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Abstract: Development of inexpensive and robust electrocatalysts towards oxygen reduction reaction
(ORR) is crucial for the cost-affordable manufacturing of metal-air batteries and fuel cells. Here
we show that cross-linked CoMoO4 nanosheets and reduced graphene oxide (CoMoO4/rGO) can
be integrated in a hybrid material under one-pot hydrothermal conditions, yielding a composite
material with promising catalytic activity for oxygen reduction reaction (ORR). Cyclic voltammetry
(CV) and linear sweep voltammetry (LSV) were used to investigate the efficiency of the fabricated
CoMoO4/rGO catalyst towards ORR in alkaline conditions. The CoMoO4/rGO composite revealed
the main reduction peak and onset potential centered at 0.78 and 0.89 V (vs. RHE), respectively.
This study shows that the CoMoO4/rGO composite is a highly promising catalyst for the ORR under
alkaline conditions, and potential noble metal replacement cathode in fuel cells and metal-air batteries.

Keywords: CoMoO4 nanosheets; reduced graphene oxide; hydrothermal reaction; oxygen reduction
reaction; fuel cell

1. Introduction

The exponential increase of energy demand and serious environmental problems induce the
growth of clean and sustainable energy [1–5]. The electrochemical oxygen reduction reaction (ORR)
and oxygen evolution reaction (OER) have been deemed as two main processes which are highly
important in green energy applications. From these two processes, the ORR is the determinant reaction
in fuel cells and metal-air batteries [6–9].

ORR is inherently complicated and has sluggish oxygen reduction kinetics in both fuel cells
and metal-air batteries [10]. At present, Pt and Pt based alloys catalysts have been conceded as the
best ORR catalysts [11,12]; however platinum’s scarcity in the earth’s crust, its high cost, and poor
stability have prevented widespread commercial application. In an effort to overcome the above issues,
extensive research efforts have been focused on the devise and synthesis of ORR electrocatalysts based
on transition-metal elements which are cheap, highly active, and stable over the long term.

Transition metal elements such as iron, manganese, nickel, and cobalt were investigated as
potential low-cost and earth-abundant catalysts towards ORR under alkaline condition [13–18]. Binary
metal oxides and mixed metal oxides have been considered due to their good performance for ORR,
such as ZnCo2O4 [19], Zn2SnO4 [20], NiCo2O4 [21], NiMoO4 [22], and CoMoO4 [23,24]. Additionally,
transition metal oxides have attracted the attention of research groups and have been widely utilized as
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bifunctional catalysts due to their multiple oxidation states, which is apt to be used in electrocatalytic
processes. The relevant materials that can adopt different oxidation states which are directly related to
the observed functionality and activity in various processes while they can contribute to the stability
of an electrolytic cell. Also, in marked contrast to the noble metal catalysts, transition metal oxides
are earth-abundant and cheaper [25]. Lately metal molybdates were proposed to be an outstanding
candidate in electrochemical energy conversion, such as water-splitting and lithium-ion batteries,
indicative of their rapid and efficient redox activity. Metal molybdates illustrate exceptional stability in
alkaline solution. Especially CoMoO4 is deemed as a highly promising ORR catalyst due to its low cost,
low toxicity, abundance, and durability. Yet, CoMoO4 nanostructure also exhibits the disadvantage of
easy aggregation. So, there have only been rare reports on the synthesis of highly dispersed CoMoO4

nanostructure with good electrocatalytic activity via hydrothermal synthesis. A general means to tackle
this issue is to devise and synthesize an appropriate material exhibiting high conductivity, evenly
distributed catalytic active sites, increase the onset potential which will finally boost the reaction
rates [26].

It has been reported that carbon based components like graphene and single-walled carbon
nanotubes (SWNTs) have been routinely used for the preparation of hybrid materials as ORR
electrocatalysts, in supercapacitors and proton-exchange-membrane fuel cells, owing to their
extraordinary performances arising from their big surface area, high conductivity, and structural
flexibility [27–30]. Graphene intrinsically has numerous advantages such as high specific surface area
which can easily contact with electrolyte solution and long term electrochemical stability, making it a
superb substrate for high-property electrocatalysis reactions.

Herein, we report the preparation and characterization of a hybrid material composed of CoMoO4

nanosheets and reduced graphene oxide as well as its efficiency as ORR catalyst in alkaline media.
CoMoO4 nanosheets grown on rGO revealed improved conductivity, increased active area and
enhanced contact of the electrolyte solution with the electrode material. Cooperative effects of the
composite’s components revealed improved ORR performance and higher stability compared to
pristine CoMoO4 or rGO.

