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Abstract: A meso-mesityl-2,6-iodine substituted boron dipyrromethene (BODIPY) dye is investigated
using a suite of computational methods addressing its functionality as photosensitizer, i.e., in the
scope of light-driven hydrogen evolution in a two-component approach. Earlier reports on the
performance of the present iodinated BODIPY dye proposed a significantly improved catalytic
turn-over compared to its unsubstituted parent compound based on the population of long-lived
charge-separated triplet states, accessible due to an enhanced spin-orbit coupling (SOC) introduced
by the iodine atoms. The present quantum chemical study aims at elucidating the mechanisms of both
the higher catalytic performance and the degradation pathways. Time-dependent density functional
theory (TDDFT) and multi-state restricted active space perturbation theory through second-order
(MS-RASPT2) simulations allowed identifying excited-state channels correlated to iodine dissociation.
No evidence for an improved catalytic activity via enhanced SOCs among the low-lying states could
be determined. However, the computational analysis reveals that the activation of the dye proceeds
via pathways of the (prior chemically) singly-reduced species, featuring a pronounced stabilization
of charge-separated species, while low barriers for carbon-iodine bond breaking determine the
photostability of the BODIPY dye.
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1. Introduction

The supply of renewable and sustainable energy sources is among the key scientific and
technological endeavors of the 21st century [1–5]. Essentially promising is hereby the conversion of
solar radiation, which could provide approximately 3× 1024 J of usable energy per year, thus exceeding
human kinds current energy demands by several orders of magnitude [5], i.e., by virtue of solar cells,
as well as by solar energy conversion to produce chemical fuels from carbon dioxide or water [5–7].

In the field of solar fuels, a plethora of devices based on semiconductors [8–12] and photoactive
dyes in homogeneous as well as in multi-component systems [13–17] were thoroughly studied to
promote hydrogen generation. The initial absorption of (sun)light and the supply of photoelectrons by
the photosensitizer (PS) is essential for any further application in solar energy conversion. Therefore,
the absorption spectrum of a PS should feature a pronounced overlap with the solar radiation spectrum,
spanning from the near infrared to the UV region to enable efficient light-harvesting. Furthermore,
long-term (photo- and thermal) stability, suitable electrochemical properties to enable (inter- or
intramolecular) electron transfer and long excited-state lifetimes, in combination with low production
costs and toxicity, are highly desired [18]. Since the 1970s, mostly transition metal complexes based
on ruthenium, platinum, iridium, and rhenium, were employed as PSs in photocatalysis [3,18–27].
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However, such complexes are commonly high priced and toxic, which limits their wide-range
application. An alternative are low-cost earth-abundant metal-free PSs containing organic dyes,
such as fluorescein, porphyrins, or eosin Y [15,16,28–33]. Moreover, boron dipyrromethene (BODIPY)
(IUPAC name: 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes were used as light-harvesting units in
inter- [34] and intramolecular [35–39] photocatalytic hydrogen evolution.

BODIPY dyes combine broad absorption features from the visible to the UV range with high
extinction coefficients, high quantum yields, and photostability, while these photophysical and
photochemical properties can be easily tailored by structural modification [40,41]. Thus, a vast variety
of BODIPY dyes have been reported and investigated with extensive experimental and theoretical
efforts [40,42–49]. Several BODIPY dyes for application in two-component photocatalysis were
prepared Beweries et al. and investigated by a suite of spectroscopic, e.g., UV–VIS and time-resolved
spectroscopy, and computational methods [50,51]. This multicomponent approach utilizes a BODIPY
PS (denoted 1), triethylamine (TEA) as a sacrificial electron donor, and [Pd(PPh3)Cl2]2 as a precursor
for catalytically-active palladium nanoparticles in tetrahydrofuran (THF)/water (see Scheme 1a).

Catalysts 2018, 8, x FOR PEER REVIEW  2 of 17 

 

ruthenium, platinum, iridium, and rhenium, were employed as PSs in photocatalysis [3,18–27]. 
However, such complexes are commonly high priced and toxic, which limits their wide-range 
application. An alternative are low-cost earth-abundant metal-free PSs containing organic dyes, such 
as fluorescein, porphyrins, or eosin Y [15,16,28–33]. Moreover, boron dipyrromethene (BODIPY) 
(IUPAC name: 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes were used as light-harvesting units in 
inter- [34] and intramolecular [35–39] photocatalytic hydrogen evolution. 

BODIPY dyes combine broad absorption features from the visible to the UV range with high 
extinction coefficients, high quantum yields, and photostability, while these photophysical and 
photochemical properties can be easily tailored by structural modification [40,41]. Thus, a vast variety 
of BODIPY dyes have been reported and investigated with extensive experimental and theoretical 
efforts [40,42–49]. Several BODIPY dyes for application in two-component photocatalysis were 
prepared Beweries et al. and investigated by a suite of spectroscopic, e.g., UV–VIS and time-resolved 
spectroscopy, and computational methods [50,51]. This multicomponent approach utilizes a BODIPY 
PS (denoted 1), triethylamine (TEA) as a sacrificial electron donor, and [Pd(PPh3)Cl2]2 as a precursor 
for catalytically-active palladium nanoparticles in tetrahydrofuran (THF)/water (see Scheme 1a). 

 
Scheme 1. (a) Two-component systems investigated by Beweries et al. consisting of a BODIPY PS, Pd 
source for water reduction, and TEA as a sacrificial electron donor [50,51]. Suggested catalytic cycles 
based on (b) the heavy atom effect via the non-reduced BODIPY system, and (c) the chemical 
reduction followed by photo-excitation of the singly reduced dye and internal conversion (IC). 

