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Abstract: V-containing mixed oxide catalytic materials are well known as active for partial oxidation
reactions. Oxidation reactions are used in industrial chemistry and for the abatement of pollutants.
An analysis of the literature in this field during the past few years shows a clear increase in the use
of vanadium-based materials as catalysts for environmental applications. The present contribution
makes a brief revision of the main applications of vanadium containing mixed oxides in environmental
catalysis, analyzing the properties that present the catalysts with a better behavior that, in most cases,
is related with the stabilization of reduced vanadium species (as V4+/V3+) during reaction.
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1. Introduction: Main Applications of Vanadium Oxide-Based Materials in Catalysis

The chemical reactions that involve a change in the oxidation state of products (oxidations and
reductions) are of great importance in industrial chemistry and environmental engineering, since
most degradation reactions of pollutants involve oxidation or reduction. To catalyze these reactions,
the catalytic material must have redox sites able to reduce/oxidize the starting molecule.

Most partial oxidation reactions take place through the Mars-van-Krevelen mechanism, in which
the lattice oxygen of the oxide catalysts is incorporated to the oxidation product [1]; then, such a
reduced site is reoxidized by the molecular oxygen reactant, restoring the original catalyst state.
Experimental evidence of such a mechanism has been found for different oxidation reactions and
several oxide catalysts [2]. Effective catalysts must exchange their lattice oxygen during reaction;
they must have dynamic structures capable of changing the oxidation state during the reaction cycles.
The vanadium oxides are able to be with oxidation states V, IV, and III, and to interconvert with
relative ease, which makes them effective oxidation catalysts [3]. However, not all redox reactions of
environmental interest operate on this mechanism.

The most studied catalytic systems for partial oxidation reactions are those containing
vanadium [4]. VOx-based catalysts are efficient oxidation catalysts due to their redox properties,
and during the past few decades several studies have focused on the development of mixed-oxide
catalytic systems containing vanadium; in this manner, the use of another compound (dopant,
component, or support) modulates the activity of the catalysts. Thus, there are several well-known
mixed-oxide vanadium-containing catalytic systems that have been developed during the past
few decades: For example, the VPO (Vanadium-Phosphorous-Oxides) catalyst [5–9], which is
commercially used for the transformation of n-butane into maleic anhydride; Vanadium-Animony
Oxides (VSbO) [10–14], which is used mainly for ammoxidation reactions; or the Mo–V multioxide
system [15–20], used for propane transformation into acrylic acid. Figure 1 illustrates an analysis of the
literature on vanadium oxide catalysts, underlining their main uses and their evolution during the last
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few decades. Figure 1A plots the total number of papers when the words “vanadium oxide catalysts”.
The total number of papers published per year has remained fairly stable in the last 20 years; however,
the number of these papers that also include the word “environmental” is increasing. The percentage
of “environmental” with respect to the total number per year is also shown in Figure 1A; it increases
continuously, from 1–5% in 1988–1991 to more than 60% during the last three years (from 2015).
A deep analysis of these papers shows how, in the 1990s, most studies focused on the development of
VOx-supported catalysts for partial oxidation and ammoxidation reactions; thus, they were mainly
focused on chemical reactions for the production of chemical intermediates with an interest in
petrochemical industry (such as butane to maleic anhydride [21], toluene to benzonitrile [22,23],
methane to formaldehyde [24], propane to acrylonitrile [10,11], and alkane oxydehydrogenation
(ODH) [25], among others). It is observed, therefore, in the study of the historical evolution of the
bibliography as in the eighties–nineties that the interest was in the synthesis of molecules and, although
these applications are still being developed, the interest in the applications in environmental catalysis is
increasing. Figure 1B illustrates the main environmental applications in which these materials are used,
based on the number of papers that, in addition to “Vanadium Oxide Catalysts”, also contain “SCR”,
“photocatalysis”, and “total oxidation”. These data reveal that SCR (selective catalytic reduction) is the
most studied environmental process in which vanadium-based catalysts have been explored.