2. Results and Discussion

X-ray Powder Diffraction (XRD) patterns for the as-prepared materials were presented in Figure 1a.
The main diffraction peaks at 2θ of 27.5◦, 33.7◦, 58.4◦ in both CoMoO4/rGO and CoMoO4 are attributed
to the (−2 0 2), (−2 2 2), (0 2 4) lattice planes, respectively, which is consistent with the CoMoO4 (JCPDS,
card No. 21-0868). The weak and wide diffraction peak at 2θ of 26.1◦ in rGO is corresponding to
the lattice plane of (0 0 2). The result implies the formation of a carbon framework with relatively
higher degree of graphitization. The (0 0 2) diffraction peak becomes lightly weaker and wider
in CoMoO4/rGO, this means that the degree of crystallization of the rGO decreases due to the
incorporation of CoMoO4.

The degree of defect in carbon materials can be studied by Raman spectroscopy. We observed the
Raman spectrum of CoMoO4/rGO. As shown in Figure 1b, we can clearly observe that there are mainly
seven peaks in the CoMoO4/rGO sample, centered at 339, 670, 817, 879, 932 cm−1, corresponding to
the Co–Mo–O bond stretching vibration. D-band and G-band peaks of rGO were centered at 1361 and
1600 cm−1, respectively. The G band expresses sp2 carbon atoms possession, the D is usually connected
with the vibration of sp3 carbon atoms [31]. Furthermore, the intensity ratio of the D peak and the G
peak exhibits a structural defect density on the surface of the carbon nanomaterial [32]. The Raman
spectra of CoMoO4/rGO shows that the ID/IG ratio (1.09) is higher than the ratio observed in pristine
graphene oxide (0.87; Figure S1), indicating that the CoMoO4/rGO composite exhibits more structural
defects which can be beneficial for the ORR.

The morphology of the prepared composite was studied by SEM (Figure 1c,d) and TEM
(Figure 1e,f). As shown in Figure 1c,d, the cross-linked CoMoO4 nanosheets were assembled on
rGO by a conventional hydrothermal process. From the scanning electron microscope (SEM) images of
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CoMoO4/rGO, it was obviously demonstrated that CoMoO4 nanosheets were well embedded into the
graphene nanosheets, but a part of the CoMoO4 nanosheets was easier to agglomerate on the surface
of graphene. Thus the doped graphene can further hinder the aggregation of CoMoO4 so that it can
increase the accessibility of multiple active sites with direct consequences to the performance of the
composite material.

From the transmission electron microscope (TEM) pictures (Figure 1e,f), it can be evidently seen
that CoMoO4 is deposited (darker areas in the TEM image) on the surface of rGO, indicating that
CoMoO4/rGO composite has been synthesized.
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Figure 1. (a) X-ray Powder Diffraction (XRD) patterns of CoMoO4/rGO, CoMoO4 and rGO powder
samples; (b) Raman spectra. GO: graphene oxide. (c,d) SEM images of CoMoO4/rGO. (e,f) TEM
images of CoMoO4/rGO.

The surface chemical component, element valence of the prepared CoMoO4/rGO composites are
evaluated by XPS examination, and the relevant results are shown in Figure 2, which demonstrates
that the material mainly contains Co (Figure 2b), Mo (Figure 2c), O (Figure 2d), N (Figure 2e), and
C (Figure 2f) elements. Two peaks at 780.9 and 796.9 eV are attributed to Co 2p3/2 and Co 2p1/2,
separately, implying the existence of Co2+ (Figure 2b) which are the active catalytic sites which can
promote the ORR [33,34]. Particularly, the splitting doublets of Mo 3d3/2 and Mo 3d5/2 peaks at 231.9
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and 235.2 eV could be observed in Mo 3d XPS (Figure 2c), and the region width is 3.3 eV (∆ Mo
3d). The region width and the binding energy are characteristics of the Mo6+ oxidation state which
is consistent with previously published examples [35,36]. In the O 1s spectrum, the peak at 532.7
and 531.1 eV correspond to the C=O and O–C=O bonds (Figure 2d). In the N 1s peak, pyridinic,
pyrrolic, graphitic, and oxidized N are noticed in the CoMoO4/rGO (Figure 2e) [37]. The peaks
centered at 398.0, 399.3, 400.9, and 403.3 eV correspond to the pyridinic N, pyrrolic N, graphitic N, and
oxidized N. The observed peak at 396.7 eV is attributed to the charge transfer from molybdenum to
nitrogen [38]. Furthermore, C 1s core level spectrum with 284.7, 286.1, 286.7, 288.4 eV are owing to sp2

