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Abstract: Perovskite-structure SrTiO3 (STO) and graphitic carbon nitride (g-C3N4, CN) have attracted
considerable attention in photocatalytic technology due to their unique properties, but also suffer
from some drawbacks. The development of composite photocatalysts that combine properties of
the individual semiconductors with enhanced charge separation is the current major trend in the
photocatalysis field. In this study, SrTiO3/g-C3N4 (CNSTO) composites with different ratios (10,
20, 30, 40 and 50% g-C3N4) were prepared with a sonication mixing method. The samples were
characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 porosimetry,
Fourrier transform infra-red spectroscopy (FT-IR), UV-Vis diffuse reflectance (DRS) and dynamic
light scattering (DLS). STO spherical particles were successfully loaded on the g-C3N4 planes forming
heterojunction composite materials. The photocatalytic activity was tested against the degradation
of methylene blue (MB) dye under simulated solar light (SSL) irradiation following first-order
kinetics. The photocatalytic activity followed the trend: 20CNSTO > 30CNSTO > 40CNSTO >
50CNSTO ≈ 10CNSTO, in accordance with the amount of •OH radicals determined by fluorescence
spectroscopy. A Z-scheme mechanism was proposed for the enhanced photocatalytic degradation
of MB as evidenced by trapping experiments with scavengers. Finally, significant stability and
reusability was exhibited, indicating that such composites are of potential interest for photocatalytic
treatments under sunlight irradiation.
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1. Introduction

Photocatalysis with semiconductors is an advanced oxidation process for organic pollution
abatement that has received great interest due to several advantages, such as the use of ambient
conditions of temperature and pressure, the use of solar light, the absence of fouling, lack of mass
transfer limitation, and the mineralization of organic pollutants into carbon dioxide, water and
inorganic ions [1–4].

Titanate perovskites, ATiO3 (A = Ca, Sr, Ba, etc.), are semiconductors with a wide band gap and
interesting electronic, optical, magnetic and photocatalytic properties. They are considered promising
materials for photocatalytic processes because of their strong resistance to photo corrosion, suitable
oxidation potential and their high physicochemical stability [5–8]. Among them, SrTiO3 is the most
promising material for photocatalytic applications [9–12]. It is a cubic perovskite (Pm3m, a = 3.9 Å)
n-type semiconductor with an indirect band gap of 3.1–3.7 eV depending on the crystal structure and
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morphology obtained by the synthesis method [13,14]. Therefore, SrTiO3 is an excellent photocatalyst
only under UV light, which include about 5.0% of sunlight energy [15]. Modification of SrTiO3 in
order to increase absorptivity into the visible light spectrum has been mainly studied by transition
metal doping of the Ti site [16] and by noble metals deposition on the semiconductor surface [17].
However, the use of rare or precious metals constitutes an important disadvantage [18]. Because of
this, non-metal doping [19] and coupling with other semiconductors like TiO2 [20] and ZnFe2O4 [21]
are considered effective alternative methods to increase the activity.

On the other hand, graphitic carbon nitride (g-C3N4) is a polymeric semiconductor with a mild band
gap (2.7 eV) and a good response to visible light (up to 460 nm). The medium band gap, along with low
cost, simple preparation method, high chemical stability, and non-toxicity, makes g-C3N4 appropriate for
photocatalytic applications, including organic pollutant degradation, water splitting, CO2 reduction and
organic synthesis under visible light [22–26]. In addition, g-C3N4 has found application in optical and
electronic devices, chemical sensors, and energy generation/storage [23,27–33].

