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Abstract: Ene-yne cross-metathesis from alkynes and ethylene is a useful method to produce
substituted conjugated butadiene derivatives. If this method has been used with aliphatic alkynes,
it has however never been used starting from diarylacetylenes as internal alkynes. We show that the
ene-yne cross-metathesis catalyzed by the second generation Hoveyda ruthenium catalyst provides
the 2,3-diarylbuta-1,3-dienes under 3 atm of ethylene at 100 °C. The scope and limitations of the
reaction have been evaluated starting from unsymmetrical functionalized diarylacetylene derivatives
hence leading to unsymmetrical 2,3-diarylbuta-1,3-dienes in a straightforward and environmentally
acceptable manner.
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1. Introduction

Depending on the substitution pattern of the 1,3-diene motif, different families of products in terms
of electron delocalization are available. 2,3-Diarylbuta-1,3-dienes A consisting of branched m-electron
frameworks are cross-conjugated compounds related to (4)-dendralenes featuring two terminal double
bonds (Figure 1) [1], whereas 1,3-butadienes that are di-substituted in 1,4-position by aryl groups
lead to highly conjugated compounds B with alternating single and double bonds. The 1,1-, 1,2-,
and 1,3-diphenylbuta-1,3-dienes (C-E) present at the same time three conjugated double bonds and
a cross-conjugated (3)-dendralene structure. Because of their conjugated 1,3-diene structure, these products
are perfect starting substrates for the construction of complex molecules [2—4]. Besides the classical
[4 + 2] cycloadditions, 1,3-butadiene itself and aliphatic 1,3-butadiene substrates have been efficiently
transformed via transition metal-catalyzed reactions. Among them, ruthenium-catalyzed addition of
aldehydes [5] and olefin metathesis [6], nickel-catalyzed multicomponent coupling with alkynes or
aldehydes and dimethylzinc in the presence of carbon dioxide [7,8], thodium-catalyzed asymmetric
[4 + 3] cycloaddition with vinylcarbenoids [9], palladium-catalyzed telomerization with various
nucleophiles [10-12], hydroamination [13,14] and hydroamidocarbonylation [15], are representative
examples. However, monoarylated 1,3-dienes have been used for triflic acid-catalyzed synthesis of
indenes [16], ruthenium-catalyzed isomerization [17], palladium-catalyzed hydroarylation with boronic
esters [18], cobalt-catalyzed hydrosilylation [19], asymmetric hydrovinylation with ethylene [20] and
enantioselective cycloaddition with internal alkynes [21]. 2-Aryl- and 2,3-diaryl-dienes of type A
have been extensively studied for the access to cyclic products resulting from Diels-Alder [4,22]
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and hetero-Diels—Alder reactions [23,24]. They have also been recently involved in iridium-catalyzed
hydrohydroxymethylation [25] and ruthenium-catalyzed hydroxymethylation [26].
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Figure 1. Different types of disubstituted 1,3-butadienes.