Introduction of a mesityl group at the meso-position allowed enhancing the previously reported 
long-term stability of 20 h by a factor of ten. At the same time, the catalytic turn-over was increased 
by a factor of seven by virtue of iodine substituents at the positions 2 and 6 of the BODIPY (X1 and 
X2) compared to the unsubstituted parent compound (X1 = X2 = H) [50]. According to Beweries et al., 
the enhanced catalytic activity of the iodinated species, 1, is ascribed to an efficient intersystem 
crossing (ISC) between the initially populated excited singlet states and the nearby long-lived charge-
separated triplet states by virtue of sizeable spin-orbit coupling (SOC) introduced by the iodine 
atoms. In the following, a probable reduction of the charge-separated dye by the sacrificial electron 
donor (TEA) leads to the formation of a singly-reduced species with the excess charge stabilized on 
the terminal mesityl moiety. Subsequent intermolecular electron transfer among the PS and 
[Pd(PPh3)Cl2]2 generates the catalytically-active palladium species, which leads to the formation of 
molecular hydrogen. Experimental evidence for such a population transfer via ISC is given by the 
low emission quantum yields and low singlet excited-state lifetimes in comparison with the 
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Scheme 1. (a) Two-component systems investigated by Beweries et al. consisting of a BODIPY PS, Pd
source for water reduction, and TEA as a sacrificial electron donor [50,51]. Suggested catalytic cycles
based on (b) the heavy atom effect via the non-reduced BODIPY system, and (c) the chemical reduction
followed by photo-excitation of the singly reduced dye and internal conversion (IC).

Introduction of a mesityl group at the meso-position allowed enhancing the previously reported
long-term stability of 20 h by a factor of ten. At the same time, the catalytic turn-over was increased
by a factor of seven by virtue of iodine substituents at the positions 2 and 6 of the BODIPY (X1 and
X2) compared to the unsubstituted parent compound (X1 = X2 = H) [50]. According to Beweries et al.,
the enhanced catalytic activity of the iodinated species, 1, is ascribed to an efficient intersystem
crossing (ISC) between the initially populated excited singlet states and the nearby long-lived
charge-separated triplet states by virtue of sizeable spin-orbit coupling (SOC) introduced by the
iodine atoms. In the following, a probable reduction of the charge-separated dye by the sacrificial
electron donor (TEA) leads to the formation of a singly-reduced species with the excess charge
stabilized on the terminal mesityl moiety. Subsequent intermolecular electron transfer among the PS
and [Pd(PPh3)Cl2]2 generates the catalytically-active palladium species, which leads to the formation of
molecular hydrogen. Experimental evidence for such a population transfer via ISC is given by the low
emission quantum yields and low singlet excited-state lifetimes in comparison with the unsubstituted
BODIPY dye, while the population of long-lived charge-separated states is suggested by transient
absorption spectroscopy and time-dependent density functional theory (TDDFT) simulations [50].
This mechanism is denoted in the following as heavy atom mechanism. An alternative scheme—not
relying on efficient ISC—is labelled a reductive mechanism in what follows, whereby the PS is initially
reduced by TEA and subsequently photoexcited. The excitation of the reduced dye (with the excess
charge on the BODIPY core) then leads to a charge transfer to the mesityl group and further—in
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accordance with the previously introduced heavy atom mechanism—to an intermolecular electron
transfer to [Pd(PPh3)Cl2]2 and H2 evolution. The catalytic cycles for both schemes, the heavy atom,
as well as the reductive mechanism, are illustrated in Scheme 1. However, under catalytic conditions,
photodegradation, i.e., cleavage of the carbon-iodine bonds, occurs after approximately 20 h leading,
in consequence, to the formation of the catalytically less active unsubstituted parent BODIPY (X1 = X2

= H) [50].
The present fully computationally study aims at elucidating the coupled photo-induced redox

processes, namely the heavy atom mechanism vs. the reductive mechanism (Scheme 1), associated
with the generation of the reduced BODIPY dye enabling the catalytically active reduced palladium
species, while SOCs are calculated to rationalize ISC processes. Furthermore, the quantum chemical
simulations intend to determine the excited state relaxation channels associated to C-I bond cleavage
and, thus, the photodegradation of the PS and the decrease of the catalytic activity. To this aim, and in
contrast to the previous joint synthetic-spectroscopic-theoretical study, the excited state landscape of 1
is investigated in various oxidation and spin states using state-of-the-art multiconfigurational methods,
i.e., multi-state restricted active space perturbation theory through second-order on a restricted active
space self-consistent field reference (MS-RASPT2//RASSCF). The application of multiconfigurational
methods for the present BODIPY dye is essentially mandatory since computationally less demanding
TDDFT simulations are well known to yield contradictory results for this class of compounds [52–54].

This paper is organized as follows: Section 2.1 comprises the preliminary benchmark calculations
at the RASPT2 and TDDFT level of theory applied subsequently to unravel the photo-induced reaction
mechanism in Section 2.2 and the photodegradation channels in Section 2.3. Section 3 describes the
quantum chemical methods and the methodology to assess the timescales of ISC processes. Finally,
discussion and conclusions are provided in Section 4.

2. Results and Discussion

To assess the photophysics and the photochemistry of 1, its initial photo-excitation in the Franck
Condon (FC) region is conscientiously investigated by TDDFT and RASPT2 simulations, while,
subsequently, the relaxation mechanisms and degradation pathways are elucidated.

