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Abstract: Low-cost and high-performance advanced electrocatalysts for direct methanol fuel cells are
of key significance for the improvement of environmentally-pleasant energy technologies. Herein,
we report the facile synthesis of cobalt phosphate (Co3(PO4)2) nanospheres by a microwave-assisted
process and utilized as an electrocatalyst for methanol oxidation. The phase formation, morphological
surface structure, elemental composition, and textural properties of the synthesized (Co3(PO4)2)
nanospheres have been examined by powder X-ray diffraction (XRD), Fourier transform-infrared
spectroscopy (FT-IR), field emission-scanning electron microscopy (FE-SEM), high-resolution
transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and nitrogen
adsorption-desorption isotherm investigations. The performance of an electrocatalytic oxidation of
methanol over a Co3(PO4)2 nanosphere-modified electrode was evaluated in an alkaline solution
using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. Detailed studies were
made for the methanol oxidation by varying the experimental parameters, such as catalyst loading,
methanol concentration, and long-term stability for the electro-oxidation of methanol. The good
electrocatalytic performances of Co3(PO4)2 should be related to its good surface morphological
structure and high number of active surface sites. The present investigation illustrates the promising
application of Co3(PO4)2 nanospheres as a low-cost and more abundant electrocatalyst for direct
methanol fuel cells.

Keywords: cobalt phosphate; direct methanol fuel cell; electrocatalysts; methanol; microwave-assisted
synthesis; oxidation

1. Introduction

Concerns of the expanding demand for energy by humankind and the quick consumption of
fossil fuels have set off the need to plan and create novel advances for the production of energy in
a sustainable way [1,2]. Direct alcohol fuel cells (DAFCs) have engrossed significant interest as a power
source for handy applications, such as laptops, mobile phones, automobiles, and digital cameras,
etc. [3]. The concerns with storage and transport of alcohols (such as ethanol, methanol, glycerol,
and ethylene glycol) are more user-responsive compared to hydrogen [4]. The most frequent DAFC is
the direct methanol fuel cell (DMFC), which relies upon the oxidation of methanol over the surface
of the catalysts. In recent years, DMFCs are considered as one of the most promising candidate for
solving the energy crisis because of their high energy conversion efficiency, non-toxic nature, less noise,
and low operating temperature [5,6]. Electrocatalytic oxidation of methanol is the prime step in
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the progress of DMFCs. Conventionally, platinum and platinum-based alloys are extensively used
as promising electrocatalysts for the oxidation of alcohols due to their outstanding electrocatalytic
activities. However, what strongly limit their large-scale applications are the expensive noble metals
and their lower abundance in nature. This concern has brought more attention on researchers to
develop an alternative low-cost and high catalytic performance for the electrocatalytic oxidation
of alcohols.

Over the past few years, several other functional electrocatalytic materials have been engaged as
alternatives to noble Pt electrocatalysts in DMFCs which consist of metal oxides [7,8], carbonaceous
materials [9,10], metal chalcogenides [11–13], and phosphates [14,15]. More recently, metal phosphates
have exposed as an efficient electrocatalysts for the uses in various applications due to their exclusive
physical and chemical properties. Many researchers have examined Co-based electrocatalysts for
the oxidation of alcohols and energy-related applications [16–24]. Due to the mesoporous-structured
nature, highly active surface area, non-toxic nature, and greater abundance of Co-based electrocatalyst
show an enhanced property for several applications.

Herein, we report a microwave-assisted process for the fabrication of porous Co3(PO4)2 nanospheres.
In this work, we have used a microwave-assisted process in order to avoid particle aggregation
during the precipitation of Co3(PO4)2 nanospheres and an arrangement of good morphological features.
The good surface morphological features of the catalyst are always desired to improve the electrocatalytic
performance. The electrocatalytic activity of the synthesized Co3(PO4)2 nanospheres was examined
by the electrocatalytic methanol oxidation. The crystallinity, purity of phase, textural properties,
and electrochemical performances of synthesized Co3(PO4)2 were examined by powder X-ray diffraction
(XRD), Fourier transform-infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS),
Brunauer–Emmett–Teller (BET), and electrochemical (voltammetric) measurements.