Despite its remarkable electronic and optical properties, g-C3N4 photocatalytic activity faces some
limitations, such as the high recombination of charge carriers, low conductivity, low valence band
(VB) potential and small specific surface area (<10 m2 g−1) [34–38]. Methods that have been used
so far to increase the photocatalytic activity of g-C3N4 include metal and non-metal doping [39–42]
and the application of g-C3N4 as a sensitizer with well-known photocatalysts like TiO2 [43] and
TaON [44]. In the last few years g-C3N4 has been widely used in formation of heterojunctions with
perovskites in order to improve their photocatalytic performance. Heterojunctions are mainly formed
by g-C3N4 and LaTiO3/N-LaTiO3 [45], LaFeO3 [46], CaTiO3 [47], N-doped SrTiO3 [48] and the layered
perovskite oxide La2NiO4 [49]. However, only a couple of reports have been made on the synthesis
and applications of g-C3N4/SrTiO3 heterojunctions for oxidation of pollutants, and in general, only
low loading ratios have been examined. For example, Cr-doped and N-doped SrTiO3/g-C3N4 have
been studied for environmental remediation under solar and visible light [48,50]. On the other hand,
g-C3N4/SrTiO3 and g-C3N4/SrTiO3: Rh heterostructures have been studied for photocatalytic H2

evolution [51,52].
Based on the previous statements, the principal aims of this study are: (i) the preparation of a

series of heterojunctions SrTiO3/g-C3N4 with different ratios of g-C3N4, as very few reports have
been made regarding their applications in pollutant oxidation; (ii) the characterization of the prepared
photocatalysts with a variety of techniques in order to understand the components with respect to
their photocatalytic activity; and (iii) the study of their photocatalytic activity towards the degradation
of organic pollutants in aqueous phase using methylene blue (MB) dye as a model compound and
•OH radicals formation by fluorescence measurements.

2. Results and Discussion

2.1. Characterization of the Prepared Photocatalysts

2.1.1. XRD Analysis

The XRD patterns (Figure 1) of all the prepared g-C3N4/SrTiO3 photocatalysts were assigned to
SrTiO3 perovskite phase with cubic symmetry (JCPDS no. 79-0176). The main peaks, at about 32.4◦,
39.9◦, 46.4◦, 57.8◦, 67.8◦ and 77.2◦, represent the SrTiO3 (1 1 0), (1 1 1), (2 0 0), (2 1 1), (2 2 0) and (3 1 0)
surfaces, respectively. The XRD pattern of g-C3N4 with hexagonal symmetry is also presented in
Figure 1 (JCPDS no. 87-1526). The weak peak at 13.1◦ (110) and the strong one at 27.4◦ (200) represent
the g-C3N4 surfaces. The sharp peaks in all patterns indicate that the obtained powders are highly
crystalline, and that they have no impurities. The XRD data was performed by Rietveld refinement, as
reported in [53]. The crystal size of all the materials was calculated by appropriate software, using
a Williamson and Hull [54–56]-type plotting method, and ranged from 17.1 nm for the 10CNSTO to
29.0 nm for the 30CNSTO, as shown in Table 1. The refinement parameters of % crystal phase, cell
parameters (a, b and c), strain analysis and R2 are also presented in Table 1. The lattice constants (a,
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b, c) of SrTiO3 in the composites are slightly higher than those of pure SrTiO3. It can be observed
that the crystal size values of the materials present a small variation, increasing along with the %
content of CN until 30CNSTO, and then they decrease. In the composites 40CNSTO and 50CNSTO,
the peak at 27.4◦ that corresponds to g-C3N4 is hardly observed. This is because g-C3N4 is partly
exfoliated in the mixing process by sonication. As a result, lamellar structure of g-C3N4 was formed
and so the crystallization degree is limited. The same observation has been reported in other studies,
too [57,58]. In the rest of the materials, the diffraction peaks did not change after the introduction of
g-C3N4. Hydrodynamic particle size (median diameter) measurements were also performed by the
dynamic light scattering (DLS) and the values ranged from 0.302 µm for the CN to 0.345 µm for the
STO, indicating the formation of aggregates in aqueous solutions.
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Table 1. XRD results and Rietveld analysis of all photocatalysts.