2.1. Preliminary Benchmark

As stated before, TDDFT lacks accuracy for describing multiconfigurational systems and
boron-species in general [42,55–57]. Therefore, a preliminary benchmark was conducted, comparing
the excited-state properties in the FC region at the TDDFT and the RASPT2 levels of theory within
the equilibrium structures of the non-reduced singlet (S0, 110) and the singly-reduced doublet (D0,
21−1) C2v-restricted dye, see Table 1 and Figures S1 and S2. TDDFT slightly overestimates the bright
HOMO-LUMO transition (S1 and D5), localized on the BODIPY core by 0.17 and 0.20 eV for 110

and 21−1, respectively, in comparison to MS-RASPT2, which is related to the initial photo-activation.
Contrarily, PBE0 substantially underestimates the dissociative and charge transfer (CT) states by up to
1.1 eV. The later CT states, where charge migration takes place from the BODIPY core to the phenyl
moiety, are in general dark; therefore, a direct population of such states is highly unlikely. An exception
is the CT state D5 of A2 symmetry as obtained by MS-RASPT2 for the singly-reduced doublet (21−1),
see Table 1. This state—or rather the excitation into this state—results in an oscillator strength of
0.15 a.u. Furthermore, a substantial deviation of the excitation energy of 1.4 eV compared to the
corresponding TDDFT state (D2) is obtained. This discrepancy originates from the mixed electronic
character in the multiconfigurational calculations. The contribution of the respective CT transition,
π4

*(b2) to πph,4
*(a2), is merely 29%, while an intraligand transition (IL) of the BODIPY fragment, π4

*(b2)
to π4

*(a2), contributes with 38%. Therefore, it is presumably that the increased oscillator strength—in
comparison to PBE0—is a consequence of the (bright) IL contribution (see Table S6). A separation of
these two transitions into separated electronic states could not be achieved, e.g., by alteration of the
applied level shift and the RAS partitioning.
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Table 1. Comparison of TDDFT and RASPT2 (RASDiss and RASCT) results, namely the excitation
energies, oscillator strengths, and excited state characters obtained in the C2v-restricted GS structures
110 and 21−1, respectively.

110 (Non-Reduced Singlet Structure)

Transition
TDDFT RASPT2

State E/eV f State E/eV f RAS

π3(a2) → π4*(b2) (IL) S1 (B1) 2.88 0.518 S1 (B1) 2.71 0.938 Diss
π2(a2) → π4*(b2) (IL) S3 (B1) 3.45 0.311 S2 (B1) 3.65 0.094 Diss
π3(a2) → σ*(a1) (Diss) S8 (A2) 4.41 0.000 S3 (A2) 5.06 0.000 Diss
π3(a2) → σ*(b1) (Diss) S11 (B2) 4.55 0.000 S5 (B2) 5.42 0.001 Diss

π3(a2) → π4*(b2) (IL) T1 (B1) 1.55 - T1 (B1) 1.88 - Diss
π2(a2) → π4*(b2) (IL) T2 (B1) 2.58 - T2 (B1) 3.04 - Diss

πph,2(b1) → π4*(b2) (CT) T6 (A2) 3.90 - T7 (A2) 4.93 - CT
π3(a2) → σ*(a1) (Diss) T7 (A2) 4.02 - T5 (A2) 4.83 - Diss
π3(a2) → σ*(b1) (Diss) T8 (B2) 4.11 - T6 (B2) 5.09 - Diss

πph,3(a2) → π4*(b2) (CT) T11 (B1) 4.29 - T8 (B1) 5.09 - CT
π3(a2) → πph,5*(b1) (CT) T12 (B2) 4.39 - T10 (B2) 5.51 - CT
π3(a2) → πph,4*(a2) (CT) T13 (A1) 4.46 - T11 (A1) 5.52 - CT

21−1 (Singly Reduced Doublet Structure)

Transition
TDDFT RASPT2

State E/eV f State E/eV f RAS

π4*(b2) → πph,5*(b1) (CT) D1 (B1) 2.04 0.000 D1 (B1) 2.11 0.000 CT
π4*(b2) → πph,4*(a2) (CT) D2 (A2) 2.11 0.000 D5 (A2) 3.54 0.150 CT
π4*(b2) → σ*(a1) (Diss) D3 (A1) 2.12 0.000 D1 (A1) 2.58 0.000 Diss
π4*(b2) → σ*(b1) (Diss) D4 (B1) 2.26 0.000 D3 (B1) 2.83 0.000 Diss
π3(a2) → π4*(b2) (IL) D5 (A2) 2.69 0.194 D2 (A2) 2.49 0.183 CT
π2(a2) → π4*(b2) (IL) D6 (A2) 3.38 0.003 D4 (A2) 3.35 0.010 CT

π3(a2) → σ*(a1) (Diss) Q1 (B1) 3.55 - Q1 (B1) 4.26 - Diss
π3(a2) → σ*(b1) (Diss) Q3 (A1) 3.64 - Q2 (A1) 4.43 - Diss
π3(a2) → πph,5*(b1) (CT) - - - Q3 (A1) 4.72 - CT

In accordance with the computational result for the doublet states of the reduced system the
quartet states within 21−1, associated to C-I bond cleavage and CT, are likewise underestimated by
approximately 0.8 eV at the TDDFT level of theory. However, with excitation energies exceeding 4 eV
(MS-RASPT2), these quartet states are very unlikely to participate in the subsequent excited state
relaxation cascades upon photoexcitation in the visible region.

Despite, the deviation of the PBE0 results from the RASPT2 reference values, TDDFT allows
a qualitative evaluation of the low-lying excited states of the present BODIPY dye. However,
the tendency of the applied TDDFT protocol to underestimate CT and dissociative states needs
to be considered. For simplicity, the TDDFT notation is utilized to label the electronic states of interest
in the following.

