (C), 56.1
(CH), 50.0 (CH2). The spectroscopic data match with those reported in the literature [70].
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2-one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3na was obtained 
(26.7 mg, 0.070 mmol, 70% yield) after 12 h as a brown oil. 1H NMR (300 MHz, CDCl3) δ 7.31–7.22 (m, 
4H), 7.19–7.14 (m, 3H), 7.14–7.08 (m, 2H), 7.05 (ddd, J = 8.1, 7.4, 1.6 Hz, 1H), 6.96 (ddd, J = 8.0, 6.9, 1.1 
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(d, J = 16.2 Hz, 1H), 3.99 (d, J = 16.2 Hz, 1H), 3.63 (s, 3H), 2.12 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 
166.1 (C), 140.9 (C), 140.7 (C), 137.0 (C), 136.8 (C), 134.6 (C), 128.7 (CH), 127.2 (CH), 127.1 (CH), 125.8 
(C), 125.5 (CH), 121.3 (CH), 120.0 (CH), 119.0 (CH), 118.6 (CH), 117.0 (CH), 113.2 (CH), 109.0 (CH), 
105.3 (C), 56.2 (CH), 49.9 (CH2), 29.6 (CH3), 10.3 (CH3). The spectroscopic data match with those 
reported in the literature [70]. 
  

Using 1,2-dimethylindole (1n, 14.5 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3na was obtained
(26.7 mg, 0.070 mmol, 70% yield) after 12 h as a brown oil. 1H NMR (300 MHz, CDCl3) δ 7.31–7.22
(m, 4H), 7.19–7.14 (m, 3H), 7.14–7.08 (m, 2H), 7.05 (ddd, J = 8.1, 7.4, 1.6 Hz, 1H), 6.96 (ddd, J = 8.0,
6.9, 1.1 Hz, 1H), 6.88 (ddd, J = 7.9, 7.5, 1.4 Hz, 1H), 6.78 (dd, J = 8.1, 1.4 Hz, 1H), 5.38 (d, J = 0.5 Hz,
1H), 4.57 (d, J = 16.2 Hz, 1H), 3.99 (d, J = 16.2 Hz, 1H), 3.63 (s, 3H), 2.12 (s, 3H); 13C NMR (75 MHz,
CDCl3) δ 166.1 (C), 140.9 (C), 140.7 (C), 137.0 (C), 136.8 (C), 134.6 (C), 128.7 (CH), 127.2 (CH), 127.1
(CH), 125.8 (C), 125.5 (CH), 121.3 (CH), 120.0 (CH), 119.0 (CH), 118.6 (CH), 117.0 (CH), 113.2 (CH),
109.0 (CH), 105.3 (C), 56.2 (CH), 49.9 (CH2), 29.6 (CH3), 10.3 (CH3). The spectroscopic data match with
those reported in the literature [70].

4-Benzyl-3-(5-methoxy-7-methyl-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3oa)
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4-Benzyl-3-(5-methoxy-7-methyl-1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3oa) 

 
Using 5-methoxy-7-methylindole (1o, 16.1 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-
benzo[b][1,4]oxazin-2-one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the 
product 3oa was obtained (27.9 mg, 0.070 mmol, 70% yield) after 11 h as a colourless oil. 1H NMR 
(300 MHz, CDCl3) δ 7.98 (bs, 1H), 7.40–7.27 (m, 5H), 7.13 (dd, J = 7.9, 1.5 Hz, 1H), 7.07 (td, J = 7.7, 1.5 
Hz, 1H), 6.91 (td, J = 7.7, 1.4 Hz, 1H), 6.82 (dd, J = 8.1, 1.3 Hz, 1H), 6.74–6.62 (m, 3H), 5.33 (s, 1H), 4.61 
(d, J = 14.8 Hz, 1H), 4.10 (d, J = 14.7 Hz, 1H), 3.71 (s, 3H), 2.36 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 
164.7 (C), 154.7 (C), 141.8 (C), 136.1 (C), 134.3 (C), 130.6 (C), 128.8 (CH), 127.9 (CH), 127.8 (CH), 125.8 
(C), 125.4 (CH), 123.3 (CH), 121.6 (C), 119.8 (CH), 116.5 (CH), 114.1 (CH), 113.8 (CH), 109.1 (C), 97.8 
(CH), 55.8 (CH), 55.6 (CH3), 51.2 (CH2), 16.4 (CH3); HRMS (ESI) m/z: 399,1708 [M + H]+, C25H23N2O3 
required 399,1703. 

3-(1H-benzo[g]indol-3-yl)-4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3pa) 

 
Using 1H-benzo[g]indole (1p, 16.7 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-
2-one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3pa was obtained 
(31.0 mg, 0.077 mmol, 77% yield) after 14 h as a brown solid. 1H NMR (300 MHz, Acetone) δ 11.25 
(bs, 1H), 8.27 (d, J = 8.2 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.58–7.29 (m, 8H), 
7.18–7.02 (m, 2H), 6.99–6.87 (m, 3H), 5.68 (d, J = 0.6 Hz, 1H), 4.68 (d, J = 15.1 Hz, 1H), 4.40 (d, J = 15.1 
Hz, 1H); 13C NMR (75 MHz, Acetone) δ 165.05 (C), 143.02 (C), 138.04 (C), 135.22 (C), 131.87 (C), 131.47 
(C), 129.52 (CH), 129.40 (CH), 128.60 (CH), 128.32 (CH), 126.48 (CH), 126.08 (CH), 125.02 (CH), 123.09 
(C), 123.00 (C), 122.23 (CH), 121.56 (CH), 121.12 (CH), 120.64 (CH), 119.68 (CH), 116.95 (CH), 115.37 
(CH), 110.99 (C), 57.46 (CH), 52.53 (CH2); HRMS (ESI) m/z: 405,1592 [M + H]+, C27H21N2O2 required 
405,1598. 

3-(1H-indol-3-yl)-4-(4-methoxybenzyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ab) 

 
Using indole (1a, 11.7 mg, 0.1 mmol) and 4-(4-methoxybenzyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-
2-one (2b, 40.4 mg, 0.15 mmol), in accordance with General Procedure, the product 3ab was obtained 
(21.5 mg, 0.056 mmol, 56% yield) after 10 h as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.09 (bs, 
1H), 7.50 (d, J = 7.9 Hz, 1H), 7.35–7.30 (m, 1H), 7.24–7.16 (m, 3H), 7.16–7.04 (m, 3H), 6.92 (dd, J = 7.7, 
1.4 Hz, 1H), 6.90–6.83 (m, 3H), 6.71 (d, J = 2.4 Hz, 1H), 5.37 (d, J = 0.4 Hz, 1H), 4.57 (d, J = 14.4 Hz, 1H), 
4.07 (d, J = 14.3 Hz, 1H), 3.82 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 164.54 (C), 159.22 (C), 141.93 (C), 
135.76 (C), 134.29 (C), 129.22 (CH), 127.80 (C), 126.10 (C), 125.34 (CH), 122.79 (CH), 122.76 (CH), 120.40 
(CH), 119.81 (CH), 119.20 (CH), 116.50 (CH), 114.21 (CH), 113.86 (CH), 111.21 (CH), 108.75 (C), 55.30 
(CH), 50.90 (CH2). The spectroscopic data match with those reported in the literature [70]. 
  