hybridized carbon, sp2 carbon atoms bonded to nitrogen, C–O groups, and carbonyl carbon (O–C=O)
(Figure 2f) [39,40]. The above XPS results affirm that the valence of Co, Mo, and O elements are +2, +6
and −2, respectively. All the above data demonstrate the incorporation of N atoms into the graphene
lattice which was due to the treatment with ammonia solution. The types of pyridinic N and graphitic
N in graphene have a profound effect on the ORR catalytic performance.
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FT-IR measurements were carried out in an effort to investigate further the structural features of
the synthesized composite material, Figure 3 shows the FT-IR spectra of CoMoO4/rGO powders. The
broad peak centered at 3442 cm−1 is owing to the hydroxyl (O–H) stretching mode [41] while the one
located at 1624 cm−1 verified the existence of O–H bending vibrations of water molecule. The spectra
of CoMoO4/rGO sample revealed peaks centereda at 924 and 864 cm−1 ascribe to the symmetric and
asymmetric stretching vibration of O–Mo–O [42]. However, a peak located at 672 cm−1 is ascribed to
Co–Mo–O stretching vibration [43].Catalysts 2017, 7, 375    5 of 10 
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Figure 3. FTIR spectra of the CoMoO4, rGO, and CoMoO4/rGO.

Cyclic voltammetry (CV) is a quite informative technique regarding the investigation of the
ORR activity of a nanomaterial. CV was carried out at 25 ◦C in the presence of N2 or O2 under
alkaline condition using a standard three-electrode cell. As shown in Figure 4a, the CoMoO4 /rGO
catalyst shows a clear cathodic redox peak (0.78 V) in O2-purged electrolyte but not in N2-saturated
solution. This observation is indicative of the CoMoO4/rGO composite’s catalytic activity toward
ORR. LSV studies provided additional proof of the material’s activity using a rotating disk electrode
(RDE) or rotating ring disk electrode (RRDE). In a similar fashion to the CV experiments, linear sweep
voltammetry (LSV) was employed under the same experimental conditions (O2-saturated electrolyte)
with predefined rotation speeds at 25 ◦C. As soon as the working electrode reached the desired rotation
speed, the observed changes of current density were recorded. Figure 4b, CoMoO4/rGO illustrates the
observed onset potential at 0.89 V which is higher than of the one obtained for the pristine CoMoO4.
The improved electrochemical activity of the CoMoO4/rGO composite can be explained as follows; on
one hand, the rGO contains pyridinic N and graphitic N, the two types of nitrogen influence the ORR
catalytic activity and can improve the overall performance. On the other hand, the CoMoO4 doping
of rGO hinders the aggregation of graphene, the CoMoO4 can disperse onto rGO which can expose
more cobalt based active sites. The Co2+ plays a crucial role in ORR catalytic process [33,34]. Thus, the
CoMoO4/rGO composite exhibits more exposed and accessible active sites compared with the pristine
CoMoO4. Among them, commercial Pt/C material exhibits an onset potential at 0.92 V and a limiting
current density of ~5.5 mA cm−2. We made an effort to compare the ORR catalytic activity between
the CoMoO4/rGO composite and other catalysts reported previously (Table S1). Figure 4c shows the
RDE linear sweep voltammetry analysis for the ORR of the CoMoO4/rGO electrode at rotation speeds
ranging from 100 rpm to 2500 rpm. It can be observed that the limiting density of the CoMoO4/rGO
increases as a function of the rotation speed. The diffusion-limiting current density increases as the
rotating speed increases, due to the shortened diffusion distance at high rotation speed.
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graphite Ltd. (Qingdao, China). All chemicals were all directly applied without any further 
purification. Ultrapure water (18.25 MΩ cm−2) was offered by Water Purifier system and used for all 
aqueous solution.  

3.2. Synthesis of Graphene Oxide (GO) 

Graphene oxide was prepared with the improved method reported in the literature [44]. For 
the improved method, the mixed acid of 360 mL H2SO4 and 40 mL H3PO4 was slowly added to a 

Figure 4. (a) CV curves of CoMoO4/rGO in O2-saturated (red line) or N2-saturated (black line)
0.1 M KOH with a scan rate of 10 mV s−1; (b) linear sweep voltammetry (LSV) curves of CoMoO4,
rGO, CoMoO4/rGO, and Pt/C nanocomposites in O2-saturated 0.1 M KOH with a sweep rate of 5 mV
s−1 at 1600 rmp; (c) LSV curves of CoMoO4/rGO at various rotation speeds with a sweep of 5 mV s−1;
(d) Tafel plots of CoMoO4, rGO, CoMoO4/rGO, and Pt/C in O2 saturated 0.1 M KOH at a scan rate of
5 mV/s, rotation rate = 1600 rpm; (e) Koutecky–Levich plots of CoMoO4/rGO at different electrode
potentials; (f) rotating ring disk electrode (RRDE) voltammograms of CoMoO4/rGO and Pt/C; (g) The
transfer electron number (n) and hydrogen peroxide yield (H2O2%) curves of CoMoO4/rGO material;
(h) Current-time (I-t) curves of CoMoO4/rGO and Pt/C with the addition of 1 M methanol; (i) the
relative retention of current vs. Time in O2-saturated 0.1 M KOH solution for CoMoO4/rGO and Pt/C.