2.2. Light-Induced Charging of the PS

The following section aims at elucidating the photo-mechanism associated to the formation of the
charge-separated BODIPY species after initial excitation into the low-lying bright IL state of 110 (S1)
and 21−1 (D5) and subsequent relaxation along the excited state potential energy (hyper-)surface (PES).

2.2.1. Heavy Atom Mechanism

Within the framework of the suggested heavy atom mechanism—starting in the 110 geometry—
excitation into the bright S1 state is followed by ultrafast ISC into long-lived and low-lying
charge-separated triplet states. The probability of such population transfer from S1 to the triplet
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manifold is determined by the respective SOCs obtained within the FC region of 110 at the MS-RASPT2
level of theory. The multiconfigurational calculations reveal merely two triplet states, T1 and T2,
at 1.88 and 3.04 eV, in the vicinity of the bright S1 state (2.71 eV) within the FC region. The spin-orbit
interaction (C2v-restricited) of both triplet states (B1), local excitations of the BODIPY fragment, and S1

(B1) are forbidden by means of symmetry, see Table S7. Charge-separated triplet states from the
BODIPY core to the phenyl moiety, T10 and T11, feature excitation energies of approximately 5.5 eV
and display very small SOCs of 0.0 and 0.5 cm−1 with S1, respectively. The highest coupling of S1 is
obtained with T7 (4.93 eV) with merely 5.3 cm−1. Pronounced SOCs are obtained among the singlet
ground state and high lying dissociative triplet states, e.g., T5 at 4.83 eV (778.0 cm−1) and the higher
order dissociative state T7 in the RASDiss at 5.83 eV (925.5 cm−1).

The computational results shown in Section 2.1 clearly reveal that the CT states of interests are
high in energy and inaccessible from S1 within the FC region. However, upon structural relaxation,
these states might undergo substantial stabilization. Thus, several excited singlet, S1, S2, S3, S8, and S11,
and triplet states, T1, T6, T7, T8, T11, T12, and T13 were fully optimized using TDDFT. The respective
singlet and triplet states were tracked within each equilibrium structure and displayed in a so-called
geometry-states correlation diagram for 110. As can be easily seen in Figure 1, all CT states (T6, T11, T12,
and T13) undergo only slight stabilization to 3.57, 3.89, 4.07, and 4.17 eV upon relaxation, respectively.
Thus, a population transfer from S1 to any CT state is energetically unfavorable.
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Figure 1. TDDFT geometry-states correlation diagram and charge density differences of the
corresponding states. Asterisks indicate non-converged geometries, where the last step of the
optimization procedure has been taken. Color code: singlet ground state (black), singlet state of
IL character (blue), dissociative singlet state (red), triplet state of IL character (green), dissociative
triplet state (orange), and triplet CT state (cyan).

A reason for the high lying CT states is the orthogonal alignment of the BODIPY core with respect
to the phenyl moiety within the C2v-restricted partially optimized equilibrium structure and, thus,
the omitted overlap of the π-systems. Therefore, a relaxed TDDFT scan along a dihedral connecting
the main- and side-ring with a step size of 5◦ was carried out. The calculated PESs are displayed
in Figure 2a, which reveal a substantial stabilization of up to 0.98 eV at 45◦ for the T6 CT state.
The discontinuity of the T6 PES between 75 and 80◦ is associated to a mixing of the HOMO with the
iodine p-orbitals. As mentioned in Section 3, full relaxation leads to a reduction of the symmetry
from C2v to C2, while the global singlet ground state is found with a slightly non-orthogonal (~85◦)
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alignment of the aromatic planes. The ground, as well as all investigated excited states, are stabilized
from the C2v (90◦) to the C2 (85◦) equilibria merely by 0.1 eV. Thus, the reduction of the degrees
of freedom to C2v as utilized in the preliminary benchmark simulations presented in Section 2.1 is
feasible. The vibrational modes corresponding to this torsion are found at low frequencies, i.e., 45 cm−1,
71 cm−1, 102 cm−1, and 170 cm−1, see Figure S3. Considering a thermal energy of 0.026 eV (room
temperature), a displacement along the relaxed PES up to 69◦ is feasible, which leads in consequence
to a lowering of the T6 CT state from 3.9 (at 90◦) to 3.0 eV (at 69◦). Thus, the energy gap between S1

and T6 is substantially decreased. However, recalling the benchmark from Section 2.1, CT states are
underestimated using PBE0 by ~0.8 eV.
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In order to re-evaluate the possibility of a population transfer from S1 to the triplet CT states,
the SOCs were re-calculated at a distorted structure (55◦)—at the vicinity of the crossing of S1 and
T6 as obtained by TDDFT. Analogous to the C2v-restricted structure, couplings of 0.1–4.0 cm−1 were
obtained at the MS-RASPT2 level of theory (see Table S8). Thus, and albeit the pronounced stabilization
of the charge-separated triplet states upon distortion, no evidence for a population transfer from the
bight S1 to the close-by triplet states is present.

2.2.2. Chemical Reduction Mechanism

The second proposed reaction mechanism addressing the generation of the catalytic active
BODIPY species is based on a preliminary chemical reduction of the PS to form the singly-reduced
BODIPY 21−1, followed by photo-excitation into the low-lying D5 state and subsequent charge transfer
processes within the excited states. In contrast to the non-reduced dye, 21−1 features two low-lying
CT states, D1 and D2 at 2.04 and 2.11 eV, well below the bright D5 at 2.69 eV. Thus, population of
these dark CT states upon photoexcitation of the bright ππ* state (D5) and subsequent relaxation
and internal conversion is feasible. As discussed in Section 2.1, TD-PBE0 is in good agreement with
MS-RASPT2 regarding the properties of the low-lying excited doublet states of the reduced dye,
while the disagreement of MS-RASPT2 with respect to the TDDFT D2 state (2.11 eV) originates from a
pronounced mixing with a ππ* transition in the multiconfigurational calculations.