Using 5-methoxy-7-methylindole (1o, 16.1 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-
benzo[b][1,4]oxazin-2-one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product
3oa was obtained (27.9 mg, 0.070 mmol, 70% yield) after 11 h as a colourless oil. 1H NMR (300 MHz,
CDCl3) δ 7.98 (bs, 1H), 7.40–7.27 (m, 5H), 7.13 (dd, J = 7.9, 1.5 Hz, 1H), 7.07 (td, J = 7.7, 1.5 Hz, 1H), 6.91
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(td, J = 7.7, 1.4 Hz, 1H), 6.82 (dd, J = 8.1, 1.3 Hz, 1H), 6.74–6.62 (m, 3H), 5.33 (s, 1H), 4.61 (d, J = 14.8 Hz,
1H), 4.10 (d, J = 14.7 Hz, 1H), 3.71 (s, 3H), 2.36 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 164.7 (C), 154.7 (C),
141.8 (C), 136.1 (C), 134.3 (C), 130.6 (C), 128.8 (CH), 127.9 (CH), 127.8 (CH), 125.8 (C), 125.4 (CH), 123.3
(CH), 121.6 (C), 119.8 (CH), 116.5 (CH), 114.1 (CH), 113.8 (CH), 109.1 (C), 97.8 (CH), 55.8 (CH), 55.6
(CH3), 51.2 (CH2), 16.4 (CH3); HRMS (ESI) m/z: 399,1708 [M + H]+, C25H23N2O3 required 399,1703.

3-(1H-benzo[g]indol-3-yl)-4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3pa)
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(21.5 mg, 0.056 mmol, 56% yield) after 10 h as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.09 (bs, 
1H), 7.50 (d, J = 7.9 Hz, 1H), 7.35–7.30 (m, 1H), 7.24–7.16 (m, 3H), 7.16–7.04 (m, 3H), 6.92 (dd, J = 7.7, 
1.4 Hz, 1H), 6.90–6.83 (m, 3H), 6.71 (d, J = 2.4 Hz, 1H), 5.37 (d, J = 0.4 Hz, 1H), 4.57 (d, J = 14.4 Hz, 1H), 
4.07 (d, J = 14.3 Hz, 1H), 3.82 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 164.54 (C), 159.22 (C), 141.93 (C), 
135.76 (C), 134.29 (C), 129.22 (CH), 127.80 (C), 126.10 (C), 125.34 (CH), 122.79 (CH), 122.76 (CH), 120.40 
(CH), 119.81 (CH), 119.20 (CH), 116.50 (CH), 114.21 (CH), 113.86 (CH), 111.21 (CH), 108.75 (C), 55.30 
(CH), 50.90 (CH2). The spectroscopic data match with those reported in the literature [70]. 
  

Using 1H-benzo[g]indole (1p, 16.7 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3pa was obtained
(31.0 mg, 0.077 mmol, 77% yield) after 14 h as a brown solid. 1H NMR (300 MHz, Acetone) δ 11.25
(bs, 1H), 8.27 (d, J = 8.2 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.58–7.29 (m, 8H),
7.18–7.02 (m, 2H), 6.99–6.87 (m, 3H), 5.68 (d, J = 0.6 Hz, 1H), 4.68 (d, J = 15.1 Hz, 1H), 4.40 (d, J = 15.1
Hz, 1H); 13C NMR (75 MHz, Acetone) δ 165.05 (C), 143.02 (C), 138.04 (C), 135.22 (C), 131.87 (C), 131.47
(C), 129.52 (CH), 129.40 (CH), 128.60 (CH), 128.32 (CH), 126.48 (CH), 126.08 (CH), 125.02 (CH), 123.09
(C), 123.00 (C), 122.23 (CH), 121.56 (CH), 121.12 (CH), 120.64 (CH), 119.68 (CH), 116.95 (CH), 115.37
(CH), 110.99 (C), 57.46 (CH), 52.53 (CH2); HRMS (ESI) m/z: 405,1592 [M + H]+, C27H21N2O2 required
405,1598.
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benzo[b][1,4]oxazin-2-one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the 
product 3oa was obtained (27.9 mg, 0.070 mmol, 70% yield) after 11 h as a colourless oil. 1H NMR 
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one (2b, 40.4 mg, 0.15 mmol), in accordance with General Procedure, the product 3ab was obtained
(21.5 mg, 0.056 mmol, 56% yield) after 10 h as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.09 (bs,
1H), 7.50 (d, J = 7.9 Hz, 1H), 7.35–7.30 (m, 1H), 7.24–7.16 (m, 3H), 7.16–7.04 (m, 3H), 6.92 (dd, J = 7.7,
1.4 Hz, 1H), 6.90–6.83 (m, 3H), 6.71 (d, J = 2.4 Hz, 1H), 5.37 (d, J = 0.4 Hz, 1H), 4.57 (d, J = 14.4 Hz, 1H),
4.07 (d, J = 14.3 Hz, 1H), 3.82 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 164.54 (C), 159.22 (C), 141.93 (C),
135.76 (C), 134.29 (C), 129.22 (CH), 127.80 (C), 126.10 (C), 125.34 (CH), 122.79 (CH), 122.76 (CH), 120.40
(CH), 119.81 (CH), 119.20 (CH), 116.50 (CH), 114.21 (CH), 113.86 (CH), 111.21 (CH), 108.75 (C), 55.30
(CH), 50.90 (CH2). The spectroscopic data match with those reported in the literature [70].
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4-(4-cyanobenzyl)-(3-(1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ac) 

 
Using indole (1a, 11.7 mg, 0.1 mmol) and 4-(4-cyanobenzyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2c, 39.6 mg, 0.15 mmol), in accordance with General Procedure, the product 3ac was obtained 
(33.4 mg, 0.088 mmol, 88% yield) after 13 h as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.15 (bs, 
1H), 7.66–7.59 (m, 2H), 7.52 (d, J = 7.9 Hz, 1H), 7.41 (d, J = 8.5 Hz, 2H), 7.35 (d, J = 8.1 Hz, 1H), 7.26–
7.19 (m, 1H), 7.18–7.11 (m, 2H), 7.04 (td, J = 7.7, 1.6 Hz, 1H), 6.94 (td, J = 7.7, 1.5 Hz, 1H), 6.76 (d, J = 
2.5 Hz, 1H), 6.65 (dd, J = 8.0, 1.4 Hz, 1H), 5.39 (s, 1H), 4.60 (d, J = 16.0 Hz, 1H), 4.27 (d, J = 16.0 Hz, 1H); 
13C NMR (75 MHz, CDCl3) δ 164.1 (C), 142.1 (C), 141.9 (C), 135.8 (C), 133.4 (C), 132.7 (CH), 128.1 (CH), 
126.0 (C), 125.4 (CH), 123.1 (CH), 122.9 (CH), 120.7 (CH), 120.6 (CH), 118.9 (CH), 118.6 (C), 116.8 (CH), 
113.9 (CH), 111.6 (C), 111.4 (CH), 108.5 (C), 57.0 (CH), 51.7 (CH2); HRMS (ESI) m/z: 380,1398 [M + H]+, 
C24H18N3O2 required 380,1394. 

