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Abstract: Novel NiO/GDC (Gadolinium-doped Ceria) cermet catalysts were developed by the Weak
Acid Resin (WAR) method using an ion exchange resin template. In addition, the specific surface
area of these tunable materials was enhanced by NiO partial dissolution in aqueous acid solution.
The whole procedure highly improved the micro-structural properties of these materials compared
to previous studies. Catalysts with high metal loadings (≥10%), small Ni nanoparticles (<10 nm),
and high specific surface areas (>70 m2/g) were achieved. These properties are promising for catalytic
applications such as methane steam reforming for H2 production.
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1. Introduction

Even though carbon-based materials (mainly activated carbon, graphite, and carbon nanofibers)
exhibit an interesting performance as catalytic supports in other catalytic processes, one of the major
deactivation factors of Ni catalysts in methane reforming processes is the deposition of carbonaceous
species [1]. In this sense, several approaches have been developed to overcome the problem of
carbon deposition.

Carbon deposition is structure-sensitive in nature and the particle size of Ni has an important role
in the steam reforming of methane. Large and aggregated particles of nickel have a lower proportion
of surface-exposed Ni atoms, and are therefore more vulnerable to the deposition of various carbon
species. By contrast, Ni small nanoparticles provide a large metal active surface area and hence
improved catalytic activity [2,3].

On the other hand, the extent of interaction between Ni active sites and the support play a very
important role. Recently, Huang et al. demonstrated that, using Gadolinia-Doped Ceria (GDC) as
catalytic support, the supported Ni catalyst may have a self-de-coking ability (at temperatures higher
than 600 ◦C). This way, the deposited carbon species would be removed by their oxidation with the
O2− species supplied from the lattice of the catalyst support [4–8].

However, according to the above-mentioned studies, conventional wet impregnation of Ni
precursors over GDC leads to a poor dispersion of Ni. This synthesis procedure results in Ni/GDC
catalysts with large and aggregated Ni particles (~30 nm) and limited specific surface area (20–45 m2 g−1

after calcination at temperatures lower than 750 ◦C) when high loadings are required (>3% Ni w/w).
The improvement of these structural properties will clearly enhance the activity of these catalysts.
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Here we report, for the first time, a new synthesis procedure for the preparation of novel
NiO/GDC catalysts, aimed at the production of materials with highly dispersed/small Ni
nanoparticles and high specific surface area, even when the Ni loadings are higher than 5 wt %
(as is usually the case in methane reforming processes). The synthesis is based on a modified Weak
Acid Resin method [9,10] (Supplementary Materials, Section 1.2), following a procedure explained
in the Experimental section. This is the first time in the literature that the WAR method is used for
a catalytic purpose.

2. Results and Discussion

The first series of 6 different Ni/GDC catalysts were prepared by the WAR method
(Supplementary Materials, Section 1.2). All starting solutions were prepared with a Ce/Gd molar
ratio ~4 (Ce0.8Gd0.2O2-δ). In addition, the concentration of Ni in the starting solutions varied from 0 to
100 mol %. Samples were named as follows: GDC, NiGDC X (X = 25, 50, 75, 90, where X = mol % Ni
in starting solution), and 100 Ni (100% Ni).

Figure 1a shows the molar concentration of Ni in the catalysts obtained after the calcination of the
metal loaded resin. First, the solid materials were dissolved and analyzed via ICP-AES (Inductively
coupled plasma atomic emission spectroscopy) For comparison, both the starting (Before Exchange,
BE) and the final solutions (After Exchange, AE) were analyzed by ICP-AES, and the Ni, Ce, and Gd
loadings in the catalyst were calculated by subtraction (Supplementary Materials, Section 1.3). It can be
clearly observed that the catalyst compositions obtained by both methods are consistent. In addition,
Figure 1b shows that the Ce/Gd molar ratio in the catalysts was very similar to that of the initial
solution (Ce/Gd ~3–4), while the Ni concentration was lower. This indicates that the affinity of the
resin for the ionic exchange was similar for both lanthanides (Ce3+ and Gd3+) and lower for Ni2+,
since the electrostatic effects are predominant and, as a consequence, the ion exchanger prefers the
counter-ion of higher valence [11].
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Figure 1. (a) mol % Ni on the first series of catalysts after calcination, measured via ICP-AES analysis of
the solid materials, and the liquid solutions before and after exchange; (b) Ce/Gd ratio of the catalysts
based on the ICP-AES analysis of the catalysts after calcination.