Analogous to the investigation of the non-reduced system, a geometry-states correlation diagram
is presented in Figure 3 comprising D0–D4. The diagram reveals a pronounced stabilization of the
CT states upon equilibration below 2 eV, while the structural variations are rationalized by minor
alterations of the bond lengths of the aromatic rings. This finding is in contrast to the results obtained
for the non-reduced dye, where no pronounced stabilization of the CT states was observed. However,
even more substantial stabilization is observed for the dissociative D3 state, which is found in its
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optimized structure below the former doublet ground state and, thus, may lead to photodegradation
(see Section 2.3).Catalysts 2018, 8, x FOR PEER REVIEW  7 of 17 
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Figure 3. TDDFT geometry-states correlation diagram for the first five doublet states and charge
density differences. Color code: doublet ground state (black), bright excited doublet state (blue),
dissociative doublet state (red), and CT doublet state (green). Since D3(A1) becomes the electronic
ground state within its equilibrium, the bright D5 state cannot be described in this structure using a
single determinate method, i.e., TDDFT.

In addition, the potential energy landscape is studied along an internal coordinate describing the
relaxed torsion of the boron fragment with respect to the phenyl moiety. This internal coordinate is
closely related to the low-frequency vibrational modes at 39 cm−1, 71 cm−1, 97 cm−1, and 168 cm−1,
(see Figure S4). As shown in Figure 2b), the diabatic potential energy curves of the initial populated
D5 (ππ* character) and the low-lying CT states cross between 50◦ and 55◦. A further crossing of D5

and the two dissociative doublet states (D1 and D2) is accessible at approximately 30◦ with an energy
of ~2.5 eV, considering an initial excitation energy of 2.69 (C2v structure) or 2.55 eV (C2 at 80◦). Finally,
the two charge-separated states (D1 and D2) intersect with the two dissociative states (D3 and D4) in
the vicinity of the FC region of the fully-relaxed ground state (C2 symmetry), where all four excited
states (D1–D4) are almost degenerate. Interestingly, structural distortion along this dihedral angle to
the C2 minimum at 80◦ stabilizes the doublet ground state, as well as all low-lying excited states by
approximately 0.2 eV, while the oscillator strength of the CT states increases to approximately 0.012.
Thus, even a direct photo-induced population of these CT states is possible for the singly-reduced dye.
The participation of (low-lying) quartet states in the excited state relaxation cascades is excluded since
the lowest quartet states are found at 4.26 eV at the MS-RASPT2 and at 3.55 eV at the TDDFT levels of
theory with 21−1 (Table 1). Therefore, no SOCs were calculated for the singly-reduced dye.

Finally, it is concluded that upon chemical reduction by a sacrificial electron donor (TEA),
the desired photo-induced CT from the BODIPY fragment to the phenyl moiety competes with
dissociative excited state relaxation channels leading to the photodegradation of the PS. The latter
photodegradation processes, i.e., C-I bond breaking, will be elucidated in the following.

2.3. Photodegradation

Experimentally, the observed decline in catalytic performance of the present BODIPY PS after
~20 h of irradiation is attributed to photo-degradation, namely to C-I bond breaking and the subsequent
formation of the catalytically less active unsubstituted parent dye. The performed quantum chemical
simulations aim at studying such dissociative processes at a molecular level.

As shown for the non-reduced as well as for the singly reduced dye, dissociative states of πσ*
nature are located well above the bright ππ* state in the FC region. However, these dissociative states
undergo pronounced stabilization upon structural distortion and cross eventually with the initially
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populated ππ* state. The light-driven C-I splitting is first investigated for the non-reduced dye (110)
and subsequently for the singly reduced dye (11−1).

In the FC region of the non-reduced dye, the dissociative states—S8 and S11—are found at
excitation energies exceeding 4 eV, thus, a population transfer from the bright S1 (TDDFT: 2.88 eV and
MS-RASPT2: 2.69 eV) at this geometry is unfeasible (recall Table 1). In addition, population transfer
from S1 into the lowest dissociative triplet states—T7 and T8—is predicted to take place above 4 eV in
the C2v-restricted structure, while SOCs of merely 40 cm−1 are calculated between the respective states
(Table S9). However, substantial stabilization of the dissociative singlet and triplet states is observed in
the geometry-states correlation diagram (Figure 1) for the singly-dissociative states, S8 and T7, and for
the doubly dissociative states, S11 and T8, upon relaxation. Dissociation was further investigated
using relaxed PESs along the stretched C-I bonds. Vibrational modes or linear-interpolated (internal or
Cartesian) coordinates were intentionally not utilized, since major distortion along such coordinates
is necessary to stabilize the respective dissociative states sufficiently, which also leads to a sizable
distortion of the aromatic system. Figure 4a depicts the diabatic PESs of the bright S1 state, as well as the
dissociative singlet and triplet states along the singly-dissociative coordinate. Surprisingly, S8 and T7