LSV studies offer the basis for further understanding of ORR performance. Figure 4b, represent
the obtained tafel plots of all catalysts which presented in Figure 4d. The Tafel slope of the rGO,
CoMoO4, CoMoO4/rGO, and Pt/C were found to be 88, 94, 76, and 84 mV/dec, respectively. It is
worth noting that the rGO and CoMoO4/rGO have a Tafel slope of 88 and 76 mV/dec, respectively,
which is quite close to the one observed for Pt/C (84 mV/dec). This means that rGO and CoMoO4/rGO
have similar ORR kinetics to the Pt/C. The relevant Kouteckye-Levich (K-L) curves (Figure 4e) at
0.3–0.7 V display good linear relationship. As computed from the slopes of the K-L curves (Figure 4e),
the electron-transfer number (n) values are 4.25, 4.23, 4.09, 4.03, and 3.79 at 0.3, 0.4, 0.5, 0.6, and 0.7 V
(vs. reversible hydrogen electrode (RHE)), respectively. The number of transferred electrons (n) and
the H2O2 yield were estimated based on the Equations (S1) and (S2) (see Supplementary Materials).
The number of transferred electrons (n) and peroxide yields were calculated from the obtained RRDE
(Figure 4f) curves. Form Figure 4g, the n was found to be 3.8–3.9 in a range of potential values of 0.1 to
0.8 V (vs. RHE) for CoMoO4/rGO. This means that the ORR on CoMoO4/rGO follows a 4e- pathway
with a low H2O2 (mean value less than 15%) production yield. The number of transferred electrons (n)
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of CoMoO4/rGO is the same as the Pt/C, and the result certifies that the ORR own a four-electron
mechanism on CoMoO4/rGO. The promising catalytic activity originates from the structural features
of CoMoO4/rGO which ensures a high-density of accessible active sites. The methanol tolerance and
electrochemical stability are vital for the evaluation of the catalytic activity of ORR electrocatalysts.
In Figure 4h, CoMoO4/rGO did not show significant current change after addition of 1 M methanol
at 2000 s, where the relative current density of the Pt/C electrode was significantly decreased. The
result shows that the CoMoO4/rGO composite has better resistance to methanol. The stability of
CoMoO4/rGO was tested further using chronoamperometric measurements in 0.1 M KOH electrolyte.
As shown in Figure 4i, the CoMoO4/rGO maintains the initially observed current after 18,000 s. On
the contrary, the current density of Pt/C drops to 84%. These data demonstrate that the CoMoO4/rGO
composite exhibits better stability than Pt/C.

3. Experimental Section

3.1. Chemicals and Materials

Cobalt(II) chloride hexahydrate (CoCl2·6H2O), ammonium molybdate tetrahydrate
((NH4)6Mo7O24·24H2O), urea, ethanol and potassium hypermanganate were acquired from
Beijing Chemical Reagent Co. Ltd. (Beijing, China). Nafion (5 wt %) and commercial Pt/C (20 wt %)
catalysts were obtained from DuPont (DuPont, Shanghai, China) and Johnson Matthey (Johnson
Matthey, Shanghai, China), respectively. Flake graphite was acquired from Qingdao Risheng
graphite Ltd. (Qingdao, China). All chemicals were all directly applied without any further
purification. Ultrapure water (18.25 MΩ cm−2) was offered by Water Purifier system and used for all
aqueous solution.

3.2. Synthesis of Graphene Oxide (GO)

Graphene oxide was prepared with the improved method reported in the literature [44]. For the
improved method, the mixed acid of 360 mL H2SO4 and 40 mL H3PO4 was slowly added to a large
drying beaker containing 3 g graphite flakes and 18 g KMnO4 mixed solid, the exothermic reaction
led to the increase of the temperature of the reaction system. Then the resultant solution was kept at
50 ◦C and oscillated for 12 h. After cooling to ambient temperature, about 400 mL of ice water and
3 mL 30% H2O2 slowly poured into the reaction under vigorous stirring, changing the color of the
resultant from dark brown to bright yellow. The prepared product was rinsed several times with H2O
and filtered. The as-synthesized sample was dried at room temperature.