Figure 1 clearly accounts for the significant number of review papers that focus on
vanadium oxide catalytic-based materials for alkane partial (am)oxidations, including oxidative
dehydrogenations [26–30]. Figure 1 also illustrates that many environmental applications have
been developed with VOx catalytic materials during the past twenty years. Thus, the objective
of this contribution is to review the main environmental catalytic applications for vanadium oxide
catalytic materials.
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2. Removal of NOx

One of the most important environmental issues that catalysis engineering must face is the
abatement of harmful compounds, such as oxides of nitrogen (NOx), from both stationary and mobile
sources. During the last few years, more efforts have focused on the development of catalytic converter
technologies for diesel-powered vehicle engines that operate at high air/fuel ratios. Several techniques
seem feasible for NOx abatement, one of the most promising being ammonia- or urea-selective catalytic
reduction (SCR) [31].

Several catalytic systems have shown to be promising for this process, with active phases such
as Cu- and Fe-based catalysts [31–33] or Mn–Ce–O mixed oxides [34,35]; V-based catalysts are also
very promising [36]. CeO2- and TiO2-supported vanadia catalysts have been extensively studied
for NOx removal. Forzatti’s group investigated V–Mo–O/TiO2 catalysts [37] and they reported
that the ternary V–Mo–O/TiO2 were more active in the SCR reaction at low temperatures than the
corresponding binary VOx/TiO2 and MoOx/TiO2 at a given metal oxide loading. They described
that the simultaneous presence of V and Mo enhances the redox properties of the catalysts and, thus,
their reactivity. The improved catalytic properties of Mo–V–O oxides have also been reported for
partial oxidation reactions, such as the dehydrogenation of propane [38–40], propane ammoxidation
to acrylonitrile [41–43], or the selective propane oxidation into acrylic acid [44,45]. It has been
demonstrated that molybdenum favors the presence of reduced vanadium V4+ species, which are
stabilized in a rutile-like structure that is responsible for the redox cycle [46]. Temperature Programmed
Reduction (TPR) experiments [37] show that the addition of Mo to V/TiO2 favors vanadium reduction,
with Mo–V–O catalysts being more easily reduced with respect the corresponding binary supported
samples and their bulk counterparts. Similar results were found with W: Rhe V–W–O/TiO2 catalysts
presented a higher SCR performance than VOx/TiO2 and WOx/TiO2 catalytic systems [47,48], since
tungsten sites improve the reducibility and formation of reduced vanadium species [49]. Thus, both
Mo and/or W enhance the reduction of VOx species, this V4+/V3+ species being the active sites for
NO2 formation [50]. NO oxidation to NO2 is important to the SCR reaction at low temperatures due to
the so-called “fast-SCR” and “standard SCR”, according to Reactions (A) and (B), respectively [49]:

(A) NO + NO2 + NH3 → N2 + H2O “fast-SCR”
(B) NO + NH3 + O2 → N2 + H2O “standard SCR”