undergo pronounced stabilization and cross the diabatic bright ππ* state at 2.4 and 2.3 Å, respectively.
However, no dissociative behavior is observed since both PESs feature a shallow minimum at ~2.7 Å,
while additional 0.8 eV are required to reach the crossing with the singlet ground state at an excitation
energy of 3.7 eV and an elongation of R = 3.85 Å. Thus, the energy provided upon excitation into the
bright S1 in the FC region (TDDFT: 2.88 eV and MS-RASPT2: 2.69 eV) is insufficient to populate the
dissociative states along the relaxed singly-dissociative coordinate. DFT simulations exceeding an
elongation of 4 Å failed to converge. In addition, the concerted cleavage of both carbon-iodine bonds
was evaluated using TDDFT along a relaxed doubly-dissociative coordinate (Figure S5), as well as
using the MS-RASPT2 along an unrelaxed doubly-dissociative coordinate of C2v symmetry (Figure S6).
The multiconfigurational calculations indicate once more to a slight overestimation of the S1 state
and an underestimation of the dissociative states by TDDFT along the reaction coordinate, while no
complete dissociative behavior is observed.
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Figure 4. Relaxed TDDFT singly dissociative coordinate for the non-reduced (a) and reduced (b) dye.
Arrows indicate a possible relaxation pathway starting from the bright D5 state via IC to the dissociative
D3 state and further back to D0. Color code: ground state (black), bright excited singlet/doublet state
(blue), dissociative singlet/doublet state (red), dissociative triplet state (orange), and CT doublet
state (green).

Moreover, to populate the dissociative triplet states, T7 and T8, an ISC from the bright S1 is
essential. To quantify the kinetics of such process, the SOCs of the respective states were incorporated
in the golden-rule expression for radiationless transitions, see Equation (1) [58]. For both cases—the
population transfer from S1 to T7 and from S1 to T8—the calculated rate constants of 1.69 × 104 and
1.51 × 103 s−1, respectively, suggest rather slow processes (see Table S10). The calculated SOCs within
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the FC region between S1 and T7 as well as between S1 and T8 are with 0.6 and 39.2 cm−1 relatively
small. Therefore, the SOCs were re-evaluated using MS-RASPT2 (with RASDiss) in the vicinity of
the S1/T7 and S1/T8 crossing regions; these structures were derived by fitted quadratic potentials
(see Figure S8 and Table S11). However, the obtained couplings of 1.7 (S1/T7) and 53.0 cm−1 (S1/T8)
do not indicate a pronounced dependency of the SOCs along structural distortion within the studied
range. Accordingly, similar values of kISC are obtained within the estimated crossing regions.

The influence of structural distortion on the SOCs was further investigated for selected points
along the unrelaxed doubly dissociative coordinate, see Figures S6 and S7 for more details, while in
agreement with the previous results no pronounced deviations of the S1/T7 and S1/T8 couplings
were determined. The quantum chemical calculations for 110 addressing possible photodegradation
pathways—associated to iodine dissociation—upon S1 excitation reveal that the population of
dissociative singlet states is energetically unfavorable. However, ISC towards the energetically less
unfavorable dissociative triplet states may occur on longer time scales, which is in accordance with the
experimentally-observed decline of catalytic activity upon approximately 20 h.

In addition to the evaluation of the photostability of the present BODIPY-based PS within
its non-reduced redox state, degradation channels upon single reduction by TEA were evaluated.
The reduced dye, previously identified as the starting point for the light-induced charge separation,
exhibits low-lying dissociative states, namely D3 and D4, within the GS equilibrium geometry 21−1

(see Table 1). Therefore, excitation into the bright D5 state may lead in consequence to the population
of degradative excited state relaxation channels, i.e., D3 and D4. The geometry-states correlation
diagram depicted in Figure 3 visualized the substantial stabilization of ~1.4 eV for the equilibrated
singly-dissociative state, D3. The doubly-dissociative state, D4, features no pronounced stabilization
compared to D3 and was already classified as non-dissociative for 110 and was consequently not
considered in the following. Analogously to 110, the potential energy landscape of the ground
and low-lying excited states of 21−1 was examined using a relaxed singly-dissociative coordinate.
As evident from Figure 4b, relaxation along the singly dissociative D3 state is a prominent deactivation
pathway from the bright D5 state. At approximately 2.7 Å, the dissociative state crosses with the
doublet ground state. At this point and beyond, the (TD)DFT results have to be handled with caution
due to the pronounced multiconfigurational character of the electronic states. In the case of the reduced
dye, the singly-dissociative state is a prominent relaxation channel that may be populated from the FC
region, which leads to a barrier-free cleavage of a C-I bond and, thus, to photo-degradation. Moreover,
the crossing with D0 provides an explanation for the experimentally-observed iodine formation after
several hours of irradiation.

3. Computational Details

All DFT and TDDFT calculations in the present study were performed using the Gaussian 09 [59]
program, while all multiconfigurational simulations were carried out in Molcas 8.0 [60]. In order to
reduce the computational demand without affecting the photophysical properties, the mesityl group
was replaced by a phenyl moiety.

The ground state equilibrium structures of the non-reduced singlet (S0, 110) and the singly-reduced
doublet (D0, 21−1) of the investigated dye—both involved initially in the proposed catalytic
cycles—were optimized by means of DFT. Additionally, DFT simulations were performed to study
the equilibrium structure of the non-reduced triplet (T1, 310) species. The hybrid-functional PBE0 [61]
and the correlation-consistent double-ζ-basis set cc-pVDZ [62] in cooperation with the core potential
MWB-46 [63] for the iodine atoms utilized. A subsequent vibrational analysis was carried out for each
fully-relaxed ground state structure to verify that a minimum on the PES was obtained. All equilibrium
structures denoted 110 and 21−1, feature merely C2 symmetry due to a twist of the phenyl moiety
with respect to the central BODIPY core of approximately 85 and 80◦, respectively. In order to reduce
the computational demand, especially for the subsequent excited state simulations by means of
TDDFT and multiconfigurational studies, C2v-restricted structures were additionally optimized. These
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structures exhibit two imaginary frequencies, e.g., −84 and −60 cm−1 for 110, correlated to the twist of
the phenyl-BODIPY carbon-carbon bond.