The thermal conversion of the metal loaded resin was investigated using TGA
(Thermogravimetric analysis) at a heating rate of 2 K·min−1 from room temperature to 800 ◦C under
air (Supplementary Materials, Figure S1a). All materials exhibited a similar trend. The slow mass
loss at the beginning of the heating (T < 250 ◦C) is attributed to the water that left the structure
of the loaded resin. In addition, TGA analysis shows a main weight loss between 300 and 400 ◦C,
together with an important release of energy (DSC analysis, Differential Scanning Calorimetry). This is
attributed to the departure of the organic skeleton of the acrylic resin [12–14].
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The exchange efficiency (Supplementary Materials, Figure S1b) was calculated as the ratio
between the effective and the scientific exchange capacity of the resin, based on the ICP-AES and
TGA results [11,13] (see Supplementary Materials for detailed calculation). Figure S1a,b show that,
as the Ni concentration increases in the starting solution (and, according to Figure 1a, in the catalysts),
the exchange efficiency decreases. These results corroborate the fact that the general efficiency of the
ionic exchange with Ni2+ ions is slightly lower than that for Ce3+ and Gd3+. Nevertheless, even with
pure Ni (sample 100 Ni), the efficiency was higher than 80%. Therefore, the exchange efficiency for all
elements was high, demonstrating that the WAR method is a powerful technique to produce Ni/GDC
catalysts with a controlled composition.

The catalyst materials obtained after the calcination at 750 ◦C of the loaded resin were analyzed by
X-ray diffraction (XRD, Figure 2). The lattice parameters, crystallite size, and strain of NiO and GDC
were calculated based on the XRD patterns (Supplementary Materials, Table S1). In all catalysts, a first
set of peaks could be observed, which can be attributed to a single crystal fluorite-type structure with
a lattice parameter between 5.4235 and 5.4280 Å. This value is higher than that for CeO2 (5.411 Å [15]),
which could be attributed to the substitution of CeO2 by Gd2O3 in the catalyst support [12,16].
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These results, together with the previous ICP-AES analysis (Figure 1), confirm not only the
presence of Gd in the structure of the materials, but also that the calcination procedure achieved a solid
solution between Ce and Gd oxides, leading to a GDC material with a Ce/Gd ratio of ~3–4 depending
on the sample (Figure 1b). In addition, diffraction peaks corresponding to NiO crystallites were
observed in samples with high Ni loading (NiGDC 75 and NiGDC 90).

On the other hand, GDC and NiO crystallite sizes were estimated (Supplementary Materials,
Table S1). It is worth noting that, for the sample NiGDC 90, both GDC and NiO exhibit a similar
crystallite size of around ~10 nm. These results point out that, even for high NiO loadings, the WAR
synthesis can produce small NiO particles highly dispersed in the GDC matrix, most likely due to the
fact that a homogeneous distribution of metals is obtained after the metal cation fixation in the resin
beads. This resulted in a very intimate mixture of oxides after calcination.

The loading of Ni is shown in Table 1 in a more conventional way. In view of the XRD results,
it could be assumed that Ce and Gd formed a GDC fluorite solid solution, and Ni is in its oxidized
state (NiO). Hence, the compositions shown in Figure 1 were recalculated to obtain the weight loading
considering Ni in its reduced state (which is the preferred state for methane reforming processes).
The results indicate that high loadings (up to 40%) of Ni can be achieved with the WAR method.
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Table 1. Specific Surface Area (BET), average pore size (BJH), and wt % of Ni (if it was reduced) of the
first series of catalysts after calcination.

Specific Surface Area/m2 g−1 BJH Average Pore Size/Å
wt % Ni Reduced

mg Ni/(mg Ni + mg GDC)

GDC 14 (1) 204 0.0
NiGDC 25 15 (1) 202 0.6
NiGDC 50 14 (1) 214 1.7
NiGDC 75 13 (1) 182 8.9
NiGDC 90 26 (1) 165 39.8

The specific surface area (SSA) and pore size were determined by the BET method (Table 1).
All the materials exhibit a mesoporous structure with an average pore size between 16 and 20 nm.
The presence of Ni does not lead to a significant SSA modification in samples NiGDC25, NiGDC50,
and NiGDC75 (SSA = 13–15 m2 g−1), in which the loading of reduced Ni was lower than 10 wt %.
However, a significant SSA increase is observed for the highest Ni loading (NiGDC 90, with a loading
of reduced Ni ~40 wt %). This seems to indicate that, for high Ni loadings, Ni might behave as
a structural promoter, enhancing the SSA of the final material, although further studies should be
performed to verify this interesting behavior.

