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Abstract: Methane dry reforming (MDR) is an attractive alternative to methane steam reforming
for hydrogen production with low harmful environmental emissions on account of utilizing carbon
dioxide in the feed. However, carbon formation in the product stream has been the most challenging
aspect of MDR, as it leads to catalyst deactivation by coking, prevalent in hydrocarbon reforming
reactions. Common strategies to limit coking have mainly targeted catalyst modifications, such
as by doping with rare earth metals, supporting on refractory oxides, adding oxygen/steam in
the feed, or operating at reaction conditions (e.g., higher temperature), where carbon formation is
thermodynamically restrained. These methods do help in suppressing carbon formation; nonetheless,
to a large extent, catalyst activity and product selectivity are also adversely affected. In this
study, the effect of ammonia addition in MDR feed on carbon suppression is presented. Based
on a thermodynamic equilibrium analysis, the most significant observation of ammonia addition is
towards low temperature carbon dioxide activation to methane, along with carbon removal. Results
indicate that ammonia not only helps in removing carbon formation, but also greatly enriches
hydrogen production.

Keywords: methane dry reforming; carbon dioxide conversion; ammonia-assisted reforming;
thermodynamic equilibrium analysis

1. Introduction

The reaction CH4 + CO2 → CO + H2 or methane dry reforming (MDR) for producing hydrogen
from methane provides an alternative way to the industrially used methane steam reforming
(MSR) [1–5]. The advantage of MDR reaction is that it uses CO2 as a feed, thus ameliorating
the environmental impact by decreasing the concentration of this ubiquitous greenhouse gas,
and generating a ratio of H2 and CO that can be adjusted to obtain the required synthesis gas (syngas)
composition. Starting from syngas, using Fischer–Tropsch chemistry, long chain hydrocarbons and
liquid fuels can be produced on transition metal oxide catalysts, as described in Equation (1):

nCO + (2n + 1)H2 → Cn H2(n+1) + nH2O (1)

The main disadvantage of the MDR reaction is that the catalysts used in this reaction undergo
severe deactivation, primarily due to carbon formation, also known as coking, limiting the lifetime
of the catalysts [3,6–11]. Supported noble metals suffer less deactivation, but are costly, and the use
of alkali promoters increases time on stream (TOS), but decreases activity and selectivity [3,9,12–15].
Mechanistic studies indicate the dissociation of methane on metal surfaces proceeds via two widely
accepted reaction pathways: Firstly, by direct dissociation, and secondly, by indirect dissociation
of intermediate species [7,10,16,17]. The direct dissociation is anticipated to take place at a high
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temperature, while the low temperature conditions are expected to favor indirect dissociation through
reaction intermediates (e.g., CHx or formyl group) [18], where the oxygen is supplied from CO2 or via
the support [19]. Some reports indicate the activation of methane to be favored on metal active sites,
while that of carbon dioxide on the support during MDR [20]. Other reports indicate that supports do
play a role in methane activation and the acidity or basicity of the support can influence the activation
of methane [20,21] and, in some cases, the activation of CH4 is reported to require the availability of
adsorbed oxygen, usually coming from the supports [22]. Methane reforming in the availability of CO2

or other oxidants (steam, oxygen, or air) indicates low carbon formation and high syngas yield [23–26]
with a varying ratio of H2/CO based on the nature of support used.

Recent literature [19,27–29] has summarized the status of coke formation in various hydrocarbon
reforming catalysts susceptible to coke poisoning. Mechanistic studies conducted on different catalyst
surfaces suggest the following intermediate reactions to be the main contributors in coke formation in
MDR and other hydrocarbon reforming reactions [19]:

• The Boudouard reaction:
2CO→ CO2 + C (2)

• Reverse carbon gasification:
CO + H2 → H2O + C (3)

• Dehydrogenation of hydrocarbons:

Cm Hn → n/2H2 + mC (4)

• Polymerization of ethylene to coke:
C2H4 → coke (5)

• Conversion of acetone to mesityl oxide ((CH3)2C = CHCOCH3), which can further oligomerize
to generate coke [30].

The Boudouard reaction is understood to be the main cause of carbon formation at a low
temperature, whereas dehydrogenation of intermediate hydrocarbons at a high temperature favors
coke formation [3,19]. These intermediate reactions are observed in both hydrocarbon and oxygenated
hydrocarbon reforming, indicating similar catalysts could work in both cases for suppressing
coke formation.