Excited state properties, such as vertical excitation energies and transition dipole moments, were
computed within the adiabatic approximation at the TDDFT level of theory using the same functional
and basis set as for the preliminary ground state calculations. For each optimized structure, the 20
lowest excited states of the non-reduced dye (singlet and triplet), as well as for the singly-reduced
dye (doublet and quartet), were considered. Furthermore, excited state equilibrium structures were
obtained for the states of interest starting from the FC region of the ground state structure. The main
focus was set hereby on states displaying photo-induced carbon-iodine bond cleavage, corresponding
to the population of at least one σ* orbital of the carbon-iodine bonds, and excited states of CT character,
implicating an excitation into the phenyl ring from the main π-system, or vice versa. For the heavy
atom mechanism starting from the S0 structure, the first three excited singlet states (S1–S3) were
optimized. Moreover, four triplet states of CT character were equilibrated: T6 and T11 representing an
excitation from a phenyl orbital into the LUMO localized at the main π-system, whereas T12 and T13

show a transition from the HOMO (π-system of boron fragment) to the phenyl fragment. To address
carbon-iodine bond breaking, two singlet (S8 and S11) and two triplet (T7 and T8) states were optimized
for mono- and di-dissociation, respectively. The intermediate structures for the chemical reduction
mechanism (starting from D0) were obtained based on analogous TDDFT simulations and focused on
the two low-lying CT states (D1 and D2), as well as on the dissociative states D3 and D4. In addition,
TDDFT simulations within the quartet manifold were performed.

Effects of interaction with a solvent (THF: ε = 7.4257, n = 1.4070) were taken into account for
all DFT and TDDFT calculations by the integral equation formalism of the polarizable continuum
model [64]. The non-equilibrium procedure of solvation was used for the calculation of excitation
energies within the FC region, which is well adapted for processes where only the fast reorganization
of the electronic distribution of the solvent is important. In contrast, the equilibrium procedure of
solvation was applied for excited state geometry optimizations.

In addition, the computational results obtained by the economical TDDFT simulations were
validated against multiconfigurational calculations performed at the RASPT2 [65,66] //RASSCF [67,68]
level of theory. The relativistic ANO-RCC-VDZP basis set [69,70] and the Choleskey decomposition [71]
to generate the two-electron integrals were utilized. All calculations were exclusively carried out
in the gas phase within the solvated PBE0 ground state geometries (110 and 21−1) and with C2v

symmetry to reduce the computational costs. To label the restricted active spaces (RASs) utilized in
the RASSCF calculations, the notation RAS (n,l,m;i,j,k) of Gagliardi and co-workers [72] was applied,
where n labels the number of active electrons, l the maximum number of holes in the RAS1, m the
maximum number of electrons in RAS3, and i, j, and k the number of active orbitals in the RAS1, RAS2,
and RAS3 subspaces, respectively. The RAS1 consists of orbitals with large occupation numbers, where
only a maximum number of electron holes is permitted. Contrary, the RAS3 includes virtual orbitals
with occupation numbers close to zero, with only a defined maximum number of electrons being
allowed. The RAS2 is equivalent to the active space in the CASSCF method, including all possible
electronic configurations.

The aim of the multiconfigurational calculations was to accurately describe the ground state,
the first bright state, states leading the carbon-iodine bond breaking, and CT states between the
aromatic rings for the non-reduced as well as for the singly reduced dye. Hence, the complete π-system
of the main (heteroaromatic) ring and the π-system of the attached phenyl ring—excluding the
complete bonding and anti-bonding orbitals of both fragments—were incorporated in the active space
to ensure a balanced description of the respective states. Furthermore, the p-orbitals of the iodines in
plane with the π-system were included. To describe dissociative processes, two pairs of σ/σ*-orbitals
of the C-I bonds were included, leading in consequence to an active space (24,21). Since a complete
active space approach would have exceeded the available resources, a RASSCF approaches was chosen,
and the 24 orbitals were distributed along the RAS subspaces. Two different RAS partitions, RASdiss
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and RASCT, based on the active space (24,21) were designed (see Figure 5). Each partition enables the
description of S0 and D0, as well as of the bright excited states S1 and D5 by assigning HOMO-1 π2(a2),
HOMO π3(a2), and LUMO π*4(b2) to RAS2. RASdiss was designed in particular to investigate excited
states with dissociative character, i.e., carbon-iodine bond cleavage (non-reduced: S8, S11, T7, and T8;
singly-reduced: D3 and D4). Thus, the two anti-bonding orbitals σ*(a1) and σ*(b1) were assigned
additionally to RAS2. In contrast, RAS2 of RASCT comprises in addition to π2(a2), π3(a2), and π*4(b2),
four π-orbitals of the phenyl moiety, namely πph,2(b1), πph,3(a2), π*ph,4(a2), and π*ph,5(b1), to investigate
CT phenomena among the molecular fragments, i.e., T6, T11, T12, and T13 of the non-reduced dye and
D1 and D2 of the reduced system. Interactions among the subspaces of RASdiss and RASCT were taken
into account up to double excitations, which leads in consequence to a RASdiss (21,2,2;10,5,6) spanning
over 71,140 configuration state functions (CSFs) and a RASCT (21,2,2;8,7,6) spanning over 534,332 CSFs.
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Figure 5. (a) RASdiss (21,2,2;10,5,6) and (b) RASCT (21,2,2;8,7,6) to describe ground, bright,
and dissociative or CT-excited states for both mechanisms within their C2v optimized ground state
(PBE0/cc-pvdz) structure (110 and 21−1). The distribution over the subspaces RAS1, RAS2, and RAS3
is displayed, the occupation within the Hartree-Fock (HF) reference wave function is indicated by the
gray dashed line.
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State-average (SA-)RASSCF calculations including the first four roots in each spatial symmetry
and multiplicity were carried out using both RASs in the 110 and 21−1 geometry. Dynamical correlation
was added my means of multistate (MS-)RASPT2 [73] on the SA-RASSCF reference wave functions,
while the core electrons were kept frozen and a real level shift [74] of 0.3 a.u. was applied to prevent
intruder states.