To summarize the main results obtained regarding the first series of materials, the WAR synthesis
procedure allowed us to (a) easily control the metal loading with high exchange efficiencies (higher than
80%), (b) develop Ni/GDC materials by a once-through procedure, with the simultaneous ionic
exchange of all the metallic ions involved in the catalyst formulation (Ni2+, Ce3+ and Gd3+), (c) obtain
a CeO2/Gd2O3 fluorite solid solution with a Ce/Gd ratio of ~3–4, and (d) produce small NiO
crystallites regardless of the high Ni loadings in the GDC matrix (up to 40 wt %). However, even the
material with the highest SSA exhibited a rather small SSA, <26 m2 g−1.

In order to enhance the structural parameters of these novel materials, the catalyst with the
highest SSA (NiGDC 90) was treated in an HNO3 solution (Supplementary Materials, Section 1.2).
The idea of this procedure was to selectively dissolve part of the NiO in this material to enhance the
SSA [10].

Hence, a new series of catalytic materials was prepared, with different degrees of NiO partial
dissolutions. First, a new NiGDC 90 material was synthesized following the previously described
WAR method [9]. In this case, a greater amount of acrylic resin (40 mL in NH4

+ form, vs. 8 mL used in
the first series of materials) was exchanged with the desired cationic species (Ni2+, Ce3+, and Gd3+).
Figure S2 and Table S2 (Supplementary Materials) show the structural properties (TGA/DSC, ICP-AES,
and SSA) of the new NiGDC 90 material and the NiGDC 90 catalyst prepared in the first series
of experiments. Both materials exhibit almost identical properties, which indicates the satisfactory
reproducibility of the WAR synthesis method used in this study.

Using the new NiGDC 90 catalyst as starting material, several partial dissolutions of the NiO were
performed using stoichiometric amounts of HNO3 (Supplementary Materials, Section 1.2). This way,
four samples were prepared, in which 25%, 50%, 75%, and 100% NiO were dissolved, denoted as Dis
25, Dis 50, Dis 75, and Dis 100, respectively.

First, the HNO3 solutions after this procedure were analyzed by ICP-AES analysis
(Supplementary Materials, Figure S3a). It could be observed that the concentrations of Ce and
Gd in the solution were negligible compared to that of Ni (a difference of 1–2 orders of magnitude).
In addition, Figure S3b shows that the concentration of Ni in the solution was almost exactly the
expected concentration according to the stoichiometric dissolution of NiO in HNO3. These results
clearly demonstrated that this simple procedure allows to easily control the selective partial dissolution
of NiO [10] and therefore to adjust the Ni loading of these materials.

In addition, a small amount of the solid materials obtained after partial dissolution, filtering,
washing, and drying (Supplementary Materials, Section 1.2) was dissolved and then analyzed via
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ICP-AES (Figure 3a). First of all, it could be observed that the final loading of the materials was fairly
similar to the theoretical loading assuming the stoichiometric dissolution of NiO. In addition, the table
inset in Figure 3a shows the Ni weight loading if Ni were reduced (as previously demonstrated in
Table 1) on GDC. A wide variety of Ni loadings were achieved, varying from 2 (sample Dis 100) to
33 wt % (sample Dis 25).
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Figure 3. (a) mol % Ni in the 2nd series of catalysts after partial NiO dissolution in the starting material
(NiGDC 90) based on ICP-AES measurements of the oxide catalysts; (b) SSA and average pore size of
the 2nd series of catalysts.

The obtained solid materials were also analyzed by XRD (Supplementary Materials, Figure S4 and
Table S1). As previously observed, for all these materials, a first set of diffraction peaks is characteristic
of GDC fluorite structure, with lattice parameters from 5.4214 to 5.4246 Å. In addition, NiO peaks were
observed. It is worth noting that the crystallite sizes of GDC and Ni (~10 nm) are not modified in
a significant way after the HNO3 dissolution procedure.

The SSA of this new series of materials was analyzed by the BET method (Figure 3b).
The SSA strongly increased from 25 (starting material, NiGDC 90, with a Ni loading of 37% w/w),
to 105 m2 g−1 (Dis 100, with a Ni loading of 2% w/w).