4-(3-bromobenzyl)-3-(1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ad) 

 
Using indole (1a, 11.7 mg, 0.1 mmol) and 4-(3-bromobenzyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2d, 47.7 mg, 0.15 mmol), in accordance with General Procedure, the product 3ad was obtained 
(25.5 mg, 0.059 mmol, 59% yield) after 13 h as a brown oil. 1H NMR (300 MHz, CDCl3) δ 8.13 (s, 1H), 
7.54–7.49 (m, 1H), 7.46–7.41 (m, 2H), 7.35–7.31 (m, 1H), 7.25–7.18 (m, 3H), 7.17–7.11 (m, 2H), 7.05 (dd, 
J = 7.9, 1.6 Hz, 1H), 6.93 (td, J = 7.7, 1.4 Hz, 1H), 6.81–6.69 (m, 2H), 5.39 (d, J = 0.5 Hz, 1H), 4.54 (d, J = 
15.2 Hz, 1H), 4.12 (d, J = 15.3 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 164.4 (C), 141.9 (C), 138.7 (C), 135.8 
(C), 133.7 (C), 130.9 (CH), 130.7 (CH), 130.4 (CH), 126.2 (CH), 126.0 (C), 125.4 (CH), 122.9 (C), 122.9 
(CH), 122.9 (CH), 120.6 (CH), 120.2 (CH), 119.0 (CH), 116.7 (CH), 113.9 (CH), 111.3 (CH), 108.6 (C), 
56.3 (CH), 51.2 (CH2); HRMS (ESI) m/z: 433,0539 [ M + H]+, C23H18BrN2O2 required 433,0546. 

3-(1H-indol-3-yl)-4-(thiophen-2-ylmethyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ae) 

 
Using indole (1a, 11.7 mg, 0.1 mmol) and 4-(thiophen-2-ylmethyl)-3,4-dihydro-2H-
benzo[b][1,4]oxazin-2-one (2e, 36.8 mg, 0.15 mmol), in accordance with General Procedure, the 
product 3ad was obtained (27.8 mg, 0.077 mmol, 77% yield) after 24 h as a brown solid. 1H NMR (300 
MHz, CDCl3) δ 8.13 (bs, 1H), 7.56 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.27 (dd, J = 5.0, 1.0 Hz, 
1H), 7.25–7.17 (m, 1H), 7.17–7.06 (m, 3H), 6.99–6.90 (m, 4H), 6.74 (d, J = 2.4 Hz, 1H), 5.45 (s, 1H), 4.77 
(d, J = 15.1 Hz, 1H), 4.35 (d, J = 15.4 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 164.6 (C), 142.0 (C), 139.3 
(C), 135.8 (C), 133.7 (C), 126.9 (CH), 126.6 (CH), 126.0 (C), 125.7 (CH), 125.4 (CH), 123.2 (CH), 122.8 
(CH), 120.4 (CH), 120.3 (CH), 119.1 (CH), 116.7 (CH), 114.0 (CH), 111.3 (CH), 108.5 (C), 55.5 (CH), 46.7 
(CH2); HRMS (ESI) m/z: 361,1008 [M + H]+, C21H17N2O2S required 361,1005. 

Using indole (1a, 11.7 mg, 0.1 mmol) and 4-(4-cyanobenzyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one
(2c, 39.6 mg, 0.15 mmol), in accordance with General Procedure, the product 3ac was obtained (33.4 mg,
0.088 mmol, 88% yield) after 13 h as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.15 (bs, 1H), 7.66–7.59
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(m, 2H), 7.52 (d, J = 7.9 Hz, 1H), 7.41 (d, J = 8.5 Hz, 2H), 7.35 (d, J = 8.1 Hz, 1H), 7.26–7.19 (m, 1H),
7.18–7.11 (m, 2H), 7.04 (td, J = 7.7, 1.6 Hz, 1H), 6.94 (td, J = 7.7, 1.5 Hz, 1H), 6.76 (d, J = 2.5 Hz, 1H),
6.65 (dd, J = 8.0, 1.4 Hz, 1H), 5.39 (s, 1H), 4.60 (d, J = 16.0 Hz, 1H), 4.27 (d, J = 16.0 Hz, 1H); 13C NMR
(75 MHz, CDCl3) δ 164.1 (C), 142.1 (C), 141.9 (C), 135.8 (C), 133.4 (C), 132.7 (CH), 128.1 (CH), 126.0 (C),
125.4 (CH), 123.1 (CH), 122.9 (CH), 120.7 (CH), 120.6 (CH), 118.9 (CH), 118.6 (C), 116.8 (CH), 113.9
(CH), 111.6 (C), 111.4 (CH), 108.5 (C), 57.0 (CH), 51.7 (CH2); HRMS (ESI) m/z: 380,1398 [M + H]+,
C24H18N3O2 required 380,1394.

4-(3-bromobenzyl)-3-(1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ad)
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Using indole (1a, 11.7 mg, 0.1 mmol) and 4-(4-cyanobenzyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2c, 39.6 mg, 0.15 mmol), in accordance with General Procedure, the product 3ac was obtained 
(33.4 mg, 0.088 mmol, 88% yield) after 13 h as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.15 (bs, 
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113.9 (CH), 111.6 (C), 111.4 (CH), 108.5 (C), 57.0 (CH), 51.7 (CH2); HRMS (ESI) m/z: 380,1398 [M + H]+, 
C24H18N3O2 required 380,1394. 

4-(3-bromobenzyl)-3-(1H-indol-3-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ad) 

 
Using indole (1a, 11.7 mg, 0.1 mmol) and 4-(3-bromobenzyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2d, 47.7 mg, 0.15 mmol), in accordance with General Procedure, the product 3ad was obtained 
(25.5 mg, 0.059 mmol, 59% yield) after 13 h as a brown oil. 1H NMR (300 MHz, CDCl3) δ 8.13 (s, 1H), 
7.54–7.49 (m, 1H), 7.46–7.41 (m, 2H), 7.35–7.31 (m, 1H), 7.25–7.18 (m, 3H), 7.17–7.11 (m, 2H), 7.05 (dd, 
J = 7.9, 1.6 Hz, 1H), 6.93 (td, J = 7.7, 1.4 Hz, 1H), 6.81–6.69 (m, 2H), 5.39 (d, J = 0.5 Hz, 1H), 4.54 (d, J = 
15.2 Hz, 1H), 4.12 (d, J = 15.3 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 164.4 (C), 141.9 (C), 138.7 (C), 135.8 
(C), 133.7 (C), 130.9 (CH), 130.7 (CH), 130.4 (CH), 126.2 (CH), 126.0 (C), 125.4 (CH), 122.9 (C), 122.9 
(CH), 122.9 (CH), 120.6 (CH), 120.2 (CH), 119.0 (CH), 116.7 (CH), 113.9 (CH), 111.3 (CH), 108.6 (C), 
56.3 (CH), 51.2 (CH2); HRMS (ESI) m/z: 433,0539 [ M + H]+, C23H18BrN2O2 required 433,0546. 

3-(1H-indol-3-yl)-4-(thiophen-2-ylmethyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ae) 

 
Using indole (1a, 11.7 mg, 0.1 mmol) and 4-(thiophen-2-ylmethyl)-3,4-dihydro-2H-
benzo[b][1,4]oxazin-2-one (2e, 36.8 mg, 0.15 mmol), in accordance with General Procedure, the 
product 3ad was obtained (27.8 mg, 0.077 mmol, 77% yield) after 24 h as a brown solid. 1H NMR (300 
MHz, CDCl3) δ 8.13 (bs, 1H), 7.56 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.27 (dd, J = 5.0, 1.0 Hz, 
1H), 7.25–7.17 (m, 1H), 7.17–7.06 (m, 3H), 6.99–6.90 (m, 4H), 6.74 (d, J = 2.4 Hz, 1H), 5.45 (s, 1H), 4.77 
(d, J = 15.1 Hz, 1H), 4.35 (d, J = 15.4 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 164.6 (C), 142.0 (C), 139.3 
(C), 135.8 (C), 133.7 (C), 126.9 (CH), 126.6 (CH), 126.0 (C), 125.7 (CH), 125.4 (CH), 123.2 (CH), 122.8 
(CH), 120.4 (CH), 120.3 (CH), 119.1 (CH), 116.7 (CH), 114.0 (CH), 111.3 (CH), 108.5 (C), 55.5 (CH), 46.7 
(CH2); HRMS (ESI) m/z: 361,1008 [M + H]+, C21H17N2O2S required 361,1005. 