Code
Name

Crystal
Phase

Space
Group

%
Phase a b c

Unit
Cell

Volume
(A3)

E % R %
Crystal

Size
(nm)

%
Strain R2

10CNSTO SrTiO3 cubic 100 3.9114 3.9114 3.9114 59.84 19.16 26.87 17.1 −0.074 −0.359
20CNSTO SrTiO3 cubic 100 3.9104 3.9105 3.9105 59.80 16.16 23.53 25.5 −0.037 −0.320
30CNSTO SrTiO3 cubic 100 3.9093 3.9093 3.9093 59.74 13.77 21.22 29.0 0.000 0.060
40CNSTO SrTiO3 cubic 100 3.9099 3.9099 3.9099 59.77 16.00 24.99 24.9 −0.005 −0.106
50CNSTO SrTiO3 cubic 100 3.9103 3.9103 3.9103 59.79 16.04 25.29 24.2 −0.040 −0.332

STO SrTiO3 cubic 100 3.9087 3.9087 3.9087 59.7 14.79 20.62 27.5 0.016 0.930

2.1.2. Morphology—Surface Analysis of the Photocatalysts

Representative nitrogen adsorption–desorption isotherms of the 10CNSTO and the 20CNSTO
catalysts are presented in Figure 2. The photocatalysts are non-porous materials and the isotherms
belong to type II, according to IUPAC classification [59]. Their specific surface areas (SSA) are 29.6 and
32.3 m2/g, respectively. Representative SEM images of CN, STO and 20CNSTO, 30CNSTO are shown
in Figure 3. CN (Figure 3a) presented some sheet layers and sheet stacks with a smooth surface and
irregular shape. The SEM image of STO (Figure 3b) clearly revealed spherical particles. The images of
20CNSTO and 30CNSTO (Figure 3c,d) showed that, after mixing with g-C3N4, the spherical particles
of SrTiO3 were deposited in the CN sheet-stacks.
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The PZC (Point of Zero Charge) values of STO and CN were determined to be 9.33 and 4.63,
respectively. 10CNSTO, 20CNSTO, 30CNSTO, 40CNSTO and 50CNSTO presented PZC values 8.02,
7.90, 7.87, 7.79 and 7.65 respectively. It is observed that the increment of CN decreases the PZC of the
composite materials.
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2.1.3. FT-IR Spectroscopy

The FT-IR spectra of the g-C3N4/SrTiO3 photocatalysts, CN and STO are presented in Figure 4. In
all samples except CN, the shoulder below 1000 cm−1 appears because of the SrTiO3 crystal lattice
vibrations [60]. Bands at around 858 and 596 cm−1 are caused by the stretching vibration of the Sr–O
and Ti–O bonds, respectively [61]. The band at 1637 cm−1 for STO is due to the bending vibration
of –OH (caused by bending water) [60,62]. The absorption peak at around 3443–3447 cm−1 could be
caused by the stretching vibrations of lattice hydroxyls from Ti–OH, perturbed by nearby Sr atoms
or by Sr–OH [60]. For CN, the peak at around 815 cm−1 can be attributed to the s-triazine ring
vibrations. The observed peaks in the range of 1253–1636 cm−1 can be ascribed to the stretching
vibrations of aromatic C–N and C≡N in the heterocycles [45]. The peak at around 2173 cm−1 is
assigned to cyano group stretch, which can be attributed to loss of ammonia [62]. The broad peak
at 3180–3340 cm−1 can be ascribed to stretching vibration N-H or N=H from uncondensed amine
groups [45]. The above-mentioned characteristic peaks of CN and STO are present in the composite
materials. The observed shifts of characteristic peaks of g-C3N4 in the range of 1253–1636 cm−1 for the
composite materials indicate the weaker bond strengths of C=N and C–N, and reveal the existence
of interactions between g-C3N4 and STO. Similarly, shifts in STO characteristic peaks at 584 and
3432 cm−1 were observed.
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Figure 4. FT-IR spectra of the composite photocatalysts and pristine CN, STO.