These results clearly demonstrate, for the first time, that the whole synthesis procedure
(WAR + partial NiO dissolution) leads to the production of NiO/GDC materials with high Ni
loadings, small Ni crystallite sizes, and high SSAs without modifying the GDC structure. For instance,
the materials called Dis 50 and Dis 75, with Ni loadings of 23 and 16% w/w, respectively, exhibit high
SSAs of ~50 and 72 m2 g−1, respectively. These values are much higher than those previously reported
for Ni/GDC catalysts with loadings around 10 wt % [6,8].

Finally, TEM measurements were carried out on the Dis 50 sample as a representative example
(Figure 4). The presence of Ce, Gd, and Ni was confirmed by EDX analysis (Energy-dispersive X-ray
spectroscopy). EDX mappings of the different elements have clearly shown that the catalyst is very
homogeneous, containing well dispersed NiO nanoparticles in the GDC matrix. In addition, in good
agreement with the XRD measurements, both GDC and NiO nanoparticles exhibit a small particle size
(6–10 nm). Additional TEM images and EDX and FFT analysis are shown in Figures S5 and S6 and
Table S3 (Supplementary Materials), confirming the presence, distribution, and low size of the NiO
nanoparticles on the GDC support.
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Figure 4. TEM image of catalyst Dis 50 (50% of Ni in starting material, NiGDC 90, was selectively
dissolved), and EDX mapping of Ce, Ni, and Gd.

3. Experimental

Briefly, a polyacrylic resin in the form of micro-spherical beads (630–800 µm) was pre-treated in
an NH3 solution. Then, a solution of the selected elements (Ce, Gd, and Ni) in the desired concentrations
was prepared and stirred in contact with the resin for 24 h. Drying (110 ◦C) and calcination (750 ◦C)
treatment in air of the metal loaded resin allows for the oxidization of the organic skeleton of the
resin, leaving an intimate mixture of Gadolinia-Doped Ceria and Ni oxide [9]. Finally, a material with
a selected composition was treated in an HNO3 solution, aimed at the partial/selective dissolution
of NiO [10]. This enhances the open porosity and therefore the specific surface area of this material
(see Supplementary Materials for detailed synthesis and characterization techniques, Sections 1.1–1.3).

4. Conclusions

Novel Ni/GDC materials with advanced nanostructural properties have been developed in this
study following a new synthesis procedure which involved (a) an ionic exchange of all metal cations
in a once-through procedure followed by a thermal treatment in air at 750 ◦C and (b) the partial NiO
dissolution to enhance the SSA. Therefore, these novel materials exhibit very promising properties,
in comparison with other conventional preparation methods (incipient wetness impregnation, etc.),
in view of their application to the catalytic reforming of methane for hydrogen production.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/7/12/368/s1,
Experimental details (synthesis and characterization), preparation of Ni/GDC catalysts, additional TGA and
ICP-AES analysis, and complementary TEM/STEM-EDX analysis. Figure S1: (a) Thermogravimetric analysis of
the first set of loaded resin materials performed under air (20 mL min−1); (b) Exchange efficiency, calculated on the
basis of the TGA and ICP-AES results, Figure S2: Thermogravimetric analysis of the sample NiGDC 90 prepared
in the first series of loaded resin materials, Figure S3: (a) ICP-AES analysis of the second series catalysts after the
NiO partial dissolution regarding the concentration of Ce, Gd and Ni in the HNO3 solution used to dissolve NiO;
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(b) Comparison of Ni concentration in the HNO3 solution after partial dissolution, and the theoretical amounts
expected, considering stoichiometric dissolution of NiO with HNO3, Figure S4: XRD patterns of the second series
of catalysts after the NiO partial dissolution, Figure S5: TEM image of catalyst Dis 50 (50% of Ni in starting
material, NiGDC 90, was selectively dissolved), Figure S6: EDX analysis of the areas highlighted on Figure S5,
Table S1: Lattice Parameters, crystallite size and strain of GDC and NiO, for the 1st and 2nd series of catalysts,
based on the XRD measurements, Table S2: % mol/mol Ni and % w/w of Ni (if it was reduced) according to
ICP-AES analysis, and Specific Surface Area (BET) of the catalysts after calcination of the loaded resin, Table S3:
Fast Fourier Transform (FFT) analysis of selected area on Figure S5.
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