Using indole (1a, 11.7 mg, 0.1 mmol) and 4-(3-bromobenzyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one
(2d, 47.7 mg, 0.15 mmol), in accordance with General Procedure, the product 3ad was obtained (25.5 mg,
0.059 mmol, 59% yield) after 13 h as a brown oil. 1H NMR (300 MHz, CDCl3) δ 8.13 (s, 1H), 7.54–7.49
(m, 1H), 7.46–7.41 (m, 2H), 7.35–7.31 (m, 1H), 7.25–7.18 (m, 3H), 7.17–7.11 (m, 2H), 7.05 (dd, J = 7.9,
1.6 Hz, 1H), 6.93 (td, J = 7.7, 1.4 Hz, 1H), 6.81–6.69 (m, 2H), 5.39 (d, J = 0.5 Hz, 1H), 4.54 (d, J = 15.2 Hz,
1H), 4.12 (d, J = 15.3 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 164.4 (C), 141.9 (C), 138.7 (C), 135.8 (C),
133.7 (C), 130.9 (CH), 130.7 (CH), 130.4 (CH), 126.2 (CH), 126.0 (C), 125.4 (CH), 122.9 (C), 122.9 (CH),
122.9 (CH), 120.6 (CH), 120.2 (CH), 119.0 (CH), 116.7 (CH), 113.9 (CH), 111.3 (CH), 108.6 (C), 56.3 (CH),
51.2 (CH2); HRMS (ESI) m/z: 433,0539 [ M + H]+, C23H18BrN2O2 required 433,0546.
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(d, J = 15.1 Hz, 1H), 4.35 (d, J = 15.4 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 164.6 (C), 142.0 (C), 139.3 
(C), 135.8 (C), 133.7 (C), 126.9 (CH), 126.6 (CH), 126.0 (C), 125.7 (CH), 125.4 (CH), 123.2 (CH), 122.8 
(CH), 120.4 (CH), 120.3 (CH), 119.1 (CH), 116.7 (CH), 114.0 (CH), 111.3 (CH), 108.5 (C), 55.5 (CH), 46.7 
(CH2); HRMS (ESI) m/z: 361,1008 [M + H]+, C21H17N2O2S required 361,1005. 

Using indole (1a, 11.7 mg, 0.1 mmol) and 4-(thiophen-2-ylmethyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-
2-one (2e, 36.8 mg, 0.15 mmol), in accordance with General Procedure, the product 3ad was obtained
(27.8 mg, 0.077 mmol, 77% yield) after 24 h as a brown solid. 1H NMR (300 MHz, CDCl3) δ 8.13 (bs,
1H), 7.56 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.27 (dd, J = 5.0, 1.0 Hz, 1H), 7.25–7.17 (m, 1H),
7.17–7.06 (m, 3H), 6.99–6.90 (m, 4H), 6.74 (d, J = 2.4 Hz, 1H), 5.45 (s, 1H), 4.77 (d, J = 15.1 Hz, 1H), 4.35
(d, J = 15.4 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 164.6 (C), 142.0 (C), 139.3 (C), 135.8 (C), 133.7 (C),
126.9 (CH), 126.6 (CH), 126.0 (C), 125.7 (CH), 125.4 (CH), 123.2 (CH), 122.8 (CH), 120.4 (CH), 120.3
(CH), 119.1 (CH), 116.7 (CH), 114.0 (CH), 111.3 (CH), 108.5 (C), 55.5 (CH), 46.7 (CH2); HRMS (ESI) m/z:
361,1008 [M + H]+, C21H17N2O2S required 361,1005.
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3-(1H-indol-3-yl)-4-(3-phenylpropyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3af) 

 
Using indole (1a, 11.7 mg, 0.1 mmol) and 4-(3-phenylpropyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2f, 40.1 mg, 0.15 mmol), in accordance with General Procedure, the product 3af was obtained 
(28.3 mg, 0.074 mmol, 74% yield) after 24 h as a colourless oil. 1H NMR (300 MHz, CDCl3) δ 8.07 (bs, 
1H), 7.66 (dd, J = 7.7, 0.5 Hz, 1H), 7.33–7.25 (m, 3H), 7.25–7.11 (m, 5H), 7.11–7.04 (m, 2H), 6.86 (ddd, J 
= 8.1, 7.4, 1.4 Hz, 1H), 6.75 (dd, J = 8.0, 1.3 Hz, 1H), 6.69 (d, J = 2.2 Hz, 1H), 5.40 (d, J = 0.7 Hz, 1H), 
3.50–3.36 (m, 1H), 3.16–3.00 (m, 1H), 2.68 (t, J = 7.4 Hz, 2H), 2.09–1.94 (m, 2H); 13C NMR (75 MHz, 
CDCl3) δ 164.3 (C), 141.6 (C), 141.1 (C), 135.9 (C), 133.8 (C), 128.5 (CH), 128.4 (CH), 126.1 (CH), 125.9 
(C), 125.3 (CH), 122.8 (CH), 122.8 (CH), 120.5 (CH), 119.1 (CH), 119.1 (CH), 116.6 (CH), 112.9 (CH), 
111.3 (CH), 109.4 (C), 56.8 (CH), 47.3 (CH2), 32.9 (CH2), 28.3 (CH2); HRMS (ESI) m/z: 383,1759 [M + 
H]+, C25H23N2O2 required 383,1754. 

4-Benzyl-3-(1H-indol-3-yl)-7-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ag) 

 
Using indole (1a, 11.7 mg, 0.1 mmol) and 4-benzyl-7-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2g, 38.0 mg, 0.15 mmol), in accordance with General Procedure, the product 3ag was obtained 
(25.4 mg, 0.069 mmol, 69% yield) after 16 h as a yellow oil. 1H NMR (300 MHz, CDCl3) δ 8.11 (bs, 1H), 
7.52 (d, J = 7.9 Hz, 1H), 7.38–7.26 (m, 6H), 7.24–7.17 (m, 1H), 7.16–7.10 (m, 1H), 6.93 (d, J = 1.4 Hz, 1H), 
6.86 (ddd, J = 8.1, 1.9, 0.6 Hz, 1H), 6.73 (d, J = 2.5 Hz, 1H), 6.70 (d, J = 8.2 Hz, 1H), 5.37 (d, J = 0.4 Hz, 
1H), 4.56 (d, J = 14.8 Hz, 1H), 4.12 (d, J = 14.8 Hz, 1H), 2.31 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 164.8 
(C), 141.9 (C), 136.3 (C), 135.8 (C), 131.7 (C), 129.9 (C), 128.8 (CH), 127.8 (CH), 127.7 (CH), 126.2 (C), 
125.7 (CH), 122.8 (CH), 122.8 (CH), 120.4 (CH), 119.2 (CH), 117.1 (CH), 114.0 (CH), 111.2 (CH), 108.8 
(C), 56.0 (CH), 51.8 (CH2), 20.5 (CH3). The spectroscopic data match with those reported in the 
literature [70]. 