Nova et al. studied the mechanism of the fast-SCR over V-containing catalysts using transient
conditions [51]. They described that the first step was the NO2 dimerization and disproportion to nitric
and nitrous acid; then, adsorbed ammonia forms ammonium nitrite (which decomposes to N2 and
water) and ammonium nitrate (only if there is no suitable reducing agent). When NO is included in
the feed, it can effectively reduce ammonium nitrate to ammonium nitrite, which could decompose to
N2; thus, complete selectivity to N2 was achieved by adding NO to the NH3/NO2 mixtures. The same
group also investigated the redox features in this mechanism over V-based catalysts [52]. It was shown
that both NO2 and HNO3 reoxidize the V–W–O/TiO2 catalysts at a much lower temperature than
O2; furthermore, they significantly enhance NO + NH3 reactivity below 250 ◦C via the buildup of
adsorbed nitrates, which act as a reservoir of oxidizing agents. These features were not observed
over a V-free WO3/TiO2 catalyst, pointing out the role of the vanadium redox properties, and can
explain the higher efficiency of the “fast” SCR compared with the “standard” SCR. Thus, vanadium
sites are the active (redox) species of these catalysts, which are reduced by the reaction between
NO and NH3 and then reoxidized either by oxygen (standard SCR) or by nitrates (fast SCR) [51,52].
Wokaun et al. also investigated this [53] through transient experiments and in situ Raman spectroscopy
to study the reoxidation of the vanadium species on a W–V–O/TiO2 sample. They found that the
vanadium reduced species (V4+) formed during the reduction of NO with NH3 are reoxidized faster
by NO2 than by oxygen, resulting in an increased reaction rate of the fast SCR reaction. Thus, reduced
vanadium species appear as the most active sites and the use of a co-element (such as Mo and/or
W) modulates vanadium oxide activity [54,55]. Conversely, basic elements, such as K or Ca, titrate
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surface acidity and decrease the reducibility of vanadium oxide species, being detrimental to catalytic
behavior [56–58]. Thus, the poisoning effects impinge both the surface acidity and reducibility of
vanadium oxide species.

Carbon materials are convenient catalytic supports, since they provide a high surface area and
mechanical and chemical stability; the structure of vanadium oxide species on carbons has been
extensively described [59,60]. The structure found is similar to that on oxide supports and surface
polymeric or isolated VOx species, depending on the coverage. Lazaro et al. [61–63] have reported the
use of carbon-based monoliths as supports for vanadium and tungsten oxide catalysts for the SCR
process. They found some advantages with respect the conventional titania-supported catalysts, since
carbon-supported ones were not deactivated by SO2 [64]. In addition, the higher surface area of carbons
with respect to TiO2 enables to disperse a higher amount of active vanadium species per weight of
support [59]. Following this approach, they proposed a novel synthesis procedure by the sulphation
of the catalysts with a mixture of SO2 + O2 [65,66]. They found that the pre-sulphidating catalysts
duplicate conversion values. Their work showed that both ammonia adsorption and activating sites
were different in the sulphated catalysts; in addition, sulphated catalysts present sulphate groups
located near vanadia sites, thus facilitating vanadium reoxidation during redox cycles. In addition,
sulphate groups did not contribute to the gasification of the most labile carbon groups of support.

Literature shows the promoting effect of cerium, both as a dopant and as support for the V-based
catalysts during the SCR reaction. Ge et al. [67] studied the effect of adding Ce to V–W–O/TiO2

catalysts with low vanadium loadings. Cerium was present mainly as Ce3+ and was beneficial for
the oxidation of NO to NO2, accelerating the SCR reaction. Huang et al. [68] also described that
Ce-containing VOx/TiO2 and VMoOx/TiO2 catalysts exhibited high resistance to H2O and SO2

poisoning at low temperatures; they reported that Ce sites led to a higher concentration of chemisorbed
oxygen, minimizing nonselective oxidation of ammonia to NOx. Diffuse Reflectance Infrared Fourier
Transform Spectroscopy (DRIFTS) measurements [69] revealed that Ce contributes to the formation
of NO2 and monodentate nitrate species, both being reactive intermediates for the SCR reaction; the
characterization also indicated that the redox cycle in the presence of Ce (V4+ + Ce4+ ↔ V5+ + Ce3+)
accounts for an excellent SCR catalytic performance for the Ce-doped V-based catalysts.