Transition dipole moments and SOCs—between singlet and triplet states—were obtained at the
RASSCF and RASPT2 levels of theory using the CAS state interaction method [75]. The SOCs rest on an
effective one-electron spin-orbit Hamiltonian and atomic mean field integrals [76]. They were obtained
between the bright and the dissociative states (utilizing RASdiss), as well as between the bright and the
CT states (utilizing RASCT) in 110, and along selected coordinates, i.e., linear-interpolated Cartesian
coordinates (LICCs), vibrational normal modes, as well as relaxed scans along bond lengths and
dihedral angles. The carbon-iodine dissociation was studied along a symmetric and an antisymmetric
elongation of both respective bonds. In case of the CT processes, a dihedral angle describing the
torsion of the two aromatic systems was utilized. The excited state potential energy landscape along
these coordinates was assessed exclusively by virtue of TDDFT. The symmetric bond cleavage (A1

displacement, non-relaxed coordinate) was, furthermore, investigated at the RASPT2 level of theory
including SOCs, while the first two roots in each spatial symmetry and multiplicity were calculated.
This coordinate was intentionally chosen to allow the application of multiconfigurational methods.

In addition, the rate constant for a population transfer from the bright S1 state towards the triplet
manifold upon photoexcitation was assessed for the non-reduced dye. Therefore, the golden-rule
expression for radiationless transitions was adapted for ISC rate constants and SOCs as interacting
perturbation-potential. These rate constants, kISC, were obtained along LICCs connecting the FC region
with the equilibrated T7 and T8 structures, respectively, by [58]:

ki f
ISC =

2π

h

∣∣∣〈Ψi

∣∣∣ĤSOC |Ψ f

〉∣∣∣2 1√
4πλRT

exp

[
− (∆E + λ)2

4λRT

]
(1)

Here, ∆E is the energy difference between the optimized states, λ the reorganization energy and〈
Ψi

∣∣∣ĤSOC |Ψ f

〉
the SOC matrix element between the initial state i and the final state f. The ground

and excited state geometries and excited state energies were obtained by DFT and TDDFT, while SOCs
were rationalized by RASPT2 calculations within the FC region. Equation (1) was evaluated at room
temperature (298 K).

4. Conclusions

The aim of the present computational study was to elucidate the photophysical and photochemical
processes leading to the formation of the catalytically active species of a BODIPY-based photosensitizer
in the scope of light-driven hydrogen evolution, as well as to identify prominent excited-state relaxation
channels associated to the photodegradation of the dye. The preliminarily performed benchmark
of the excited states properties obtained by economical TDDFT calculations against state-of-the-art
multiconfigurational simulations, namely MS-RASPT2, showed that the PBE0 functional is able to
estimate the potential energy landscape in the ground state structure of the non-reduced and the singly
reduced photosensitizer in reasonable agreement with MS-RASPT2. The formation of the catalytically
active charge-separated species was investigated by virtue of two postulated mechanisms: (i) The
first mechanism relies on the initial photo-excitation of the non-reduced species and a subsequent
ultrafast population transfer to low-lying charge-separated triplet states based on the SOCs introduced
by the iodine atoms attached to the BODIPY core; (ii) The preliminary step in the second mechanism
is a chemical reduction of the PS by the sacrificial electron donor (triethylamine) and a subsequent
photo-induced charge transfer. Within (i), the crucial step involves an ISC from the bright excited
singlet state towards the triplet manifold. The potential energy landscape as well as the minor SOCs
obtained by MS-RASPT2 and TDDFT suggest that the population of long-lived charge-separated triplet
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states is highly unlikely, see Scheme 2a. However, the quantum chemical calculations performed for
the singly-reduced dye reveal a pronounced stabilization of CT states between the BODIPY moiety
and the attached phenyl group, which are further lowered upon partial excited-state planarization of
the two aromatic fragments. Therefore, the formation of the catalytically active species is found to be
related to the reduction of the BODIPY photosensitizer prior to the photoexcitation, see Scheme 2b.
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Furthermore, the photodegradation processes, i.e., the dissociation of iodine, were identified
for the non-reduced as well as for the singly-reduced species. Cleavage of the carbon-iodine bond(s)
within the excited singlet states of the non-reduced dye is energetically unfavorable, while SOCs of up
to ~50 cm−1 may lead to an ISC towards the energetically less unfavorable dissociative triplet states on
longer time scales. In contrast, the light-driven cleavage of the carbon-iodine bond(s) was found to be
a prominent excited-state relaxation channel of the singly-reduced dye.

Thus, this study does not support to ascribe the enhanced catalytic performance of the present
BODIPY dye with respect to its unsubstituted parent species to a heavy atom effect introduced by the
iodine atoms. Further quantum chemical and quantum dynamical investigations are envisaged
for the parent dye in order to rationalize the impact of iodine substitution (2,6 position) with
respect to the photophysical and photochemical properties as well as for dyes incorporating electron
donating substituents at the 2,6 position, e.g., methoxy groups, that allow to stabilize the desired
charge-separated intermediates and to enhance the photostability simultaneously.
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