Although various studies have been conducted on the design of effective catalysts for MDR
reactions and a considerable progress has been made in the direction of understanding the mechanism
of deactivation, nonetheless, carbon formation still remains a great challenge that limits the MDR
catalysts’ life cycle. Thermodynamic studies indicate a significant decrease in carbon formation in
reforming oxygenated compounds when certain chemical additives are introduced in the feed [31,32],
where carbon suppression is also accompanied by hydrogen enrichment [31,32]. In this work, the effect
of ammonia addition in the MDR feed stream on coke formation is investigated. This study is based
on the thermodynamic equilibrium analysis to obtain product distribution between 300–1000 K. My
research group is primarily working on the catalysts’ synthesis using combustion-based techniques
for hydrocarbon reforming reactions [33–48]. While the experimental work on catalyst development
for MDR is still underway, the results on thermodynamic equilibrium analysis are presented here
to understand the favorable reaction conditions. Considering the ongoing work on ammonia to be
used as a hydrogen storage chemical [49,50], this study becomes more relevant and also investigates
the total hydrogen enrichment and quality of syngas produced in ammonia-assisted MDR. Unlike
methane partial oxidation, hydrogen amount is not expected to be compromised while removing the
deposited carbon here. The thermodynamic calculation methodology applied in this study is briefly
presented in the following section.
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2. Thermodynamic Calculations

The conditions of equilibrium product distribution at a given temperature pressure were
calculated using a software package “THERMO”. The program works on the basis of minimization
of Gibbs free energy in a multiphase and multicomponent system, assuming the condensed phases
to be immiscible and the gases to follow ideal gas law. The details of the program can be found in
the reference manual and other publications [31,32,51]. Table 1 contains the enthalpy of formation of
various compounds that are used in thermodynamic analysis. It should be noted that the “THERMO”
program has a comprehensive database containing products with other possible atomic combinations
of C, H, N, and O, and does not limit the optimization to only to the components listed in Table 1.

Table 1. The standard enthalpy of formation for various compounds used in this study [52].

Compound Enthalpy of Formation (∆H0
f ), KJ/mol

CH4 −74.6
CO2 −393.51

H2O (g) −241.826
NH3 −45.94
CO −110.53
H2 0
N2 0

C (graphite) 0

3. Results and Discussion

Thermodynamic equilibrium product distribution for methane dry reforming using 1:1 molar
ratio of CH4:CO2 (Equation (5)) at 1 atm. pressure and a temperature range of 300–1000 K is shown in
Figure 1a.

CH4 + CO2 ↔ 2CO + 2H2 : ∆H0
f = +247.05KJ/mol (6)

Looking at the distribution of various compounds (Figure 1a), it is clear that elemental carbon and
water are the two most stable products at low temperature and both start to decrease as temperature
increases. Methane concentration, however, increases to a maximum value of 0.39 moles at 600 K
before starting to decrease and gradually reaching ~100% conversion at 1000 K. Carbon dioxide shows
a similar trend, with an increasing value at lower temperature reaching to a maximum of ~0.55 moles
at 800 K before starting to decrease. There is no CO formation until 600 K, whereas hydrogen starts
to appear as early as 400 K itself and both CO and H2 show an exponential increase in concentration
with temperature, indicating that higher temperature is more favorable for syngas formation and
low temperatures are suitable for coking. Similar trends were obtained by Pakhare et al. [3,53] while
investigating the effect of temperature on carbon formation in dry reforming of methane, indicating
that only temperatures above 900 ◦C (1173 K) are suitable for carbon-free products.
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Figure 1. Product distribution in (a) methane dry reforming, (b) methane steam reforming, (c) methane
partial oxidation, (d) total carbon formation in all the three reactions. All the calculations were
performed at 1 atm pressure.

Extending the thermodynamic investigations to other commonly used methane-reforming
reactions, that is, methane steam reforming (MSR: CH4 + H2O, Figure 1b) and methane partial
oxidation (M-POx: CH4 +