3. Removal of H2S

H2S is a major contaminant produced in most energy-related industries, such as petroleum,
natural gas, fuels, and fuel cells. H2S causes acid rain. In addition, it leads to corrosion in pipelines
and acts as a poison for many catalysts, even at low levels, making it necessary to remove it in many
industrial processes, such as fuel cells applications. Conventional treatments, including adsorption,
or biological treatments present disadvantages, making the transformation to a useful product the
better option. In this sense, the selective oxidation of H2S to elemental sulfur with air is the most
attractive process, but it requires the design of partial oxidation catalysts facilitating oxidation to S
and avoiding further oxidation to SO2. V2O5 oxide was reported as the most active catalyst in a study
performed with 21 metal oxides for both the Clauss process and partial oxidation [70]. As well as in
other partial oxidation processes that have already been presented, it is easier to modulate the activity
with a mixed metal oxide and/or through the use of a support. López-Nieto and coworkers [71,72]
proposed the use of a mesoporous zirconium phosphate as a support for VOx species, and they
reported such catalysts as active and selective for the H2S transformation to S, reporting that the
catalytic behavior was dependent on VOx loading. They reported that V2O5 crystals were necessary
in order to have active and selective catalysts, identifying this oxide as the active phase. However,
the characterization results of tested catalysts have demonstrated the formation of a partially reduced
crystalline phase, V4O9-like, during the catalytic test. This was then confirmed by carrying out
the catalyst characterization during the reaction using operando Raman-GC and XAS [73]. They
demonstrated that the V2O5 crystalline phase was present in fresh catalysts and was transformed to
V4O9 under H2S partial oxidation. Furthermore, they found that the reduced V species were related
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with a low selectivity to SO2. Following a similar approach, other groups investigated the use of
supported catalysts, such as VOx/TiO2 [74], VOx/CeO2 [75,76], and VOx/SiO2 [77], and of vanadium
oxides bronzes [78], which were the mechanism they found to be quite similar to the one already
described and demonstrated by López-Nieto’s group, with the oxidation and subsequent regeneration
of the vanadium active phases, from V5+ to V4+ under reaction conditions.

4. Removal of N-Containing Organic Pollutants

Total oxidation of organic compounds is a major topic; however, there are only few studies on
the removal of nitrogen-containing organic compounds (NCOCs). The design of this process is not
easy, since catalysts that oxidize the organic part to CO2 without oxidizing the nitrogen component
to molecular N2 rather than to NOx are challenging. Metal-based catalysts with Cu and Cr or Pt
have been tested for this process, but in all cases quite a high NOx selectivity was detected [79].
Vanadium-based catalysts are widely used for selective partial oxidation processes; our group reported
their use for the selective destruction of N-containing organic volatile compounds [80]. Sb–V–O
catalysts were selected for such studies since they are well known as active and selective for the propane
ammoxidation process [14] and, subsequently, they are able to activate nitrogen atoms [81,82], avoiding
further oxidation to NOx under ammoxidation reaction conditions. Thus, the catalytic behavior of
Sb–V–O-supported catalysts on the destruction of dimethyl formamide (DMF) was evaluated [80],
since DMF is commonly used as industrial solvent in the production of polyurethane products and
acrylic fibers. It is also used in the pharmaceutical industry, in the formulation of pesticides, and in the
manufacture of synthetic leathers, fibers films, and surface coatings. Several Sb–V–O catalysts with
different supports (Al2O3 and Nb2O5) and different Sb precursors were tested [80]. The activity results
are shown in Figure 2 (DMF conversion vs. total Sb+V coverage) and 3 (selectivity to N-containing
products vs. total Sb + V coverage). Figure 2 shows some interesting results regarding DMF conversion.
Figure 2A shows the effect of coverage on alumina support, where it can be observed that bare alumina
is quite active, but selective to NOx (Figure 3); when Sb and V are incorporated to the alumina,
the conversion increases to near 100% and the selectivity to NOx decreases. Those catalysts in which
rutile VSbO4 phase forms were able to oxidize the N-containing organic compounds, avoiding the
formation of NOx. Bare niobia support exhibits, unlike alumina, a significant production of ammonia,
due to its higher acidity. The addition of V and Sb on Nb2O5 support covers the acidic sites and
provides redox functionality, increasing the selectivity to N2 (Figure 3).
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Figure 2. Dimethyl formamide (DMF) conversion values vs. total Sb + V coverage for: (A) Al2O3 and
(B) Nb2O5-supported catalysts. Reaction conditions: 1 mL of catalyst; GHSV = 10,000 h−1; 1000 ppm
of DMF; temperature reaction: 250 ◦C. Reprinted from “Selective destruction of nitrogen-containing
organic volatile compounds over Sb–V–O catalysts” Appl. Catal. B Environ. 2007, 71, 85–93 [80].
Copyright ©2006 Elsevier B.V., with permission from Elsevier 4461960513380.
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Figure 3. Selectivity to N-products vs. total Sb + V coverage at 400 ◦C for: (A) Tartaric (T) and
(B) standard (ST) alumina-supported catalysts; (C) tartaric (T) and (D) standard (ST) Nb2O5-supported
catalysts. Reaction conditions: 1 ml of catalyst; GHSV = 10,000 h−1; 1000 ppm of DMF. Reprinted from
“Selective destruction of nitrogen-containing organic volatile compounds over Sb–V–O catalysts”
Appl. Catal. B Environ. 2007, 71, 85–93. Copyright ©2006 Elsevier B.V., with permission from
Elsevier 4461960513380.