2.1.4. UV-Vis Spectra

The diffuse reflectance spectroscopy (DRS) results for all photocatalysts are presented in Figure 5a.
The absorption edge of pure SrTiO3 (STO) was about 390–395 nm, as expected, so no response to
visible irradiation was observed. On the contrary, the absorption edge of g-C3N4 was about 445 nm,
indicating visible light response. The Eg values (Table 2) of the photocatalysts were calculated with the
use of Kubelka-Munk plots, which are presented in Figure 5b. The Kubelka –Munk plot of 20CNSTO
is presented separately in Figure 5c. In both DRS and Kubelka-Munk plots of each photocatalyst, it can
be observed that there are bands of both CN and STO. Also, it can be observed that, with the increment
of CN in the composites, the band of STO decreases, while the band of CN increases. All the composite
samples displayed a significantly enhanced visible light absorption compared to pristine STO.
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20CNSTO heterojunction.
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Table 2. Point of zero charge and Eg values of all photocatalysts.

PZC Eg (eV)
Catalysts g-C3N4 SrTiO3

10CNSTO 8.02 2.80 3.40
20CNSTO 7.90 2.80 3.28
30CNSTO 7.87 2.82 3.28
40CNSTO 7.79 2.84 3.20
50CNSTO 7.65 2.84 3.21

CN 4.63 2.82
STO 9.33 3.15

2.1.5. Determination of •OH by Fluorescence Measurements

The evolution of fluorescence spectra intensity of 2-hydroxyterephthalic acid (OHTA) for the
20CNSTO photocatalyst at different intervals within an irradiation time framework of 120 min is
displayed in Figure 6 as a representative example. It can be seen that the fluorescence intensity
increases along with irradiation time. The kinetics of •OH radicals formation for all photocatalysts
are shown in Figure 7. The ability of the photocatalysts to generate •OH radicals follows the trend:
20CNSTO > 50CNSTO > 30CNSTO > 10CNSTO > 40CNSTO. The 20CNSTO material showed greater
•OH formation ability compared to all other prepared composites, which is consistent with the
photocatalytic kinetics described in the next paragraph. Thus, it was considered the optimum ratio for
such composites.
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2.2. Photocatalytic Activity

The photocatalytic activity of all catalysts towards the degradation of MB under UV-Vis and visible
irradiation is presented in Figures 8 and 9, respectively. The degradation of MB in both cases followed
first-order kinetics. As expected, the degradation kinetics under visible light irradiation was slower
than under UV-Vis (simulated solar) irradiation. The apparent rate constants (k), the corresponding
correlation coefficients (R2) and half-lives (t1/2) of all photocatalysts are shown in Table 3. According
to the determined apparent rate constants, the photocatalytic activity under both UV-Vis and visible
irradiation had the following trend: 20CNSTO > 30CNSTO > 40CNSTO > 50CNSTO ≈ 10CNSTO.
The highest photocatalytic activity of the 20CNSTO catalyst is also verified by its ability to form •OH
radicals. The corresponding apparent degradation rate constants trends for UV-Vis and visible light
irradiation are presented in Figures 8 and 9. The initial increase in the degradation efficiency can be
attributed to the increment of CN content which benefits charge transfer in the materials interface
and causes greater response into the visible light region. The greater increment of g-C3N4 amount,
though, decreases the effective heterointerfaces in the composites, which is unfavorable for the charge
transfer [46,63] while the entrained decrease of STO, which has a higher oxidation potential valence
band led to the decrease of •OH radicals formation.

Finally, the stability of the best catalyst (20CNSTO) was investigated for three consecutive
photocatalytic cycles (Figure 10). The photocatalyst presented quite stable photocatalytic activity
among the repeated cycles and about 95% of the initial degradation efficiency was maintained. This fact
suggests that the 20CNSTO photocatalyst has good reusability. The slight decrease in the photocatalytic
efficiencies could occur because of the accumulation of later stage products into the catalyst surface
after the first catalytic cycle or because of small losses of catalyst during the recovery procedure due to
the good dispersibility in the aqueous solution.
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Table 3. Kinetic parameters (k, t1/2, R2) for the photocatalytic degradation of MB in the presence of
the heterojunctions under simulated solar light (UV-Vis) and visible light irradiation (CMB = 5 mg L−1,
Ccat = 200 mg L−1, I = 500 Wm−2).