3.3. Synthesis of CoMoO4/rGO Catalysts

0.1185 g CoCl2·6H2O (0.5 mmol), 0.877 g (NH4)6Mo7O24·24H2O (0.5 mmol) were dissolved in
10 mL of deionized water (DI) and stirred for 10 min to form CoMoO4 solution. Then 72.6 mg GO
(ρ = 6.6 g/L) dispersion was added into the CoMoO4 solution. Meanwhile, 29 mL distilled water was
poured into the reaction mixture. The mixture was agitated for 1 h and formed a clear solution. After
1 h, the pH of the solution was adjusted to 10 using ammonia solution (25~28%). The homogenous
solution was placed into an autoclave. The autoclave was sealed and maintained at 120 ◦C for 12 h.
After cooling down to ambient temperature, the product was filtered, rinsed several times with distilled
water and dried at 60 ◦C overnight. For comparison, rGO and CoMoO4 samples were also prepared in
a similar manner in the absence of CoMoO4 or GO, respectively.

4. Conclusions

Graphene-supported, cross-linked CoMoO4/rGO nanosheets were fabricated employing a
facile one-pot hydrothermal approach. The CoMoO4/rGO hybrid material revealed an improved
catalytic performance for the oxygen reduction reaction, comparing to the pristine CoMoO4 and rGO.
Furthermore, CoMoO4/rGO displays a remarkable durability towards the ORR compared to the Pt/C
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in alkaline medium. The electrocatalytic activity of the as-synthesized CoMoO4/rGO can be attributed
to: (1) the molybdenum based induced fast electron transfer processes; (2) the CoMoO4 doping of rGO
hinders the aggregation of graphene leading to uniform dispersion of CoMoO4 onto rGO; and (3) the
overall synergistic effect between CoMoO4 and rGO improved the accessibility of more cobalt based
active sites. The observed improvement of the electrochemical properties renders the CoMoO4/rGO
composite material as a highly promising electrode material for energy related applications such as
manufacturing of cost-affordable fuel cells.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/7/12/375/s1,
Figure S1. Raman spectra of graphene oxide, Table S1. Comparison of ORR activity parameters with other
recently reported. 1. Physical characterization, 2. Electrochemical measurements.

Acknowledgments: The authors gratefully acknowledge the financial support from the National Natural Science
Foundation of China (No. 21471028), National Key Basic Research Program of China (No. 2013CB834802),
Changbai Mountain Scholarship, Natural Science Foundation of Jilin Province (No. 20150101064JC), and the
Fundamental Research Funds for the Central Universities (No. 2412015KJ012).

Author Contributions: Jiaqi Fu and Jiang-Li Meng have contributed equally. Jiaqi Fu wrote the paper, Jiaqi Fu
and Jiang-Li Meng did the experiments. Mei-Jie Wei contributed analysis tools and reagents. Hong-Ying Zang
and Haralampos N. Miras revised the article. Hong-Ying Zang, Hua-Qiao Tan, Yong-Hui Wang, Yang-Guang Li,
Jiaqi Fu, Jiang-Li Meng, and Mei-Jie Wei analyzed the data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Canadell, J.G.; Quéré, C.L.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.;
Houghton, R.A.; Marland, G. Contributions to accelerating atmospheric CO2 growth from economic activity,
carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 2007, 104, 18866–18870. [CrossRef]
[PubMed]

2. Hoel, M.; Kverndokk, S. Depletion of fossil fuels and the impacts of global warming. Resour. Energy Econ.
1996, 18, 115–136. [CrossRef]

3. Shafiee, S.; Topal, E. When will fossil fuel reserves be diminished? Energy Policy 2009, 37, 181–189. [CrossRef]
4. Du, Z.; Li, H.; Gu, T. A state of the art review on microbial fuel cells: A promising technology for wastewater

treatment and bioenergy. Biotechnol. Adv. 2007, 25, 464–482. [CrossRef] [PubMed]
5. Watanabe, M.; Tryk, D.A.; Wakisaka, M.; Yano, H.; Uchida, H. Overview of recent developments in oxygen

reduction electrocatalysis. Electrochim. Acta 2012, 84, 187–201. [CrossRef]
6. Steele, B.C.H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352. [CrossRef]

[PubMed]
7. Debe, M.K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

[CrossRef] [PubMed]
8. Cao, R.; Thapa, R.; Kim, H.; Xu, X.; Kim, M.G.; Li, Q.; Park, N.; Liu, M.; Cho, J. Promotion of oxygen reduction

by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 4, 2076.
[CrossRef] [PubMed]

9. Li, Y.; Gong, M.; Liang, Y.; Feng, J.; Kim, J.E.; Wang, H.; Hong, G.; Zhang, B.; Dai, H. Advanced zinc-air
batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805. [CrossRef]
[PubMed]

10. Wu, T.; Zhang, L. Metal molybdate nanorods as non-precious electrocatalysts for the oxygen reduction.
Funct. Mater. Lett. 2015, 8, 3. [CrossRef]