Figure 4 shows the conversion and selectivity profiles versus temperature at high Sb + V coverage
on both Al2O3 and Nb2O5. Above 400 ◦C, the selectivity to N2 decreases at the expense of the formation
of NOx. In addition, the selectivity to CO decreases with temperature, in this case at the expense
of CO2 formation. The catalysts with high coverage afford promising results; selectivities to NOx
and organics are low (at moderate temperatures), and the system could be used with a CO to CO2

converter in a second bed. The presence of a rutile VSbO4 active phase eliminates the overoxidation to
NOx and appears to be responsible for better selectivity on the alumina series. During the catalytic
cycle, the surface V5+ species undergo reduction and they become stabilized as V3+/V4+ in the VSbO4

structure [83,84]. The better selectivity to N-containing products was subsequently related to the
presence of VSbO4.
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5. Total Oxidation Process

VOCs (Volatile Organic Compounds) are recognized as hazardous molecules that contribute
to photochemical smog and are toxic, since some of them may cause cancer and other diseases.
They present a high vapor pressure and low water solubility and can be found in the air both
indoors (due to furniture, cleaners, pesticides, air fresheners, cosmetics, tobacco smoke, adhesives,
flooring, carpets, varnishes, paint strippers, sealants, etc.) and outdoors (oil and gas extraction and
processing, wood/coal combustion, diesel and gasoline emissions, etc.). The nature of these molecules
depends on the source, including alkanes, alcohols, ketones, aldehydes, aromatics, paraffins, olefins,
and halogenated hydrocarbons. Among the most common and toxic not halogenated compounds are
phenol, acetone, formaldehyde, benzene, propylene, toluene, and styrene. There are a few techniques
available to reduce VOC emission when they are highly diluted, catalytic complete or “deep” oxidation
being one of the most suitable techniques [85]. Thermal incineration (noncatalytic) requires higher
temperatures, with the corresponding emissions of undesirable products, such as NOx and dioxins,
and it is a quite high-energy-demanding process. Thus, there are many studies that have focused on
the best catalytic formulation for the VOCs’ catalytic total oxidation, which is not an easy task, due
to the large variety of organic molecules present in VOC mixtures. Both noble metals and transition
metal oxides have been reported as promising catalysts. Noble-metal-based catalysts [86], especially
Pt and Pd, present very good activity performances, but they are quite expensive materials and can
be deactivated by sintering or poisoning. Due to that, transition and rare earth metal oxide catalysts
have been explored. Although V-based catalysts possess redox active sites, vanadium is not commonly
used in these formulations; other transition metals, such as copper oxide, manganese dioxide, iron
oxide, nickel oxide, chromium oxide, and cobalt oxide, are used instead [87].