UV-Vis Visible
Catalysts K (min−1) t1/2 (min) R2 K (min−1) t1/2 (min) R2

10CNSTO 0.0150 46.2 0.9804 0.0050 138.6 0.9690
20CNSTO 0.0220 31.5 0.9886 0.0071 97.6 0.9780
30CNSTO 0.0181 38.3 0.9885 0.0058 119.5 0.9893
40CNSTO 0.0170 40.8 0.9932 0.0055 126.0 0.9766
50CNSTO 0.0160 43.3 0.9797 0.0049 141.4 0.9942

STO 0.0140 49.5 0.9932 - - -
CN 0.0146 47.5 0.9996 0.0055 126.0 0.9986
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2.3. Mechanism Analysis

Generally, superoxide radicals (O2
•−), hydroxyl radicals (OH•) and the photogenerated holes (h+)

have important role in the photocatalytic process. To propose the proper photocatalytic mechanism
for the activity of the photocatalyst, trapping experiments took place with the use of scavengers.
The used scavengers were isopropanol (IPA), formic acid (FA), N2, superoxide dismutase (SODred),
acetonitrile/N2, and sodium azide (NaN3) as OH•, h+, O2

•−, OH•/O2
•− and (OH• + 1O2) scavengers,

respectively. The apparent rate constants (k) and the corresponding correlation coefficients (R2) of
20CNSTO under the effect of each scavenger are presented in Table 4. The redox potentials of g-C3N4

(conduction band, CB = −1.4 eV vs. NHE (Normal Hydrogen Electrode), valence band VB = +1.3 eV vs.
NHE) are more negative than those of SrTiO3 (CB = −0.2 eV vs. NHE, VB = +3.0 eV vs. NHE) [52,63].
Based on the experimental results that are presented in Table 4, the classical Type II photocatalytic
mechanism, i.e., the migration of electrons from the CB of CN to the CB of STO with concurrently
migration of holes from VB of STO to VB of CN, is excluded. More specifically, in such mechanisms,
the accumulated holes in the VB of g-C3N4 couldn’t produce •OH from the oxidation-adsorbed water
molecules or OH- ions because the VB potential was less positive than the redox potential E0

(OH•/H2O)
(+2.68 eV vs. NHE) and E0

(OH−/•OH) (+1.99 eV vs. NHE). However, according to the experimental
results, •OH are indeed produced, as evidenced by OHTA fluorescence, as well as by the degradation
rate decrease in the presence of IPA, NaN3 and acetonitrile. In addition, the molecular O2 could also
not be photoreducted to •OH in the CB of SrTiO3, as the CB potential was more positive than the
redox potential E0

(O2/O2
•−

) (−0.3 eV vs. NHE). Nevertheless, the decrease of the degradation rate
in the presence of N2 demonstrated the formation of O2

•−. Finally, the apparent rate constant value
in the presence of acetonitrile/N2 as a scavenger showed the oxidation of MB by the holes in the
VB of SrTiO3. As a result, a z-scheme mechanism is proposed for the photocatalytic activity of the
composites. In the z-scheme mechanism, the photogenerated electrons in the CB of the STO will
combine with the photogenerated holes in the VB of CN, while the accumulated holes the with high
oxidation potential in the VB of STO and electrons with high reductive potential in the CB of CN could
easily produce •OH and O2

•−, which participate in the oxidative degradation of MB. In conclusion,
the results of the trapping experiments showed that OH• and O2

•− were the major oxidant species,
followed by a minor contribution of 1O2, and the generation of such species can only be rationalized
by a z-scheme mechanism.
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Table 4. Used scavengers for 20CNSTO along with the scavenged radicals, k (min−1), % ∆k and R2.