Elimination reactions such as the thermal decomposition of 3,4-diaryldihydrothiophene-
1,1-dioxides [27] and the acid-catalyzed dehydration of 1,2-diol derivatives [28] have been used
for the synthesis of 2,3-diaryl-buta-1,3-dienes of type A. But-2-yn-1,4-diol biscarbonates have been
efficiently coupled with aryl and heteroaryl boronic acids in the presence of a palladium catalyst to
give 2,3-diarylated 1,3-dienes [1,29,30]. 1,4-Dimethoxybut-2-yne was also found to be an excellent
substrate for the copper(l)-catalyzed SN2’substitution with aryl Grignard reagents to produce
symmetrical 2,3-diarylbuta-1,3-dienes [31]. Symmetrical 2,3-diaryl-1,3-dienes A have also been
obtained by homocoupling methods starting directly from ketones or the corresponding hydrazones.
These homocoupling reactions have been performed directly from acetophenone substrates upon
treatment with Sml, /Ac,O [32], or from the derived hydrazones following a copper-mediated Shapiro
reaction [33] or palladium-catalyzed coupling under oxidative conditions [34,35]. The preparation
of 2,3-diaryllbuta-1,3-diene derivatives has been achieved by homocoupling of styrylmagnesium
bromide in the presence of an organocatalyst [36], styryl bromide catalyzed by Pd/C in the presence of
indium [37], and styrylboronic acid catalyzed by a palladium(II) complex in the presence of KMnOy
or oxygen as oxidant [38]. The same symmetrical 1,3-dienes can be obtained by palladium-catalyzed
cross-coupling of 2,3-bis(pinacolatoboryl)buta-1,3-diene with aryl iodides under basic conditions [39].
It is noteworthy that the preparation of unsymmetrical 2,3-diarylbuta-1,3-dienes with different
aryl groups, is much less documented. The few reported methods rely on palladium-catalyzed
cross-coupling of p-tolyl iodide with 3-silyl-3-phenylbuta-1,3-diene in 40% yield [39] and styryl
triflates with styryl boronates [40]. An unsymmetrical 2,3-bis(2-nitrophenyl)-1,3-butadiene derivative
has been prepared in 61% yield by a Pd-catalyzed Stille cross-coupling [41], whereas the tentative
cross-coupling of two different hydrazones led to modest yields in the unsymmetrical product besides
the symmetrical ones [16]. Because it is a straightforward atom economic reaction, ene-yne cross
metathesis has been applied as an efficient method for the construction of 1,3-dienes [4,42—45]. Using
ethylene as olefinic substrate allows the production of buta-1,3-dienes with two terminal methylene
groups according to a catalytic cycle initially proposed by M. Mori [46] and further studied in more
details by S. T. Diver [47,48]. However, if many examples involving ruthenium-catalysis have been
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described starting from aliphatic including benzylic and propargylic alkynes [49-52], much less data
are available from aromatic alkynes in the literature. A few mono-substituted 2-arylbuta-1,3-dienes
have been obtained from terminal arylacetylenes [25,26,53-56], but to the best of our knowledge only
one example of synthesis of 2,3-diphenylbuta-1,3-diene via ene-yne cross-metathesis starting from
an internal alkyne has been reported [57].

Herein, we report on the application of ruthenium-catalyzed ene-yne cross-metathesis for the
direct preparation of 2,3-diarylbuta-1,3-dienes of type A from ethylene and a variety of internal
alkynes. We focused on a new preparation of unsymmetrical dienes performed in one step with atom
economy from suitably designed internal alkynes. This process competes in terms of productivity and
environmental impact with the methods based on palladium-catalyzed cross-coupling of functionalized
alkenes that produce the desired products in moderate yields together with stoichiometric amount of
wastes [39,41].

2. Results and Discussion

The feasibility of the ene-yne cross-metathesis between 1,2-diphenylacetylene with ethylene
was first evaluated in the presence of the second generation Grubbs (I) and Hoveyda (II) ruthenium
catalysts (Figure 2, Scheme 1).
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Figure 2. Ruthenium catalysts used in the screening experiments.
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Scheme 1. Ene-yne cross-metathesis of 1,2-diphenylacetylene with ethylene.