2. Results and Discussion

2.1. Powder XRD Analysis

The crystallinity and phase formation of the Co3(PO4)2 materials was examined by powder
XRD analysis and the resulting XRD pattern is presented in Figure 1. The diffraction peaks of the
calcined Co3(PO4)2 at 600 ◦C (Figure 1d) showed numerous peaks which are consistent with the
diffraction planes. The detected (hkl) planes are indexed, agreeing with the stated hexagonal phase
of Co3(PO4)2 (JCPDS No. 70–1795, Figure 1a). Conversely, it is observed that the XRD pattern of the
as-synthesized (Figure 1b) and calcined Co3(PO4)2 at 300 ◦C (Figure 1c) showed two broad humps
at a 2θ value of 35◦ and 55◦ (Figure 1c). This broad peak established that the Co3(PO4)2 showed
an amorphous nature [19,20]. The calcined Co3(PO4)2 at 600 ◦C sample shows the strong crystalline
nature of Co3(PO4)2 compared to others. We have also measured the average crystalline size, which was
observed to be 32.07 nm for calcined Co3(PO4)2.
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Figure 1. The powder X-ray diffraction (XRD) pattern of the (a) hexagonal Co3(PO4)2—JCPDS
No. 70-1795; (b) as-synthesized, calcined Co3(PO4)2 at (c) 300 ◦C; and (d) 300 ◦C.
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2.2. FT-IR Spectroscopy Analysis

The chemical interactions occurred in Co3(PO4)2 nanospheres were examined by FT-IR
spectroscopy. The FT-IR spectra of Co3(PO4)2 was evident in the region of 500–4000 cm−1 and
the experiential spectrum is shown in Figure 2. In the Co3(PO4)2 spectrum, the vibrational band
at 689 cm−1 is ascribed to the V4(F2)PO4

3− mode of the phosphate (PO4) group [25]. The broad
characteristic peaks at 1017 and 1365 cm−1 are attributed to the survival of the P=O stretching vibration
in PO4

3− and the P–O–P stretching vibration in the HPO4
2− group, respectively [26]. The distinguished

broad vibration peak at 3425 cm−1 is assigned to the stretching frequency of the O–H group. The FT-IR
results distinctly suggested the subsistence of the Co3(PO4)2 sample.
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Figure 2. The FT-IR spectrum of Co3(PO4)2 nanospheres.

2.3. Morphological Analysis

The surface morphology of the porous Co3(PO4)2 materials were analyzed by FE-SEM and the
resultant images are displayed in Figure 3a,b. FE-SEM results of Co3(PO4)2 show nanosphere like
morphology and form a hierarchical nanostructure with uniformly-packed Co3(PO4)2 with an average
size of ~100 to 200 nm. It can be noticed that the surface morphology of the Co3(PO4)2 sample are
tightly-packed nanosphere-like particles which can offer support for effective electron transport [27].
Further in-depth exploration on the surface morphology of Co3(PO4)2 samples was observed by
HRTEM and the equivalent images are shown in Figure 4a,b. The HRTEM images also confirmed the
nanosphere-like surface morphology of Co3(PO4)2 samples having an average particle size of ~100 nm.
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Figure 3. Field emission-scanning electron microscopy (FE-SEM) images (a) high- and (b) low-scale
magnification image of a synthesized Co3(PO4)2 nanosphere sample.
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Figure 4. (a,b) High-resolution transmission electron microscopy (HRTEM) image of the Co3(PO4)2

nanosphere sample calcined at 300 ◦C.

2.4. XPS Analysis

The elemental compositions and chemical bonding of the synthesized Co3(PO4)2 nanospheres
was investigated by XPS. The survey spectra of Co3(PO4)2 (Figure 5a) clearly evidenced the presence of
Co, P, and O elements in the synthesized Co3(PO4)2 sample. The high-resolution XPS spectra for Co2p,
P2p, and O1s species are presented in Figure 5b–d. The binding energy of Co2p (Figure 5b) appeared in
two peaks around 782 and 798 eV, which are ascribed to Co2p3/2 and Co2p1/2, respectively and also
with two shake-up satellites. Figure 5c demonstrated the binding energy of P2p which is centered at
134 eV. The peaks centered at 133.4, 134.1, and 135.2 eV related to the characteristics peaks of P(V) of
the Co3(PO4)2 sample (Figure 5c). The observed binding energy around 532 eV of O1s is attributed to
the bonding of metal oxide (Figure 5d). The fitted peak at 531.6 can related to the metal-oxygen bonds
and the peak at 532.6 eV related to the oxygen of OH groups. Further, the peak at 533.9 can be related to
the adsorbed water near the surface. (Figure 5d). The examined XPS analysis clearly demonstrated the
formation of Co3(PO4)2 materials and the obtained results are consistent with powder XRD analysis.
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Figure 5. (a) X-ray photoelectron spectroscopy (XPS) survey spectrum of Co3(PO4)2 nanospheres,
(b) Co2p, (c) P2p, and (d) O1s spectra of Co3(PO4)2 nanospheres. (* indicates satellite peak).