3-(1H-indol-3-yl)-6-methyl-4-(3-phenylpropyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ah) 

 
Using indole (1a, 11.7 mg, 0.1 mmol) and 6-methyl-4-(3-phenylpropyl)-3,4-dihydro-2H-
benzo[b][1,4]oxazin-2-one (2h, 38.0 mg, 0.15 mmol), in accordance with General Procedure, the 
product 3ah was obtained (23.8 mg, 0.060 mmol, 60% yield) after 16 h as a colourless oil. 1H NMR 
(300 MHz, CDCl3) δ 8.08 (bs, 1H), 7.71–7.61 (m, 1H), 7.39–7.25 (m, 3H), 7.24–7.09 (m, 5H), 6.93 (d, J = 
8.1 Hz, 1H), 6.72 (d, J = 2.3 Hz, 1H), 6.64 (ddd, J = 8.1, 1.8, 0.6 Hz, 1H), 6.50 (d, J = 1.5 Hz, 1H), 5.37 (d, 
J = 0.6 Hz, 1H), 3.41 (ddd, J = 13.9, 8.0, 5.8 Hz, 1H), 3.13–2.98 (m, 1H), 2.68 (td, J = 7.4, 3.1 Hz, 2H), 2.30 
(s, 3H), 2.10–1.88 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 164.4 (C), 141.1 (C), 139.6 (C), 135.9 (C), 135.0 
(C), 133.4 (C), 128.5 (CH), 128.4 (CH), 126.1 (CH), 126.0 (C), 122.9 (CH), 122.7 (CH), 120.4 (CH), 119.6 
(CH), 119.1 (CH), 116.2 (CH), 113.5 (CH), 111.3 (CH), 109.5 (C), 56.9 (CH), 47.2 (CH2), 32.9 (CH2), 28.3 
(CH2), 21.4 (CH3); HRMS (ESI) m/z: 397,1918 [M + H]+, C26H25N2O2 required 397,1911.  

Using indole (1a, 11.7 mg, 0.1 mmol) and 4-(3-phenylpropyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one
(2f, 40.1 mg, 0.15 mmol), in accordance with General Procedure, the product 3af was obtained (28.3 mg,
0.074 mmol, 74% yield) after 24 h as a colourless oil. 1H NMR (300 MHz, CDCl3) δ 8.07 (bs, 1H), 7.66
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(dd, J = 7.7, 0.5 Hz, 1H), 7.33–7.25 (m, 3H), 7.25–7.11 (m, 5H), 7.11–7.04 (m, 2H), 6.86 (ddd, J = 8.1, 7.4,
1.4 Hz, 1H), 6.75 (dd, J = 8.0, 1.3 Hz, 1H), 6.69 (d, J = 2.2 Hz, 1H), 5.40 (d, J = 0.7 Hz, 1H), 3.50–3.36 (m,
1H), 3.16–3.00 (m, 1H), 2.68 (t, J = 7.4 Hz, 2H), 2.09–1.94 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 164.3
(C), 141.6 (C), 141.1 (C), 135.9 (C), 133.8 (C), 128.5 (CH), 128.4 (CH), 126.1 (CH), 125.9 (C), 125.3 (CH),
122.8 (CH), 122.8 (CH), 120.5 (CH), 119.1 (CH), 119.1 (CH), 116.6 (CH), 112.9 (CH), 111.3 (CH), 109.4
(C), 56.8 (CH), 47.3 (CH2), 32.9 (CH2), 28.3 (CH2); HRMS (ESI) m/z: 383,1759 [M + H]+, C25H23N2O2

required 383,1754.

4-Benzyl-3-(1H-indol-3-yl)-7-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ag)
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Using indole (1a, 11.7 mg, 0.1 mmol) and 4-(3-phenylpropyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2f, 40.1 mg, 0.15 mmol), in accordance with General Procedure, the product 3af was obtained 
(28.3 mg, 0.074 mmol, 74% yield) after 24 h as a colourless oil. 1H NMR (300 MHz, CDCl3) δ 8.07 (bs, 
1H), 7.66 (dd, J = 7.7, 0.5 Hz, 1H), 7.33–7.25 (m, 3H), 7.25–7.11 (m, 5H), 7.11–7.04 (m, 2H), 6.86 (ddd, J 
= 8.1, 7.4, 1.4 Hz, 1H), 6.75 (dd, J = 8.0, 1.3 Hz, 1H), 6.69 (d, J = 2.2 Hz, 1H), 5.40 (d, J = 0.7 Hz, 1H), 
3.50–3.36 (m, 1H), 3.16–3.00 (m, 1H), 2.68 (t, J = 7.4 Hz, 2H), 2.09–1.94 (m, 2H); 13C NMR (75 MHz, 
CDCl3) δ 164.3 (C), 141.6 (C), 141.1 (C), 135.9 (C), 133.8 (C), 128.5 (CH), 128.4 (CH), 126.1 (CH), 125.9 
(C), 125.3 (CH), 122.8 (CH), 122.8 (CH), 120.5 (CH), 119.1 (CH), 119.1 (CH), 116.6 (CH), 112.9 (CH), 
111.3 (CH), 109.4 (C), 56.8 (CH), 47.3 (CH2), 32.9 (CH2), 28.3 (CH2); HRMS (ESI) m/z: 383,1759 [M + 
H]+, C25H23N2O2 required 383,1754. 

4-Benzyl-3-(1H-indol-3-yl)-7-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ag) 

 
Using indole (1a, 11.7 mg, 0.1 mmol) and 4-benzyl-7-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2g, 38.0 mg, 0.15 mmol), in accordance with General Procedure, the product 3ag was obtained 
(25.4 mg, 0.069 mmol, 69% yield) after 16 h as a yellow oil. 1H NMR (300 MHz, CDCl3) δ 8.11 (bs, 1H), 
7.52 (d, J = 7.9 Hz, 1H), 7.38–7.26 (m, 6H), 7.24–7.17 (m, 1H), 7.16–7.10 (m, 1H), 6.93 (d, J = 1.4 Hz, 1H), 
6.86 (ddd, J = 8.1, 1.9, 0.6 Hz, 1H), 6.73 (d, J = 2.5 Hz, 1H), 6.70 (d, J = 8.2 Hz, 1H), 5.37 (d, J = 0.4 Hz, 
1H), 4.56 (d, J = 14.8 Hz, 1H), 4.12 (d, J = 14.8 Hz, 1H), 2.31 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 164.8 
(C), 141.9 (C), 136.3 (C), 135.8 (C), 131.7 (C), 129.9 (C), 128.8 (CH), 127.8 (CH), 127.7 (CH), 126.2 (C), 
125.7 (CH), 122.8 (CH), 122.8 (CH), 120.4 (CH), 119.2 (CH), 117.1 (CH), 114.0 (CH), 111.2 (CH), 108.8 
(C), 56.0 (CH), 51.8 (CH2), 20.5 (CH3). The spectroscopic data match with those reported in the 
literature [70]. 