11. Stamenkovic, V.R.; Fowler, B.; Mun, B.S.; Wang, G.; Ross, P.N.; Lucas, C.A.; Markovic, N.M. Improved
oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.
[CrossRef] [PubMed]

12. Winter, M.; Brodd, R.J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4270.
[CrossRef] [PubMed]

13. Xiao, W.; Wang, D.; Lou, X. Shape-Controlled Synthesis of MnO2 Nanostructures with Enhanced
Electrocatalytic Activity for Oxygen Reduction. J. Phys. Chem. C 2009, 114, 1694–1700. [CrossRef]

www.mdpi.com/2073-4344/7/12/375/s1
http://dx.doi.org/10.1073/pnas.0702737104
http://www.ncbi.nlm.nih.gov/pubmed/17962418
http://dx.doi.org/10.1016/0928-7655(96)00005-X
http://dx.doi.org/10.1016/j.enpol.2008.08.016
http://dx.doi.org/10.1016/j.biotechadv.2007.05.004
http://www.ncbi.nlm.nih.gov/pubmed/17582720
http://dx.doi.org/10.1016/j.electacta.2012.04.035
http://dx.doi.org/10.1038/35104620
http://www.ncbi.nlm.nih.gov/pubmed/11713541
http://dx.doi.org/10.1038/nature11115
http://www.ncbi.nlm.nih.gov/pubmed/22678278
http://dx.doi.org/10.1038/ncomms3076
http://www.ncbi.nlm.nih.gov/pubmed/23797710
http://dx.doi.org/10.1038/ncomms2812
http://www.ncbi.nlm.nih.gov/pubmed/23651993
http://dx.doi.org/10.1142/S1793604715400056
http://dx.doi.org/10.1126/science.1135941
http://www.ncbi.nlm.nih.gov/pubmed/17218494
http://dx.doi.org/10.1021/cr020730k
http://www.ncbi.nlm.nih.gov/pubmed/15669155
http://dx.doi.org/10.1021/jp909386d


Catalysts 2017, 7, 375 9 of 10

14. Xu, Y.; Jiang, H.; Li, X.; Xiao, H.; Xiao, W.; Wu, T. Synthesis and characterization of Mn-based composite
oxides with enhanced electrocatalytic activity for oxygen reduction. J. Mater. Chem. A 2014, 2, 13345.
[CrossRef]

15. Lu, Q.; Zhou, Y. Hierarchical polythiophene-coated MnO2 nanosheets as non-precious electro-catalyst to
oxygen reduction. Funct. Mater. Lett. 2010, 3, 89–92. [CrossRef]

16. Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a
synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786. [CrossRef] [PubMed]

17. Vezzù, K.; Delpeuch, A.B.; Negro, E.; Polizzi, S.; Nawn, G.; Bertasi, F.; Pagot, G.; Artyushkova, K.;
Atanassov, P.; Noto, V.D. Fe-carbon nitride “Core-shell” electrocatalysts for the oxygen reduction reaction.
Electrochim. Acta 2016, 222, 1778–1791. [CrossRef]

18. Gokhal, R.; Chen, Y.; Serov, A.; Artyushkova, K.; Atanassov, P. Novel dual templating approach for
preparation of highly active Fe-N-C electrocatalyst for oxygen reduction. Electrochim. Acta 2017, 224,
49–55. [CrossRef]

19. Karthikeyan, K.; Kalpana, D.; Renganathan, N.G. Synthesis and characterization of ZnCo2O4 nanomaterial
for symmetric supercapacitor applications. Ionics 2009, 15, 107–110. [CrossRef]

20. Bao, L.; Zang, J.; Li, X. Flexible Zn2SnO4/MnO2 Core/Shell Nanocable-Carbon Microfiber Hybrid
Composites for High-Performance Supercapacitor Electrodes. Nano Lett. 2011, 11, 1215–1220. [CrossRef]
[PubMed]

21. Shen, L.; Che, Q.; Li, H.; Zhang, X. Mesoporous NiCo2O4 Nanowire Arrays Grown on Caibon Textiles as
Binder- Free Flexible Electrodes for Energy Storage. Adv. Funct. Mater. 2014, 24, 2630–2637. [CrossRef]

22. Cai, D.; Liu, B.; Wang, D.; Liu, Y.; Wang, L.; Li, H.; Wang, Y.; Wang, C.; Li, Q.; Wang, T. Facile hydrothermal
synthesis of hierarchical ultrathin mesoporous NiMoO4 nanosheets for high performance supercapacitors.
Electrochim. Acta 2014, 115, 358–363. [CrossRef]