20CNSTO
Scavengers Radicals Scavenge k (min−1) % ∆k R2

No scavenger - 0.0220 0 0.9886
IPA OH• 0.0148 32.7 0.9996
FA h+ 0.0086 60.9 0.9803
N2 O2

•− 0.0156 29.1 0.9773
Acetonitrile/N2 OH•/ O2

•− 0.0050 77.3 0.9052
SODred O2

•− 0.0309 40.4 0.9936
NaN3 OH• + 1O2 0.0130 40.9 0.9814

3. Materials and Methods

3.1. Materials and Chemicals

Urea (99.5%) was obtained by Acros Organics (Geel, Belgium). Pure SrTiO3 (STO) was purchased
from Sigma–Aldrich (St. Louis, MO, USA). KBr (≥ 99%, Sigma–Aldrich, St. Louis, MO, USA), BaSO4

(NacalaiTesque, extra pure reagent, Kyoto, Japan), terephthalic acid (TA) (98%, Sigma-Aldrich, St. Louis,
MO, USA) and NaOH (2×10−3 M, 99% Riedel-de Haen, Seelze, Germany) were also used in the present
study. Finally, the used scavengers were isopropanol (IPA) (Ananlytical Reagent A.R., LAB-SCAN,
Dublin, Ireland), formic acid (FA) (98-100%, Merck, Darmastadt Germany), N2, acetonitrile (LC-MS
grade, Fisher Chemical, Loughborough, Leics, UK)/N2, superoxide dismutase (SOD) (SOD from
Horseradish, Sigma-Aldrich, St. Louis, MO, USA) and sodium azide (NaN3) (≥99.5% Sigma-Aldrich,
St. Louis, MO, USA). Double distilled water was used throughout all the experimental procedures.

3.2. Preparation of g-C3N4 and g-C3N4/SrTiO3 Heterojunctions

For g-C3N4 synthesis, urea was preheated at 80 ◦C for 24 h in an alumina crucible and then
calcined at 500 ◦C for 4 h with the heating rate of 10 ◦C /min [64,65]. The composite photocatalysts
were prepared by a sonication mixing method. Appropriate stoichiometric amount of SrTiO3 and
g-C3N4 were suspended in double distilled water separately under sonication for 1 h. Then both
solutions were mixed, and the whole solution was treated again under sonication for 90 min (Hielscher
UP100H Teltow, Germany ultrasonic processor, Amplitude 85%). The as-prepared samples contained
different g-C3N4 to SrTiO3 amounts and had the following %wt content and code names (in brackets):
10% (10CNSTO), 20% (20CNSTO), 30% (30CNSTO), 40% (40CNSTO), 50% (50CNSTO) [57]. Also, for
the comparison for the heterojunction oxides, g-C3N4 which had been sonicated for 1 h (CN) was
also used.

3.3. Texture Characterization of the Heterojunctions

Crystallinity and phase identification of the photocatalytic materials were defined by powder
X -ray diffraction (XRD) using a Bruker Advance D8 XRD instrument (Billerica, MA, USA), which
generates monochromated Cu Ka (λ = 1.5418 Å) radiation with a continuous scanning rate in the range
of 10 < 2θ < 90 in steps of 0.02◦ and rate 0.01 ◦θ/sec. The patterns were determined with the use of the
Joint Committee on Powder Diffraction Standards (JCPDS) database. The results were studied with
Rietvield refinement by a suitable computer program.

The N2 adsorption–desorption isotherms at 77K were obtained by porosimetry using a
Quantachrome Autosorb –1 instrument (Bounton Beach, FL, USA). All samples (≈ 0.1 g) were degassed
for 4h at 353 K for the elimination of any moisture and condensed volatiles. Brauner-Emmet-Teller
(BET) method at relative pressure between 0.05–0.3 was used for the calculation of the specific surface
area (SSA). The morphology of the photocatalysts was observed by scanning electron microscopy
(SEM) by a JEOL JSM 5600 instrument (Tokyo, Japan).
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Particle size measurements were carried out after 10 min of sonication with a Shimadzu
SALD-2300 (Kyoto, Japan) laser diffraction particle size analyzer in dynamic light scattering (DLS)
mode. The point-of-zero charge (PZC) of the materials was measured by the mass titration method, as
reported elsewhere [66].