3-(1H-indol-3-yl)-6-methyl-4-(3-phenylpropyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ah) 

 
Using indole (1a, 11.7 mg, 0.1 mmol) and 6-methyl-4-(3-phenylpropyl)-3,4-dihydro-2H-
benzo[b][1,4]oxazin-2-one (2h, 38.0 mg, 0.15 mmol), in accordance with General Procedure, the 
product 3ah was obtained (23.8 mg, 0.060 mmol, 60% yield) after 16 h as a colourless oil. 1H NMR 
(300 MHz, CDCl3) δ 8.08 (bs, 1H), 7.71–7.61 (m, 1H), 7.39–7.25 (m, 3H), 7.24–7.09 (m, 5H), 6.93 (d, J = 
8.1 Hz, 1H), 6.72 (d, J = 2.3 Hz, 1H), 6.64 (ddd, J = 8.1, 1.8, 0.6 Hz, 1H), 6.50 (d, J = 1.5 Hz, 1H), 5.37 (d, 
J = 0.6 Hz, 1H), 3.41 (ddd, J = 13.9, 8.0, 5.8 Hz, 1H), 3.13–2.98 (m, 1H), 2.68 (td, J = 7.4, 3.1 Hz, 2H), 2.30 
(s, 3H), 2.10–1.88 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 164.4 (C), 141.1 (C), 139.6 (C), 135.9 (C), 135.0 
(C), 133.4 (C), 128.5 (CH), 128.4 (CH), 126.1 (CH), 126.0 (C), 122.9 (CH), 122.7 (CH), 120.4 (CH), 119.6 
(CH), 119.1 (CH), 116.2 (CH), 113.5 (CH), 111.3 (CH), 109.5 (C), 56.9 (CH), 47.2 (CH2), 32.9 (CH2), 28.3 
(CH2), 21.4 (CH3); HRMS (ESI) m/z: 397,1918 [M + H]+, C26H25N2O2 required 397,1911.  

Using indole (1a, 11.7 mg, 0.1 mmol) and 4-benzyl-7-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one
(2g, 38.0 mg, 0.15 mmol), in accordance with General Procedure, the product 3ag was obtained (25.4 mg,
0.069 mmol, 69% yield) after 16 h as a yellow oil. 1H NMR (300 MHz, CDCl3) δ 8.11 (bs, 1H), 7.52 (d,
J = 7.9 Hz, 1H), 7.38–7.26 (m, 6H), 7.24–7.17 (m, 1H), 7.16–7.10 (m, 1H), 6.93 (d, J = 1.4 Hz, 1H), 6.86
(ddd, J = 8.1, 1.9, 0.6 Hz, 1H), 6.73 (d, J = 2.5 Hz, 1H), 6.70 (d, J = 8.2 Hz, 1H), 5.37 (d, J = 0.4 Hz, 1H),
4.56 (d, J = 14.8 Hz, 1H), 4.12 (d, J = 14.8 Hz, 1H), 2.31 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 164.8 (C),
141.9 (C), 136.3 (C), 135.8 (C), 131.7 (C), 129.9 (C), 128.8 (CH), 127.8 (CH), 127.7 (CH), 126.2 (C), 125.7
(CH), 122.8 (CH), 122.8 (CH), 120.4 (CH), 119.2 (CH), 117.1 (CH), 114.0 (CH), 111.2 (CH), 108.8 (C), 56.0
(CH), 51.8 (CH2), 20.5 (CH3). The spectroscopic data match with those reported in the literature [70].
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Using indole (1a, 11.7 mg, 0.1 mmol) and 4-(3-phenylpropyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2f, 40.1 mg, 0.15 mmol), in accordance with General Procedure, the product 3af was obtained 
(28.3 mg, 0.074 mmol, 74% yield) after 24 h as a colourless oil. 1H NMR (300 MHz, CDCl3) δ 8.07 (bs, 
1H), 7.66 (dd, J = 7.7, 0.5 Hz, 1H), 7.33–7.25 (m, 3H), 7.25–7.11 (m, 5H), 7.11–7.04 (m, 2H), 6.86 (ddd, J 
= 8.1, 7.4, 1.4 Hz, 1H), 6.75 (dd, J = 8.0, 1.3 Hz, 1H), 6.69 (d, J = 2.2 Hz, 1H), 5.40 (d, J = 0.7 Hz, 1H), 
3.50–3.36 (m, 1H), 3.16–3.00 (m, 1H), 2.68 (t, J = 7.4 Hz, 2H), 2.09–1.94 (m, 2H); 13C NMR (75 MHz, 
CDCl3) δ 164.3 (C), 141.6 (C), 141.1 (C), 135.9 (C), 133.8 (C), 128.5 (CH), 128.4 (CH), 126.1 (CH), 125.9 
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111.3 (CH), 109.4 (C), 56.8 (CH), 47.3 (CH2), 32.9 (CH2), 28.3 (CH2); HRMS (ESI) m/z: 383,1759 [M + 
H]+, C25H23N2O2 required 383,1754. 
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Using indole (1a, 11.7 mg, 0.1 mmol) and 4-benzyl-7-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-
one (2g, 38.0 mg, 0.15 mmol), in accordance with General Procedure, the product 3ag was obtained 
(25.4 mg, 0.069 mmol, 69% yield) after 16 h as a yellow oil. 1H NMR (300 MHz, CDCl3) δ 8.11 (bs, 1H), 
7.52 (d, J = 7.9 Hz, 1H), 7.38–7.26 (m, 6H), 7.24–7.17 (m, 1H), 7.16–7.10 (m, 1H), 6.93 (d, J = 1.4 Hz, 1H), 
6.86 (ddd, J = 8.1, 1.9, 0.6 Hz, 1H), 6.73 (d, J = 2.5 Hz, 1H), 6.70 (d, J = 8.2 Hz, 1H), 5.37 (d, J = 0.4 Hz, 
1H), 4.56 (d, J = 14.8 Hz, 1H), 4.12 (d, J = 14.8 Hz, 1H), 2.31 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 164.8 
(C), 141.9 (C), 136.3 (C), 135.8 (C), 131.7 (C), 129.9 (C), 128.8 (CH), 127.8 (CH), 127.7 (CH), 126.2 (C), 
125.7 (CH), 122.8 (CH), 122.8 (CH), 120.4 (CH), 119.2 (CH), 117.1 (CH), 114.0 (CH), 111.2 (CH), 108.8 
(C), 56.0 (CH), 51.8 (CH2), 20.5 (CH3). The spectroscopic data match with those reported in the 
literature [70]. 

3-(1H-indol-3-yl)-6-methyl-4-(3-phenylpropyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (3ah) 

 
Using indole (1a, 11.7 mg, 0.1 mmol) and 6-methyl-4-(3-phenylpropyl)-3,4-dihydro-2H-
benzo[b][1,4]oxazin-2-one (2h, 38.0 mg, 0.15 mmol), in accordance with General Procedure, the 
product 3ah was obtained (23.8 mg, 0.060 mmol, 60% yield) after 16 h as a colourless oil. 1H NMR 
(300 MHz, CDCl3) δ 8.08 (bs, 1H), 7.71–7.61 (m, 1H), 7.39–7.25 (m, 3H), 7.24–7.09 (m, 5H), 6.93 (d, J = 
8.1 Hz, 1H), 6.72 (d, J = 2.3 Hz, 1H), 6.64 (ddd, J = 8.1, 1.8, 0.6 Hz, 1H), 6.50 (d, J = 1.5 Hz, 1H), 5.37 (d, 
J = 0.6 Hz, 1H), 3.41 (ddd, J = 13.9, 8.0, 5.8 Hz, 1H), 3.13–2.98 (m, 1H), 2.68 (td, J = 7.4, 3.1 Hz, 2H), 2.30 
(s, 3H), 2.10–1.88 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 164.4 (C), 141.1 (C), 139.6 (C), 135.9 (C), 135.0 
(C), 133.4 (C), 128.5 (CH), 128.4 (CH), 126.1 (CH), 126.0 (C), 122.9 (CH), 122.7 (CH), 120.4 (CH), 119.6 
(CH), 119.1 (CH), 116.2 (CH), 113.5 (CH), 111.3 (CH), 109.5 (C), 56.9 (CH), 47.2 (CH2), 32.9 (CH2), 28.3 
(CH2), 21.4 (CH3); HRMS (ESI) m/z: 397,1918 [M + H]+, C26H25N2O2 required 397,1911.  