1
2O2, Figure 1c), a decrease in carbon formation is very clear in the presence

of steam and oxygen, respectively. However, a careful observation indicates that methane conversion
is also inferior in these two reactions at low temperature values. Starting with the same initial methane
amount of 1 mole, comparing the equilibrium amount of methane present in the three systems at
800 K, the lowest conversion is observed in MSR with 0.64 moles of unreacted methane, followed
by M-POx with 0.37 moles and MDR with only 0.27 moles. Nonetheless, conversion of methane
directly relates to the amount of carbon formed at lower temperature values, as the other product
containing carbon (i.e., CO) is insignificant for temperatures below 800 K. Figure 1d combines the
trend of carbon formation in the three reactions, showing profiles with maximum carbon generation in
MDR, followed by MSR and M-POx respectively. The effect of temperature on carbon content is clearly
indicated by exposing two regions of distinct carbon growth patterns. For T < 700 K, carbon content
monotonically decreases in MDR and M-POx, whereas no carbon was observed in MSR. A deflection
in carbon profile is observed in MDR and M-POx between 700 K–1000 K, while in MSR, carbon starts
to appear at 700 K, reaches a maximum value of 0.21 moles at 900 K before decreasing to 0.04 moles
at 1000 K. Throughout the investigated temperature range of 300–1000 K, MDR shows the highest
carbon formation, though gradually decreasing with temperature, forming an ideal system for our
investigation of ammonia-assisted methane dry reforming and observing the effect of ammonia on the
reduction of carbon.
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Currently, a number of research activities are targeting ammonia synthesis as a means of
hydrogen storage [49,50,54]. Ammonia is a clean source for on-demand hydrogen generation,
providing high hydrogen density and no harmful environmental emissions, as nitrogen is the only
byproduct [49,50,54]. The addition of ammonia alongside carbon dioxide in MDR could help in
alleviating coke formation and increasing the catalyst life cycle, along with increasing the total
hydrogen production. The thermodynamic feasibility tests are being performed at this stage and the
experimental validations are to follow up in future communications.

Figure 2 shows the effect of ammonia (1 mol) addition on the product distribution in MDR
systems. Ammonia is anticipated to decompose, producing nitrogen and hydrogen gases, as displayed
by a constant amount of 0.5 moles of nitrogen throughout the temperature range of investigation and
an increase in hydrogen amount as compared to MDR without ammonia. It should be noted that
ammonia is completely utilized and practically no amount is present starting from 300 K until 1000 K
(Figure 2a). Other products’ distribution indicates a considerable increase in CH4 moles and a slight
increase in H2O and CO moles, whereas a decrease in carbon and CO2 moles is observed. This trend is
clearly illustrated by comparing the product distribution at 800 K, as shown in Figure 2b. A significant
increase in CH4, H2, and H2O is seen as compared to a decrease in C and CO2, whereas the amount
of CO is only slightly affected. An increase in CH4 moles and a simultaneous decrease in CO2 moles
indicates an improved CO2 activation by ammonia towards CH4, C, and CO formation.
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(b) comparison in product amount at 800 K with and without NH3 addition.

The addition of one mole of ammonia in an MDR system has certainly helped in reducing the
carbon content, but only to a limited extent. In order to eliminate carbon completely, an extra amount
of ammonia is required, as presented in Figure 3. For a low temperature range of 300–800 K, carbon
can be completely removed by increasing the ammonia content to 4 moles for each mole of methane
used. Carbon content at 300 K gradually decreases from a value of 2 moles in the absence of ammonia
to values of 1.25, 0.5, and 0 moles as the ammonia moles are increased to 1, 2, and 4, respectively.
Thus, 4 moles of ammonia is sufficient for a carbon-free product in methane dry reforming at low
temperature values, but it is not enough for high temperature operations with T > 800 K, where carbon
formation peaks at T ~900 K before decreasing (as shown in Figure 3a). Comparing the carbon content
in MDR products at 900 K (Figure 3b), additional ammonia up to 6 moles will be required for complete
removal of carbon.
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Figure 3. Effect of ammonia content on carbon formation in methane dry reforming; (a) at temperature
300–1000 K, (b) at temperature = 900 K.

As the inclusion of ammonia in MDR eliminates carbon formation, questions arise about the nature
of products this carbon gets converted to. As shown earlier in Figure 2b, among the carbon-containing
compounds, only methane and carbon monoxide show an increase in amount upon ammonia addition.
This observation indicates that ammonia lowers the overall conversion of methane to carbon, whereas
it facilitates carbon dioxide conversion as some amount of carbon dioxide is transformed into carbon
monoxide (Figure 2b). This effect was further studied in detail, keeping in mind that approximately
6 moles of ammonia is required for carbon-free product distribution throughout the temperature range
of 300–1000 K that is expected to create a strong reducing environment. Looking at the trends in
Figure 4a, addition of high concentration of ammonia not only decreases the reactivity of methane, but
also promotes methane formation at low temperature ranges until 700 K (Figure 4a). The methane
amount increases from zero moles at 300 K in MDR to 0.75, 1.5, and 2 moles upon addition of 1, 2,
and 4 moles of ammonia (Figure 4b); afterwards, the CH4 value remains constant due to the lack of
a carbon source, as only 2 moles of CH4 can be produced in the MDR system (CH4 + CO2). Therefore,
thermodynamically, it is very clear that ammonia can completely convert carbon dioxide to methane at
lower temperature, which follows until 600 K as no decline in the methane amount is observed for
T < 600 K. Increasing temperature beyond 600 K shows methane being actively converted to some
other products, as indicated by the sharp downward trends in Figure 4a, with minimum values at
1000 K. Even at higher temperatures (1000 K), the addition of ammonia increases the methane amount
in products with values of 0.15, 0.24, 0.32, 0.4, 0.47, and 0.5 for increasing NH3 values from 1–6 moles
(Figure 4b), as compared to approx. 0.1 moles of methane in the absence of NH3.
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Applying the principle of conservation of elements, an increase in the methane amount at low
temperature could only result from a decrease in the carbon dioxide amount. As indicated in Figure 5a,
the amount of CO2 consistently decreases by increasing the ammonia content, while with CO being
absent in the product until 600 K and the amount of carbon consistently decreasing, the selectivity for
direct methane formation from CO2 increases rapidly in the presence of NH3. No CO2 is observed
for NH3 ≥ 4 moles until 600 K and only at higher temperature, whereas some CO2 is observed with
maximum value at T ≈ 800–900 K. Keeping track of CO2 moles at 900 K, only 0.19 moles are left for
NH3 = 6 moles that also decreases further at 1000 K.
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amount in presence of NH3 at 900 K.