23. Cai, D.; Liu, B.; Wang, D.; Wang, L.; Liu, Y.; Li, H.; Wang, Y.; Li, Q.; Wang, T. Construction of unique NiCo2O4

nanowire@CoMoO4 nanoplate core/shell arrays on Ni foam for high areal capacitance supercapacitors.
J. Mater. Chem. A 2014, 2, 4954–4960. [CrossRef]

24. Yu, X.; Lu, B.; Xu, Z. Super Long-Life Supercapacitors Based on the Construction of Nanohoneycomb-Like
Strongly Coupled CoMoO4–3D Graphene Hybrid Electrodes. Adv. Mater. 2014, 26, 1044–1051. [CrossRef]
[PubMed]

25. Osgood, T.; Devaguptapu, S.V.; Xu, H.; Cho, J.; Wu, G. Transition metal (Fe, Co, Ni, and Mn) oxides for
oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 2016, 11, 601–625.
[CrossRef]

26. Li, M.; Xu, S.; Cherry, C.; Zhu, Y.; Wu, D.; Zhang, C.; Zhang, X.; Huang, R.; Qi, R.; Wang, L.; Chu, P.K.
Hierarchical 3-dimensional CoMoO4 nanoflakes on a macroporous electrically conductive network with
superior electrochemical performance. J. Mater. Chem. A 2015, 3, 13776–13785. [CrossRef]

27. Cheng, F.; Shen, J.; Peng, B.; Pan, Y.; Tao, Z.; Chen, J. Rapid room-temperature synthesis of nanocrystalline
spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79–84. [CrossRef] [PubMed]

28. Mu, Y.; Liang, H.; Hu, J.; Jiang, L.; Wan, L. Controllable Pt Nanoparticle Deposition on Carbon Nanotubes
as an Anode Catalyst for Direct Methanol Fuel Cells. J. Phys. Chem. B 2005, 109, 22212–22216. [CrossRef]
[PubMed]

29. Liang, Y.; Li, Y.; Wang, H.; Dai, H. Strongly Coupled Inorganic/Nanocarbon Hybrid Materials for Advanced
Electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013–2036. [CrossRef] [PubMed]

30. Liang, Y.; Wang, H.; Zhou, J.; Li, Y.; Wang, J.; Regier, T.; Dai, H. Covalent Hybrid of Spinel Manganese-Cobalt
Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523.
[CrossRef] [PubMed]

31. Sun, M.; Liu, H.; Liu, Y.; Qu, J.; Li, J. Graphene-based transition metal oxide nanocomposites for the oxygen
reduction reaction. Nanoscale 2015, 7, 1250–1269. [CrossRef] [PubMed]

32. Dou, S.; Shen, A.; Tao, L.; Wang, S. Molecular doping of graphene as metal–free electrocatalyst for oxygen
reduction reaction. Chem. Commun. 2014, 50, 10672–10675. [CrossRef] [PubMed]

33. Zhuang, L.; Ge, L.; Yang, Y.; Li, M.; Jia, Y.; Yao, X.; Zhu, Z. Ultrathin Iron-Cobalt Oxide Nanosheets with
Abundant Oxygen Vacancies for the Oxygen Evolution Reaction. Adv. Mater. 2017, 29, 1606793. [CrossRef]
[PubMed]

http://dx.doi.org/10.1039/C4TA02544J
http://dx.doi.org/10.1142/S1793604710001007
http://dx.doi.org/10.1038/nmat3087
http://www.ncbi.nlm.nih.gov/pubmed/21822263
http://dx.doi.org/10.1016/j.electacta.2016.11.093
http://dx.doi.org/10.1016/j.electacta.2016.12.052
http://dx.doi.org/10.1007/s11581-008-0227-y
http://dx.doi.org/10.1021/nl104205s
http://www.ncbi.nlm.nih.gov/pubmed/21306113
http://dx.doi.org/10.1002/adfm.201303138
http://dx.doi.org/10.1016/j.electacta.2013.10.154
http://dx.doi.org/10.1039/c3ta14351a
http://dx.doi.org/10.1002/adma.201304148
http://www.ncbi.nlm.nih.gov/pubmed/24282115
http://dx.doi.org/10.1016/j.nantod.2016.09.001
http://dx.doi.org/10.1039/C5TA02081F
http://dx.doi.org/10.1038/nchem.931
http://www.ncbi.nlm.nih.gov/pubmed/21160522
http://dx.doi.org/10.1021/jp0555448
http://www.ncbi.nlm.nih.gov/pubmed/16853891
http://dx.doi.org/10.1021/ja3089923
http://www.ncbi.nlm.nih.gov/pubmed/23339685
http://dx.doi.org/10.1021/ja210924t
http://www.ncbi.nlm.nih.gov/pubmed/22280461
http://dx.doi.org/10.1039/C4NR05838K
http://www.ncbi.nlm.nih.gov/pubmed/25502117
http://dx.doi.org/10.1039/C4CC05055J
http://www.ncbi.nlm.nih.gov/pubmed/25077734
http://dx.doi.org/10.1002/adma.201606793
http://www.ncbi.nlm.nih.gov/pubmed/28240388