Using indole (1a, 11.7 mg, 0.1 mmol) and 6-methyl-4-(3-phenylpropyl)-3,4-dihydro-2H-benzo[b][1,4]
oxazin-2-one (2h, 38.0 mg, 0.15 mmol), in accordance with General Procedure, the product 3ah was
obtained (23.8 mg, 0.060 mmol, 60% yield) after 16 h as a colourless oil. 1H NMR (300 MHz, CDCl3) δ
8.08 (bs, 1H), 7.71–7.61 (m, 1H), 7.39–7.25 (m, 3H), 7.24–7.09 (m, 5H), 6.93 (d, J = 8.1 Hz, 1H), 6.72 (d,
J = 2.3 Hz, 1H), 6.64 (ddd, J = 8.1, 1.8, 0.6 Hz, 1H), 6.50 (d, J = 1.5 Hz, 1H), 5.37 (d, J = 0.6 Hz, 1H), 3.41
(ddd, J = 13.9, 8.0, 5.8 Hz, 1H), 3.13–2.98 (m, 1H), 2.68 (td, J = 7.4, 3.1 Hz, 2H), 2.30 (s, 3H), 2.10–1.88 (m,
2H); 13C NMR (75 MHz, CDCl3) δ 164.4 (C), 141.1 (C), 139.6 (C), 135.9 (C), 135.0 (C), 133.4 (C), 128.5
(CH), 128.4 (CH), 126.1 (CH), 126.0 (C), 122.9 (CH), 122.7 (CH), 120.4 (CH), 119.6 (CH), 119.1 (CH),
116.2 (CH), 113.5 (CH), 111.3 (CH), 109.5 (C), 56.9 (CH), 47.2 (CH2), 32.9 (CH2), 28.3 (CH2), 21.4 (CH3);
HRMS (ESI) m/z: 397,1918 [M + H]+, C26H25N2O2 required 397,1911.

4-Benzyl-3-(1H-pyrrol-2-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (6a)
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4-Benzyl-3-(1H-pyrrol-2-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (6a) 

 
Using pyrrole (4a, 7 μL, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (2a, 35.8 
mg, 0.15 mmol), in accordance with General Procedure, the product 6a was obtained (16.7 mg, 0.055 
mmol, 55% yield) after 12 h as a brown oil. 1H NMR (300 MHz, CDCl3) δ 7.95 (bs, 1H), 7.45–7.27 (m, 
5H), 7.15–7.07 (m, 2H), 6.97–6.87 (m, 2H), 6.67 (td, J = 2.7, 1.5 Hz, 1H), 6.06 (dd, J = 6.1, 2.7 Hz, 1H), 
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0.15 mmol), in accordance with General Procedure, the product 6a was obtained (16.7 mg, 0.055 mmol,
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7.15–7.07 (m, 2H), 6.97–6.87 (m, 2H), 6.67 (td, J = 2.7, 1.5 Hz, 1H), 6.06 (dd, J = 6.1, 2.7 Hz, 1H), 5.92–5.83
(m, 1H), 5.03 (s, 1H), 4.65 (d, J = 14.3 Hz, 1H), 4.08 (d, J = 14.3 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ
164.15 (C), 141.39 (C), 135.58 (C), 133.73 (C), 128.96 (CH), 128.12 (CH), 128.04 (CH), 127.73 (CH), 125.67
(CH), 123.09 (C), 120.34 (CH), 119.12 (CH), 116.79 (CH), 113.85 (CH), 108.87 (CH), 56.86 (CH), 51.60
(CH2). The spectroscopic data match with those reported in the literature [70].

4-Benzyl-3-(1-methyl-1H-pyrrol-2-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (6b)
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Using 1,3,5-trimethoxybenzene (5, 16.8 mg, 0.1 mmol) and 4-benzyl-3,4-dihydro-2H-benzo[b][1,4]
oxazin-2-one (2a, 35.8 mg, 0.15 mmol), in accordance with General Procedure, the product 7 was
obtained (33.6 mg, 0.083 mmol, 83% yield) after 19 h as a yellowish solid. 1H NMR (400 MHz, CDCl3)
δ 7.25–7.21 (m, 2H), 7.21–7.15 (m, 3H), 7.04 (dd, J = 7.9, 1.5 Hz, 1H), 6.88 (ddd, J = 8.0, 7.6, 1.5 Hz, 1H),
6.70 (td, J = 7.7, 1.4 Hz, 1H), 6.50 (dd, J = 8.1, 1.3 Hz, 1H), 6.04 (s, 2H), 5.87 (s, 1H), 4.37 (d, J = 16.6 Hz,
1H), 4.22 (d, J = 16.6 Hz, 1H), 3.77 (s, 3H), 3.59 (s, 6H);13C NMR (75 MHz, CDCl3) δ 167.51 (C), 161.76
(C), 159.31 (C), 140.98 (C), 137.86 (C), 133.86 (C), 128.35 (CH), 126.80 (CH), 126.53 (CH), 124.63 (CH),
117.37 (CH), 115.70 (CH), 111.83 (CH), 106.70 (C), 90.68 (CH), 55.51 (CH3), 55.33 (CH), 53.89 (CH3),
50.71 (CH2). The spectroscopic data match with those reported in the literature [70].

3.4. Synthesis and Characterization of Cephalandole A (8)

In a 25 mL round bottomed flask were placed compound 3aa (30 mg, 0.085 mmol) and Pd/C 10%
w/w (18.1 mg, 0.017 mmol, 20 mol%). Subsequently, THF (2 mL) and EtOH (1 mL) were added and
the resulting suspension was bubbled with H2. After this, the reaction mixture was stirred at room
temperature for 16 h with a H2 balloon. The reaction was monitored by TLC, and, when compound
3aa was consumed, DDQ (19.3 mg, 0.085 mmol) was added directly to the reaction mixture. After 1 h,
the reaction mixture was filtered through a pad of Celite, the solvents were removed by reduced
pressure and the resulting residue was purified by column chromatography using a hexane:EtOAc 95:5
mixture as eluent to afford Cephalandole A, 8 (20.3 mg, 0.077 mmol, 92% yield) as a bright yellow solid.
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3-(1H-indol-3-yl)-2H-benzo[b][1,4]oxazin-2-one (Cephalandole A, 8)

Catalysts 2018, 8, x FOR PEER REVIEW  17 of 22 

 

3aa was consumed, DDQ (19.3 mg, 0.085 mmol) was added directly to the reaction mixture. After 1 
h, the reaction mixture was filtered through a pad of Celite, the solvents were removed by reduced 
pressure and the resulting residue was purified by column chromatography using a hexane:EtOAc 
95:5 mixture as eluent to afford Cephalandole A, 8 (20.3 mg, 0.077 mmol, 92% yield) as a bright yellow 
solid. 

3-(1H-indol-3-yl)-2H-benzo[b][1,4]oxazin-2-one (Cephalandole A, 8) 

 
Bright yellow solid; 1H NMR (300 MHz, Acetone) δ 11.04 (s, 1H), 8.88–8.82 (m, 1H), 8.78 (t, J = 1.5 Hz, 
1H), 7.87–7.83 (m, 1H), 7.57–7.49 (m, 1H), 7.49–7.35 (m, 2H), 7.35–7.28 (m, 1H), 7.28–7.21 (m, 2H); 13C 
NMR (75 MHz, Acetone) δ 153.00 (C), 149.05 (C), 146.22 (C), 137.86 (C), 134.58 (CH), 133.20 (C), 129.58 
(CH), 128.88 (CH), 127.36 (C), 126.12 (CH), 124.18 (CH), 124.10 (CH), 122.47 (CH), 116.75 (CH), 112.77 
(CH), 112.37 (C). The spectroscopic data match with those reported in the literature [70]. 