Looking at the other carbon-containing product—CO in Figure 1b, Figure 2a, and Figure 6a—it
is clear that CO is not generated until 600 K even if large amounts of NH3 is added to the MDR
system. The generation of CO happens only at T > 600 K and grows exponentially thereafter. Addition
of NH3 only has a slight effect, which is not as significant compared to other carbon-containing
products like CO2, CH4, and C. Nonetheless, the overall impact of ammonia is a slight improvement
in CO content, most significantly at T = 1000 K (Figure 6b), where CO moles vary from 1.2 moles to
1.4 moles. Hydrogen, on the other hand, is expected to experience the biggest increase in quantity due
to ammonia being an additional source along with methane (Figure 7). For MDR and low amounts
of NH3 (≤2 mol), hydrogen generation starts only after T ≥ 600 K, a trend similar to CO production,
before growing rapidly (Figure 7a). Low temperature conditions favor water production (Figure 1a,
Figure 2a, and Figure 7b), which decreases gradually with an increase in temperature while increasing
the hydrogen content in the product. As ammonia concentration is increased, water is preferentially
produced and reaches the maximum value of 2 moles, limited by the number of oxygen atoms in the
system coming from CO2, before the excess hydrogen atoms are distributed among other products,
such as CH4 and H2 (Figures 4a and 7). Looking at the trends of CH4, CO2, H2, and H2O in the
presence of excess amount of NH3 (≥4 mol), it appears as if carbon dioxide is transformed into
methane at low temperature values (T < 600K), which undergoes steam reforming to produce syngas
that is a combination of hydrogen and carbon monoxide. Therefore, it can easily be said that syngas
production in the presence of ammonia is a result of MSR at high temperature, where ammonia
facilitates excess methane and water generation at low temperature to be further utilized in MSR at
high temperature.
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Figure 8 summarizes the results obtained so far while showing the carbon content in the product
with syngas quality (H2/CO ratio, Figure 8a) and simultaneously comparing the influence of ammonia
in all carbon-containing products at 1000 K (Figure 8b). The addition of ammonia removes carbon
from product, while it increases hydrogen production. On the other hand, the addition of ammonia
does not affect CO production as much, and favors methane formation. As a result, carbon atom is
distributed among CO2, CH4, and C as the ammonia amount is changed while maintaining a constant
level of CO in the product. Thus, in the absence of further CO generation, the H2/CO ratio appears to
increase linearly with ammonia (Figure 8a).
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4. Conclusions

Carbon formation is a severe challenge in methane-reforming reactions, particularly MDR
(methane dry reforming). Based on the thermodynamic calculations for equilibrium product
distribution, it is clear that the carbon content in product can be minimized while simultaneously
enhancing hydrogen generation by utilizing ammonia as a reducing agent in the MDR feed. Based on
detailed product analysis with temperature, it is concluded that ammonia favors water and methane
production at low temperature (T < 600 K), which, through the mechanism of methane steam reforming,
produces hydrogen and carbon monoxide at elevated temperature values (T > 600 K). The addition of
ammonia somehow does not significantly affect CO, as most of the carbon gets distributed among
CO2, C, and CH4. A complete carbon-free product distribution is possible by using NH3 ≥ 4 moles for
each mole of methane, resulting in an H2/CO ratio above 5.5 mol/mol. The most significant role of
ammonia is towards CO2 conversion to methane at low temperature, in addition to producing high
quantity of hydrogen.
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