2.5. Textural Properties

The nitrogen adsorption-desorption isotherm analysis was carried out to examine the textural
properties, such as BET surface area, pore size, and pore volume of the synthesized Co3(PO4)2
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nanospheres. The adsorption–desorption isotherms of Co3(PO4)2 nanospheres are displayed in
Figure 6. Based on IUPAC classification, the isotherm of Co3(PO4)2 nanospheres exposes a type
IV isotherm with distinct H3 hysteresis loops in a P/P0 range of 0.1 to 1, which is related to
the porous materials. The examined specific BET surface area value from adsorption-desorption
isotherms was 20.2 m2/g. In addition, Figure 6 (inset) demonstrates the BJH pore size distribution of
Co3(PO4)2 nanospheres with average pore size and volume around 0.98 nm and 1.001 × 10−2 mL/g,
respectively. It can be noted that the good surface morphology and textural properties are benefits for
the enhancement of electrode/electrolyte interfacial area, which can improve the electrocatalytic active
sites for electrocatalytic oxidation of methanol.
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fabricated in the absence of any reducing agent. Figure 7a displays the cyclic voltammetry at 50 mV·s−1

in 1.0 M KOH solution for loaded catalysts on an Au electrode. The cyclic voltammograms (CV) show
two redox peaks (A1/C1 = Co2+/Co3+) and (A2/C2 = Co3+/Co4+) located at about 1.12/1.08 and
1.45/1.38 V vs. RHE, respectively, for Co3(PO4)2 nanospheres and are typically similar to those
reported in the literature [28]. The CV curves of Co3(PO4)2-modified electrode (Figure 7a) exhibit
a redox peak prior to the oxygen evolution reactions can be credited to the well-known redox reaction
of Co(II)/Co(III) and a feasible electrochemical reaction in a KOH solution is afforded in reaction (1):

Co3(PO4)2 + OH− ↔ Co3(PO4)2 (OH−) + e− (1)

It is evidenced that the redox peak currents of Co3(PO4)2 nanosphere catalyst voltammograms
are significantly higher (15 times) than the current for bulk Co3(PO4)2 signifying substantially higher
electrochemical area and higher capacitance current for Co3(PO4)2 nanosphere catalysts.

The profile of CVs of the Co3(PO4)2-modified electrode at a scan speed of 50 mV·s−1 in 1.0 M KOH
solution with and without the presence of 1.0 M methanol is exhibited in Figure 7b. Prior to examining
the electrocatalytic methanol oxidation activity of Co3(PO4)2 nanospheres, the electrochemical
properties of the Co3(PO4)2 nanosphere-modified electrode was scrutinized in 1.0 M KOH solution.
The CV of the Co3(PO4)2-modified electrode (Figure 7b) in 1.0 M KOH + 1.0 M CH3OH shows
a considerable increment in the oxidation peak current density at an oxidation peak potential of 1.65 V
(vs. RHE) and also noticed that the decrease in the redox peak during the reverse scan. In addition,
the methanol catalytic oxidation current tends to increase with the positive scan until reaching a plateau
of about 120 mA/cm2 at 1.7 V vs. RHE. Moreover, it is observed that the oxygen evolution reaction
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occurs at more positive potentials in the presence of methanol solutions which can be clarified by
the greater affinity of Co3+ intermediate species (CoOOH) to adsorb methanol than to OH− ions [29].
Thus, the increased oxidation current and the departed redox peak in the presence of CH3OH in
KOH, when compared to pure KOH solution, revealed the electrocatalytic activity of Co3(PO4)2 for the
oxidation of methanol. The electrocatalytic performances of Co3(PO4)2 are nearly related to its good
surface morphology and high active surface area, which was completely investigated with the results
obtained above in FE-SEM, HRTEM, and BET analysis.
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Figure 7. Cyclic voltammograms (CV) of 50 mV/s in 1.0 M KOH solution for 2.1 g/cm2 for (a):
blank (i) bulk-Co3(PO4)2 (ii) and Co3(PO4)2 nanospheres (iii) loaded on an Au electrode; (b) CVs of
Co3(PO4)2 nanosphere-modified electrode at 50 mV/s in 1.0 M KOH for (i) in absence, and (ii) in
presence of 1.0 M CH3OH.