The first attempts carried out with 1 atm of ethylene in the presence of 2 mol% of Grubbs
catalyst I at room temperature in dimethyl carbonate (DMC) or dichloromethane (DCM) were not
successful (Table 1, entries 1-3). Increasing the ethylene pressure to 5 atm and the temperature to
80 °C in DMC or 100 °C in toluene made the ene-yne cross-metathesis possible but with modest
conversion (Table 1, entries 4 and 5). Further increase of reaction pressure and reaction time in
DMC led to 90% conversion of the alkyne (Table 1, entry 6). A similar beneficial effect of increasing
ethylene pressure from 1 to 6 atm had been observed during the ene-yne cross-metathesis of
ethylene with terminal propargylic acetates [47]. These results indicated that the ene-yne metathesis
of 1,2-diphenylacetylene required higher pressure than the ene-yne metathesis of the terminal
phenylacetylene, which was carried out in short reaction time under 1 atm of C;Hy at 80 °C in toluene
with catalyst I [26,53-55], and even at room temperature with a bimetallic ruthenium metathesis
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catalyst precursor [56]. The Hoveyda catalyst II was then evaluated under various experimental
conditions. In dimethyl carbonate, the conversion of 1a at 80 °C under 5 atm of C;H, was similar
to that obtained with catalyst I under related conditions (Table 1, entries 4 and 7). It was possible to
improve the conversion of the alkyne by increasing the initial concentration of the substrate from
0.06 M to 0.3 M (Table 1, entries 8-10). It must be noted that in all the experiments performed in
DMC solvent, the formation of 1,2-diphenylbuta-1,3-diene 2a’ resulting from hydrovinylation of the
alkyne by ethylene was observed as a byproduct in variable amounts. This side reaction might be
attributed to the formation of Ru-H species resulting from the reaction of ruthenium species with
MeOH arising from DMC decomposition. It is interesting to note that the formation of 2a” has been
reported only once by reaction of alkynes with ethylene and that a ruthenium hydride was assumed to
be essential for this catalytic reaction [58]. Such Ru-H species were also previously proposed to be
responsible of carbon—carbon double bonds migration during olefin metathesis reactions performed
in boiling DMC [59]. Toluene appeared to be a better solvent as the reaction carried out under 3 atm
of ethylene at 100 °C for 17 h gave full conversion of the alkyne (Table 1, entry 11). Not only the
conversion of the alkyne was better, but the selectivity in favor of the 2,3-diphenylbuta-1,3-diene
was excellent since 2a’ could not be detected. Optimization of the reaction in toluene revealed that
100 °C, 17 h were the optimum experimental conditions whereas a higher pressure of ethylene had
a negative effect inhibiting the catalytic reaction, and lower catalyst loading led to decreased activity
(Table 1, entries 12-15). The first generation catalyst III utilized in the conditions of entry 7 led to only
10% conversion [60] and a high proportion of hydrovinylation product 2a’. The conditions reported in
entry 11 appeared to be the best to investigate the scope of the reaction focused on the synthesis of
unsymmetrical 2,3-diarylbuta-1,3-dienes.

Table 1. Optimization of the ene-yne cross-metathesis of 1,2-diphenylacetylene with ethylene 2.

Catalyst Ethylene Conversion €

Entry (molg/’o) Pressu};e (atm) Solvent TCO £ (%)

1 1(2 mol%) 1 DMC 0.01 M 25 4 0

2 1 (2 mol%) 1 DCM 0.06 M 25 4 0

3 I (2 mol%) 1 DMC 0.06 M 25 4 5

4 I(2 mol%) 5 DMC 0.06 M 80 17 60 4

5 1(2 mol%) 5 toluene 0.06 M 100 17 64 d

6 I (2 mol%) 7 DMC 0.06 M 80 22 904

7 11 (2 mol%) 5 DMC 0.06 M 80 24 50 d

8 11 (2 mol%) 5 DMC 0.1 M 80 23 94 d

9 IT (2 mol%) 5 DMC 0.3 M 90b 17 924

10 II (2 mol%) 3 DMC 0.3 M 90b 17 954

11 1T (2 mol%) 3 toluene 0.3 M 100 17 100 (90%) ©

12 1T (2 mol%) 3 toluene 0.3 M 70 17 67

13 11 (2 mol%) 3 toluene 0.3 M 120 8 90

14 II (2 mol%) 25 toluene 0.3 M 100 72 0

15 II (1 mol%) 3 toluene 0.3 M 100 17 80

2 Tolane (0.51 mmoles); ® DMC boiling point under atmospheric pressure; © Determined by gas chromatography
using tetradecane as internal standard; 4 presence of 1,2-diphenylbuta-1,3-diene 2a’ (up to 15% determined by
TH Nuclear Magnetic Resonance); € (isolated yield).

The unsymmetrical phenylacetylene derivatives 1b—s were prepared according to the Sonogashira
method from phenylacetylene and the desired substituted halogenated aryl derivatives in the presence
of catalytic amounts of PdCl;(PPhs), and Cul (See Supplementary Materials). Several alkynes
presenting different electronic and steric properties were prepared in order to evaluate the full potential
of the synthetic method. The results of the ene-yne cross-metathesis reactions of these substrates with
CyHy4 (Scheme 2) are gathered in Table 2.
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Scheme 2. Ene-yne cross-metathesis of unsymmetrical diarylacetylenes.