3.4. Fourier Transform. Infrared Spectroscopy (FT-IR)

The chemical structure of all heterojunctions was recorded by Fourier transform infrared
spectroscopic (FT-IR) analysis. The analysis was carried out with an instrument by Thermo Scientific
(Nicolet iS5) (Waltham, MA, USA). Spectral grade KBr (≥99%, Sigma-Aldrich St. Louis, MO, USA)
was used as a reference. The materials were ground with KBr in 1:3 ratio and made into pellets using
an appropriate hydraulic press. The pellet was scanned at 0.964 cm−1 in the range 4000–400 cm−1.

3.5. UV-Vis.-Diffuse Reflectance Measurements

The absorbance spectra of the g-C3N4/SrTiO3 heterojunctions were obtained by a Shimadzu 2600
(Kyoto, Japan) spectrophotometer which was equipped with an ISR-2600 (Kyoto, Japan) integrating
sphere at room temperature with BaSO4 as reference sample in the range of 200–800 nm.

3.6. Photocatalytic Experiments and Analytical Methods

The photocatalytic experiments were conducted with Suntest XLS+ apparatus (Atlas
Linsengericht, Germany) under UV-Vis irradiation (simulated solar light, λ > 290 nm). A xenon
lamp (2.2 kW), jacked with special 290 nm cut-off glass filter, was the light source. During the
experiments, the irradiation intensity was maintained at 500 W m−2. Experiments under visible light
irradiation (λ > 400 nm) were performed using LED flood lamps (LG SMD, LED, 45 pcs, Seoul, Korea)
2 × 50 Wm−2. The photocatalytic activity was tested against the degradation of methylene blue (MB).

For both UV-Vis and visible irradiation experiments, the photocatalysts were suspended in double
distilled water by sonication for 10 min then transferred in an appropriate Pyrex glass reactor (250 mL)
and stirred using a magnetic stirrer. An initial concentration of 5 mg L−1 of MB and 200 mg L−1

of photocatalyst was used in all experiments. Prior to irradiation, the suspension is magnetically
stirred for 30 min in the dark to ensure substrate adsorption/desorption equilibrium established on
the catalyst surface. During irradiation the temperature was kept at 23 ± 1 ◦C by water circulation in
the jacket of the reactor and air-circulation.

3.7. Determination of •OH Radicals by Fluorescence Measurements

TA was used as a probe for the determination of hydroxyl radical formation rate. Aqueous
solution contained of NaOH and TA (5 × 10−4 M) was prepared and then 20 mg of photocatalyst
powder was suspended in the photocatalytic reactor and stirred for 30 min under UV-Vis irradiation.
The irradiation conditions are described in the next paragraph. Portions of 5 mL of the suspension were
collected at different time intervals and filtered with 0.45 µm membrane filter. A Shimadzu RF-5300PC
(Kyoto, Japan) fluorescence spectrophotometer was used in order to measure the intensity of the
fluorescence peak at 425 nm with 310 nm excitation, which is attributed to 2-hydroxyterephthalic acid
(OHTA), and it is known to be proportional to the amount of •OH radicals produced. The concentration
of •OH was calculated by a calibration curve plotting the fluorescence intensity of standard OHTA
(TCI, > 98% TCI, Tokyo Chemical Industry, Tokyo, Japan) solutions.

4. Conclusions

Visible-light active SrTiO3/g-C3N4 photocatalysts have been synthesized by a sonication mixing
method. The optimum fortification level of g-C3N4 loading was 20%. All the prepared catalysts
presented photocatalytic performance towards the decolorization of MB. Among them, the 20CNSTO
material showed the best photocatalytic activity for the degradation of MB in both UV-Vis and visible
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light irradiation. This fact is also proved because the 20CNSTO showed greater •OH formation ability
of all the other heterojunctions. A z-scheme mechanism is proposed for the photocatalytic activity.
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