We have examined the effect of the catalyst loading amount on the electrocatalytic oxidation of
methanol in 1.0 M KOH + 1.0 M CH3OH and the corresponding CV profile is shown in Figure 8a.
It can be seen that the methanol oxidation current is noticeably enhanced. Figure 8b shows the plot
of anodic methanol oxidation current density vs. electrocatalyst loading amount at 1.65 V vs. RHE,
and this clearly reveals that the linear increase of the oxidation current with a catalyst loading amount
(0.07 to 0.28 mg/cm2) may be due to an increase in the number of accessible active catalyst sites and
efficient mass transport ions into the Co3(PO4)2 catalyst [29]. Additionally, it can be seen that the
oxidation potential is shifted towards the negative potential when the electrocatalyst loading amount
increased, which suggests good kinetic performance for the oxidation of methanol.
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Figure 8. CVs of Co3(PO4)2 nanosphere-modified electrode at 50 mV/s (a) at various Co3(PO4)2

loadings, and (b) the plot of anodic methanol oxidation current density vs. the electrocatalyst loading
amount at 1.65 V vs. RHE.
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The CVs at 50 mV/s for 0.28 mg/cm2 loaded Co3(PO4)2 nanospheres in various concentrations
of CH3OH solution are presented in Figure 9a. It can be observed that the CH3OH oxidation peak
current density gradually increases with a shifting of the peak potential towards the positive potential
as the concentration of methanol increases (Figure 9a). The linear relationship between the methanol
concentration and the oxidation peak current at 1.65 V vs. RHE is plotted and shown in Figure 9b.
This clearly showed the increase of methanol oxidation current linearly with the concentration of the
methanol solution, which illustrates that Co3(PO4)2 nanospheres have good tolerance for product
adsorption [29].
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Figure 9. CVs of a Co3(PO4)2 nanosphere-modified electrode at 50 mV/s, (a) under various
concentration of methanol solution, and (b) the plot of anodic methanol oxidation current density vs.
methanol concentration at 1.65 V vs. RHE.

The electrochemical long-term stability of the Co3(PO4)2 nanosphere-modified electrode is also
an important factor for the electro-oxidation of methanol. The long-term stability was examined
using chronopotentiometry measurements at two different current densities (25 and 75 mA/cm2)
in 0.14 mg/cm2 loaded Co3(PO4)2 nanospheres and the obtained result is shown in Figure 10.
It can be seen from Figure 10 that the Co3(PO4)2 nanosphere-modified electrode demonstrated
nearly constant operating potentials at 1.53 and 1.73 V vs. RHE for 25 and 75 mA/cm2 during
120 min of methanol oxidation testing. This suggests that Co3(PO4)2 nanospheres are relatively
stable and tolerant of high poisoning levels for the oxidation of methanol. At the start of the
reaction, the operating potentials are shown gradually increasing and reach steady-state which
indicates incompletely-adsorbed oxidation products for a few minutes, initially. Table 1 displays
the specific mass activities of nickel- and cobalt-based catalyst for methanol electro-oxidation, and it is
evidenced that the methanol electro-oxidation catalytic steady-state specific activities of the Co3(PO4)2

nanosphere catalyst is superior than other nickel- and cobalt-based catalysts. The electrostability
of the Co3(PO4)2 electrocatalyst also confirmed the feasible application of Co3(PO4)2 nanospheres
as a capable low-cost substitute to Pt-based electrocatalysts for methanol oxidation. Lastly, and in
comparison with other nickel- and cobalt-based catalysts, it is found that the methanol oxidation
is significantly higher than that for cobalt-based catalysts. However, detailed study needs to be
carried out to establish the Co3(PO4)2 nanosphere-based electrocatalyst to be more competitive for the
methanol electro-oxidation reaction.
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Table 1. Specific and mass activities of nickel- and cobalt-based catalysts for methanol oxidation in
alkaline media.

Sr. No. Catalyst Method Electrolyte (M) Current Density mA
mg−1/mA cm−2 Ref.

1 Ni-Cu-P/C Electroless deposition KOH: 0.1
CH3OH: 0.5 -/9.5 [30]

2 Pt/C Chemical reduction KOH: 1
CH3OH: 1 -/40 [31]

3 Pd/C Hydrothermal KOH: 1
CH3OH: 1 -/24 [31]

4 NiO/MWCNT Pulsed Electrodeposition NaOH: 0.1
CH3OH: 0.1 -/10 [32]

5 Co-Cu-CNF Electrospining KOH: 1
CH3OH: 2 -/16 [33]

6 Pt/Ni(OH)2/Graphene Two-step solution method KOH: 0.1
CH3OH: 0.5 400/- [34]

7 Co3O4 Microwave KOH: 1
CH3OH: 1 335/75 [28]

8 Co3(PO4)2 nanospheres Microwave KOH: 1
CH3OH: 1 556/126 This work
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3. Experimental