The presence of an electron-donating or -withdrawing groups in para-position of one of the aryl
groups did not inhibit the cross-metathesis with ethylene and the corresponding dienes 2b—h were
isolated in high yields after 17-24 h (Table 2, entries 1-7). Total conversion of the para-halogenated
derivatives 1i—k were obtained under similar conditions and the dienes 2i—k were isolated in 89-90%
yield without noticeable dehalogenation. Compounds 2i and 2k are particularly interesting for further
cross-coupling reactions. The mixed phenyl 2-thiophenyl butadiene 21 was isolated in 60% yield after
complete conversion of the starting alkyne 11 (Table 2, entry 11). Substitution at the ortho-position
of one phenyl group was more problematic. Indeed, with the o0-cyano group in 1m a very low yield
of 18% was obtained whereas no reaction took place with the 0-OMe and 0-NO, substrates 1n,0
(Table 2, entries 13 and 14) even when extended reaction time or higher temperatures were used.
Both the steric hindrance and the potential catalyst inhibition by coordination of these o-substituents to
the metal center might be at the origin of the low reactivity. Limitations were also observed with 1q-s
for which steric hindrance (1q) or substrate additional coordination site (1r,s) might be responsible
from the lack of reactivity. On the contrary, the arylalkylacetylene hex-1-yn-1-ylbenzene 1p led to full
conversion and an excellent 97% isolated yield of 2p, a class of 1,3-dienes scarcely reported employing
olefin metathesis [57].

Table 2. Ene-yne cross-metathesis of unsymmetrical diarylacetylenes with ethylene 2.

Conversion
(0/0) b

1 =L )" 1 24 100 " 91
2 =L )om 1 17 100 M e 98
3 O):o 1d 17 100 P02 99
s O=A0F e 17 100 o 2e 91

(o}
5 O—= ZT 1f 17 100 o’\ 2f 99
6 [ N=L )0 1g 24 100 NOz % o

Entry Substrate t (h) Product Yield (%) ©
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Conversion

Entry Substrate t (h) (%) b Product Yield (%) ©
7 { Y=~ )N 1 24 92 CN o o
s (=< ) 17 100 on ” 00
o (=L )F 3 2 100 S )
0 (=) 1 17 100 Lk 91

S S )
n =<7 11 27 100 S 21 60
2 O=%) 48 40 2m 18
NC NC
13 O :M 1n 24 0 2n 0
e MeO
14 O o 1o 24 0 20 0
2 O,N
15 C>—:—\j 1p 24 100 W\ 2p 97
16 O—= 8 1q 17-48 10 2q 0
_ 7
17 =\ 1r 24 0 AN 2r 0
18 @—:—%H 1s 17-48 0 @JH(@ " 2s 0

2 Reaction conditions: alkyne (0.5 mmol), catalyst II (2 mol%), C;Hy (3 atm), temperature 100 °C, toluene (2 mL);
P Conversion detemined by Gas Chromatography analysis with tetradecane as internal standard; € Isolated yield.

3. Conclusions

We have shown that 2,3-diarybuta-1,3-dienes could be prepared from diarylacetylenes using
ene-yne cross-metathesis with Hoveyda second generation catalyst. The reaction requires a low
ethylene pressure of 3 atm and a temperature of 100 °C. Toluene was found to be the best solvent
allowing the selective formation of the desired products whereas in a greener solvent such as
dimethyl carbonate the formation of hydrovinylation byproducts was observed. However, this side
reaction presents a synthetic interest and will be investigated in more details. From unsymmetrical
diarylacetylenes bearing one non-functionalized phenyl group, the reaction took place efficiently with
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a variety of substituents on the other aryl group, except in the case of bulky aromatic substituents and
substitution at the ortho-position.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/7/12/365/s1,
(1) General information, (2) Alkyne syntheses, (3) 2,3-diarylbutadiene syntheses.
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