Catalysts 2017, 7, 375 10 of 10

34. Song, W.; Ren, Z.; Chen, S.; Meng, Y.; Biswas, S.; Nandi, P.; Elsen, H.A.; Gao, P.; Suib, S.L. Ni- and
Mn-Promoted Mesoporous Co3O4: A Stable Bifunctional Catalyst with Surface-Structure-Dependent Activity
for Oxygen Reduction Reaction and Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2016, 8,
20802–20813. [CrossRef] [PubMed]

35. Yu, M.; Jiang, L.; Yang, H. Ultrathin nanosheets constructed CoMoO4 porous flowers with high activity for
electrocatalytic oxygen evolution. Chem. Commun. 2015, 51, 14361–14364. [CrossRef] [PubMed]

36. Wang, B.; Li, S.; Wu, X.; Liu, J.; Tian, W.; Chen, J. Self-assembly of ultrathin mesoporous CoMoO4 nanosheet
networks on flexible carbon fabric as a binder-free anode for lithium-ion batteries. New J. Chem. 2016, 40,
2259–2267. [CrossRef]

37. Zhang, C.; Hao, R.; Liao, H.; Hou, Y. Synthesis of amino-functionalized graphene as metal–free catalyst and
exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy 2013, 2, 88–97.
[CrossRef]

38. Baraldi, A.; Brena, B.; Cocco, D.; Comelli, G.; Lizzit, S.; Paolucci, G.; Baumann, P.; Scheuch, V.; Uebing, C. The
structure of the MoN surface compound on Fe-3.5%Mo-N (100) studied by X-ray photoelectron diffraction:
First results from ELElTRA. Vacuum 1997, 48, 351–355. [CrossRef]

39. Gao, S.; Geng, K.; Liu, H.; Wei, X.; Zhang, M.; Wang, P.; Wang, J. Transforming organic-rich amaranthus waste
into nitrogen-doped carbon with superior performance of the oxygen reduction reaction. Energy Environ. Sci.
2015, 8, 221–229. [CrossRef]

40. Liu, Z.; Zhao, Z.; Wang, Y.; Dou, S.; Yan, D.; Liu, D.; Xia, Z.; Wang, S. In Situ Exfoliated, Edge-Rich,
Oxygen-Functionalized Graphene from Carbon Fibers for Oxygen Electrocatalysis. Adv. Mater. 2017,
29, 1606207. [CrossRef] [PubMed]

41. Tsay, J.D.; Fang, T.T. Effects of Molar Ratio of Citric Acid to Cations and of pH Value on the Formation
and Thermal-Decomposition Behavior of Barium Titanium Citrate. J. Am. Ceram. Soc. 1999, 82, 1409–1415.
[CrossRef]

42. Moura, A.P.D.; Oliveira, L.H.D.; Pereira, P.F.S.; Rosa, I.L.V.; Li, M.S.; Longo, E.; Varela, J.A. Photoluminescent
Properties of CoMoO4 Nanorods Quickly Synthesized and Annealed in a Domestic Microwave Oven.
Adv. Chem. Eng. Sci. 2012, 2, 465–473. [CrossRef]

43. Sieber, K.; Kershaw, R.; Dwight, K.; Wold, A. Dependence of Magnetic Properties on Structure in the Systems
NiMoO4 and CoMoO4. Inorg. Chem. 1983, 22, 2667–2669. [CrossRef]

44. Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskill, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.;
Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/acsami.6b06103
http://www.ncbi.nlm.nih.gov/pubmed/27458646
http://dx.doi.org/10.1039/C5CC05511C
http://www.ncbi.nlm.nih.gov/pubmed/26269035
http://dx.doi.org/10.1039/C5NJ02910D
http://dx.doi.org/10.1016/j.nanoen.2012.07.021
http://dx.doi.org/10.1016/S0042-207X(96)00288-6
http://dx.doi.org/10.1039/C4EE02087A
http://dx.doi.org/10.1002/adma.201606207
http://www.ncbi.nlm.nih.gov/pubmed/28276154
http://dx.doi.org/10.1111/j.1151-2916.1999.tb01931.x
http://dx.doi.org/10.4236/aces.2012.24057
http://dx.doi.org/10.1021/ic00161a004
http://dx.doi.org/10.1021/nn1006368
http://www.ncbi.nlm.nih.gov/pubmed/20731455
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Experimental Section 
	Chemicals and Materials 
	Synthesis of Graphene Oxide (GO) 
	Synthesis of CoMoO4/rGO Catalysts 

	Conclusions 