3.1. Microwave-Assisted Synthesis of Co3(PO4)2 Nanospheres

The porous Co3(PO4)2 nanospheres were synthesized through a microwave-assisted process
using cobalt nitrate (Co(NO3)2·6H2O; Sigma Aldrich, St. Louis, MO, USA) and di-sodium hydrogen
phosphate (Na2HPO4; Sigma Aldrich) as the cobalt and phosphate sources, respectively. For instance,
the evaluated amount of Co(NO3)2·6H2O (0.2 M) and Na2HPO4 (0.2 M) was dissolved along with
0.8 M of urea (NH2CONH2; Sigma Aldrich) in 40 mL of deionized water under ultrasonication for
30 min. Concisely, the amount of cobalt phosphate precursor and urea with a molar ratio of 1:4 were
dissolved in 40 mL of water to obtain a homogenous solution. Then, 90 mL of ethylene glycol was
added under ultrasonic agitation until the homogenous reaction mixture was obtained. The acquired
homogenous solution was placed in a microwave oven and the microwave reaction was carried out
under 600 W microwave irradiation for 15 min to form Co3(PO4)2 products. The obtained precipitate
after filtration was processed via several washings with deionized water, absolute ethanol, and dried
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at 80 ◦C for 3 h. Finally, the obtained Co3(PO4)2 product was annealed for 1 h at 300 and 600 ◦C.
For comparison purposes, the bulk Co3(PO4)2 particles were obtained and prepared without any
reducing agent.

3.2. Instrumental Characterization

The crystallinity and phase formation of the synthesized Co3(PO4)2 sample was analyzed by
powder XRD (Rigaku Miniflex 600, Rigaku corporation, Tokyo, Japan) with copper Kα radiation
(λ = 1.5418 Å) at a scan speed of 3 ◦/min. The chemical interactions that occurred in Co3(PO4)2

were examined using FT-IR spectroscopy (FT-IR, Thermofisher Scientific, Waltham, MA, USA).
The surface morphology of the Co3(PO4)2 materials were examined by FE-SEM (SEM, JSM-6380,
JEOL, Peabody, MA, USA) and HRTEM (TEM, JEOL) The elemental compositions and chemical
bonding of the synthesized Co3(PO4)2 nanospheres JEOL-6330, USA were investigated by XPS
(XPS, Thermo Scientific). The textural properties of the BET surface area, pore size, and pore volume
were assessed on the basis of nitrogen adsorption-desorption isotherms using a NOVA 2200e analyser
(Quantachrome Instruments, Boynton Beach, FL, USA).

3.3. Electrochemical Analysis

All of the electrochemical analyses were conducted in a conventional three-electrode system using
a potentiostat (VSP-0478, Biologic, Seyssinet-Pariset, France, with ECLAB software, 10.1, Biologic,
Seyssinet-Pariset, France, 2011) in a 1.0 M KOH (pH = 13) solution. The electrodes consisted of Pt
foil, a saturated calomel electrode, and a Co3(PO4)2 electrocatalyst ink drop-casted Au electrode
as the counter, reference, and working electrodes, respectively. The Co3(PO4)2 electrocatalyst ink
was prepared by dispersion of a fixed amount of the Co3(PO4)2 electrocatalyst dispersed in 0.4 mL
of 2-propanol, 0.1 mL of water, and 40 µL of 5 wt % Nafion under ultrasonication. The obtained
electrocatalyst ink (0.07 to 0.28 mg/cm2) was drop-casted on the Au electrode and left in air to dry for
approximately 1 h.

4. Conclusions

In summary, we successfully demonstrated a facile synthesis of Co3(PO4)2 nanospheres by
a microwave-assisted method and utilized as an electrocatalyst for the oxidation of methanol.
The phase formation, morphological surface structure, elemental composition and textural properties
of the sample was examined by various physicochemical characterization methods, such as powder
XRD, FT-IR, FE-SEM, HRTEM, XPS, and BET surface analyses. The detailed electrochemical analyses
show that the Co3(PO4)2 nanosphere-modified electrode exhibited an admirable electrocatalytic
activity for the oxidation of methanol in alkaline media. An extended investigation was made for
the methanol oxidation by varying the experimental reaction parameters, such as catalyst loading,
methanol concentration, and long-term stability for electro-oxidation of methanol. The superior
electrocatalytic activity of Co3(PO4)2 should be attributed to its good surface morphological structure
and high number of active surface sites. These results demonstrate that the Co3(PO4)2 nanospheres
could be one a low-cost, more abundant, and a competent electrocatalyst for direct methanol fuel cells.
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