Catalysts 2018, 8, 564 9 of 14

V–W–O-supported catalysts, used for the SCR process as has been discussed, have also been
studied for VOC oxidation [88] and have been reported as active for the abatement of several
polychlorinated VOCs, showing that this catalytic system was useful for the combined reduction
of NOx and decomposition of these halogenated (dioxins), even in the presence of sulfur dioxide [89].
This is an important issue in this case, since SO2 is usually present with VOC pollutants and it is well
known that it is able to poison noble-metal-based catalysts. However, at low temperatures (150 ◦C),
polychlorinated molecules remain adsorbed on the catalysts without being oxidized [88]. Similar
results were reported over VOx/TiO2 catalysts [90,91]. The total oxidation of nonchlorinated VOCs
over vanadium-supported catalysts have also been studied by Debecker and coworkers [92], who
reported very promising results where oligomeric polyvanadates would be the active site. This group
also reported [93] the promoting effect of W and Mo on VOx/TiO2 catalysts for the total oxidation
reaction for both halogenated and nonhalogenated molecules, obtaining similar results to those already
exposed for the SCR process. They attributed this synergy between V and Mo/W oxides to the
additional Brønsted acid sites brought by these promoters, since such acid sites would favor the
adsorption of the VOC molecule.

6. Photocatalysis

Photocatalysts use the energy of impinging photons and may carry out a wide variety of important
chemical reactions, such as (i) environmental remediation, (ii) the destruction of organic pollutants
for water or air purification, (iii) solar fuels production, (iv) production of fuels, (v) and H2 from
water or methane/methanol from CO2, among other applications. TiO2 [94] is commonly used as a
photocatalyst since it is an available and safe semiconductor, which is stable in solution; only 5% of the
incident Sun radiation can be used by TiO2, due to its bandwidth (3.2 nm eV = 390 nm). Subsequently,
other photocatalytic systems, including the use of doped TiO2, in order to modify the bandwidth, have
been extensively studied during the last few decades. Doping TiO2 with transition metal ions, such as V,
has been one of the most important approaches [95–98]; however, this increases carrier-recombination
centers, decreasing the quantum efficiency of doped TiO2 photocatalytic materials [95,96]. Another
approach is doping with nonmetals, such as N [99]. Gu et al. [100] investigated the effect of doping TiO2

nanocrystal catalysts with vanadium and nitrogen, reporting an enhanced photocatalytic activity for
the co-doped catalytic materials compared to V-doped TiO2 and N-doped TiO2. Here [100], a co-doped
TiO2 nanocrystal had a narrower band gap (2.76 eV) than mono-doped TiO2 (2.91 eV for V–TiO2

and 2.92 eV for N–TiO2). They demonstrated that the existence of V ions in the lattice facilitates the
incorporation of N atoms into the anatase lattice, enhancing absorption in the visible light region and
quantum efficiency.

Bismuth vanadate, BiVO4, has also been extensively studied, since it is a semiconductor material
with some properties that make it an attractive photocatalyst, such as low toxicity, low production cost,
resistance to corrosion, high photostability, and narrow band gap (≈2.4 eV) with a good response to
visible light. Recently, the synthesis methods and properties of these materials have been reviewed by
Madhavan and coworkers [101], who showed how the photocatalytic efficiency of these materials could
be improved by the control of the morphology and composition during synthesis. Nanostructured VO2

dioxide is also a semiconductor material that, with the appropriate synthesis procedure, can have a
band gap of ≈2.7 eV and that shows a promising photocatalytic activity for hydrogen production [102].

7. Conclusions

This review underlines the possibilities of vanadium compounds in redox catalysis, which stand
on the possibility of vanadium oxides to have different oxidation states during reaction. Additives
that foster phases with reduced vanadium sites during reaction enhance redox cycles, facilitating
changes in oxidation states. These cycles also modify the capability of the catalysts to absorb/desorb
reactants and other intermediates. Vanadium-based materials are very promising catalysts in partial
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oxidation reactions, which are useful for industrial chemical processes (petroleumchemistry), as well
as for environmental applications.
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