3.5. Synthesis and Characterization of Compound 9 

In a 10 mL round bottomed flask was placed compound 3aa (15.5 mg, 0.044 mmol) and it was 
purgued with N2. Afterwards, dry THF (1 mL) was added via syringe and the resulted solution was 
cooled down to 0 °C. After 5 min, LiAlH4 (0.08 mL 1 M in THF, 0.087 mmol, two equivalents) was 
added via syringe and the mixture was stirred for 1.5 h at 0 °C. Subsequently, the reaction was 
stopped with the addition of saturated aqueous NH4Cl solution (1 mL) and saturated aqueous 
Rochelle Salt solution (5 mL). The resulting mixture was extracted with EtOAc (three times), washed 
with brine, and dried over anhydrous MgSO4. The solvent was removed by reduced pressure and the 
resulting residue was purified by column chromatography using hexane: EtOAc mixtures as eluent 
(from 90:10 to 60:40) to afford compound 9 (9.0 mg, 0.025 mmol, 57% yield) as a colourless oil. 

2-(Benzyl(2-hydroxy-1-(1H-indol-3-yl)ethyl)amino)phenol (9) 

 
Brown oil; 1H NMR (300 MHz, CDCl3:CD3OD) δ 8.59 (bs, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.36–7.27 (m, 
5H), 7.25–7.20 (m, 1H), 7.11 (t, J = 7.6 Hz, 2H), 7.03–6.95 (m, 2H), 6.70 (d, J = 7.8 Hz, 2H), 6.55 (d, J = 7.9 
Hz, 1H), 4.29–4.21 (m, 3H), 4.12 (dd, J = 10.8, 6.1 Hz, 1H), 4.01 (dd, J = 10.8, 7.7 Hz, 1H); 13C NMR (75 
MHz, CDCl3) δ 144.42 (C), 138.92 (C), 136.28 (C), 128.45 (CH), 127.68 (CH), 127.16 (CH), 126.90 (C), 
121.85 (CH), 121.77 (CH), 120.18 (CH), 119.32 (CH), 119.08 (CH), 116.17 (C), 116.10 (C), 114.15 (CH), 
112.24 (CH), 111.08 (CH), 111.03 (CH), 66.23 (CH2), 48.79 (CH2), 44.63 (CH); HRMS (ESI) m/z: 359,1757 
[M + H]+, C23H23N2O2 required 359,1754. 

4. Conclusions 

In summary, we have described a visible-light functionalization of 3,4-dihydro-1,4-benzoxazin-
2-ones with indoles and other electron-rich arenes using a dual catalytic system that was formed by 
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the corresponding products are obtained with good yields. Unlike the photoredox catalytic system 
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Bright yellow solid; 1H NMR (300 MHz, Acetone) δ 11.04 (s, 1H), 8.88–8.82 (m, 1H), 8.78 (t, J = 1.5 Hz,
1H), 7.87–7.83 (m, 1H), 7.57–7.49 (m, 1H), 7.49–7.35 (m, 2H), 7.35–7.28 (m, 1H), 7.28–7.21 (m, 2H);
13C NMR (75 MHz, Acetone) δ 153.00 (C), 149.05 (C), 146.22 (C), 137.86 (C), 134.58 (CH), 133.20 (C),
129.58 (CH), 128.88 (CH), 127.36 (C), 126.12 (CH), 124.18 (CH), 124.10 (CH), 122.47 (CH), 116.75 (CH),
112.77 (CH), 112.37 (C). The spectroscopic data match with those reported in the literature [70].

3.5. Synthesis and Characterization of Compound 9

In a 10 mL round bottomed flask was placed compound 3aa (15.5 mg, 0.044 mmol) and it was
purgued with N2. Afterwards, dry THF (1 mL) was added via syringe and the resulted solution was
cooled down to 0 ◦C. After 5 min, LiAlH4 (0.08 mL 1 M in THF, 0.087 mmol, two equivalents) was
added via syringe and the mixture was stirred for 1.5 h at 0 ◦C. Subsequently, the reaction was stopped
with the addition of saturated aqueous NH4Cl solution (1 mL) and saturated aqueous Rochelle Salt
solution (5 mL). The resulting mixture was extracted with EtOAc (three times), washed with brine,
and dried over anhydrous MgSO4. The solvent was removed by reduced pressure and the resulting
residue was purified by column chromatography using hexane: EtOAc mixtures as eluent (from 90:10
to 60:40) to afford compound 9 (9.0 mg, 0.025 mmol, 57% yield) as a colourless oil.
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[M + H]+, C23H23N2O2 required 359,1754. 

4. Conclusions 

In summary, we have described a visible-light functionalization of 3,4-dihydro-1,4-benzoxazin-
2-ones with indoles and other electron-rich arenes using a dual catalytic system that was formed by 
a Lewis acid (Zn(OTf)2) and 9,10-phenanthrenedione as photocatalyst. Under our reaction conditions, 
the corresponding products are obtained with good yields. Unlike the photoredox catalytic system 
described earlier [76], the results that were obtained with our method are not affected by the steric 
hindrance around the reactive carbon atom. Thus, 2- and 4-substituted indoles and 1,3,5-
trimethoxybenzene give the corresponding reaction products with good yields. Besides our method 
uses one of the cheapest, simple, and commercially available organophotocatalyst (9,10-

Brown oil; 1H NMR (300 MHz, CDCl3:CD3OD) δ 8.59 (bs, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.36–7.27 (m,
5H), 7.25–7.20 (m, 1H), 7.11 (t, J = 7.6 Hz, 2H), 7.03–6.95 (m, 2H), 6.70 (d, J = 7.8 Hz, 2H), 6.55 (d,
J = 7.9 Hz, 1H), 4.29–4.21 (m, 3H), 4.12 (dd, J = 10.8, 6.1 Hz, 1H), 4.01 (dd, J = 10.8, 7.7 Hz, 1H); 13C NMR
(75 MHz, CDCl3) δ 144.42 (C), 138.92 (C), 136.28 (C), 128.45 (CH), 127.68 (CH), 127.16 (CH), 126.90 (C),
121.85 (CH), 121.77 (CH), 120.18 (CH), 119.32 (CH), 119.08 (CH), 116.17 (C), 116.10 (C), 114.15 (CH),
112.24 (CH), 111.08 (CH), 111.03 (CH), 66.23 (CH2), 48.79 (CH2), 44.63 (CH); HRMS (ESI) m/z: 359,1757
[M + H]+, C23H23N2O2 required 359,1754.

4. Conclusions

In summary, we have described a visible-light functionalization of 3,4-dihydro-1,4-benzoxazin-
2-ones with indoles and other electron-rich arenes using a dual catalytic system that was formed
by a Lewis acid (Zn(OTf)2) and 9,10-phenanthrenedione as photocatalyst. Under our reaction
conditions, the corresponding products are obtained with good yields. Unlike the photoredox
catalytic system described earlier [76], the results that were obtained with our method are not
affected by the steric hindrance around the reactive carbon atom. Thus, 2- and 4-substituted indoles
and 1,3,5-trimethoxybenzene give the corresponding reaction products with good yields. Besides
our method uses one of the cheapest, simple, and commercially available organophotocatalyst
(9,10-phenanthrenedione) and oxygen from air as oxidant, providing a valuable contribution for
the development of more “green” chemical synthesis. Moreover, several transformations have been
carried out with the reaction products. Studies to further extend the scope of this reaction are currently
underway in our laboratory.
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