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Abstract: Modern experiments have offered alternative interpretations on the symmetry of chiral
dirhodium(II) carboxylate complexes and its relationship to their level of enantioselectivity. So, this
contribution is to provide an insight on how the knowledge around the structure of these catalysts has
evolved with a particular emphasis on the impact of this knowledge on enantioselectivity prediction
and catalyst design.
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1. Introduction

Chiral dirhodium(II) paddlewheel complexes are among the most attractive catalysts that found
a widespread application in the fields of metal-nitrene and metal-carbene transformations [1-15].
This immense interest originates from their exceptional ability to effectively catalyze a broad spectrum
of reactions with high levels of chemo-, regio- and stereo-selectivity. These transformations involve
aziridinations [16-18], C-H insertions [7,19,20], ylide transformations [21-25], Lewis acid-promoted
reactions [21,26-30], cross-coupling reactions [31], cyclopropanation and cyclopropenation
reactions [32-35]. In fact, they have proven their potential, particularly, in the field of asymmetric
synthesis. As an example to showcase the utility of these complexes, methyl styryldiazoacetate
(1), in the presence of a suitable substrate and a dirhodium(II) catalyst, can undergo a range of
chemical transformations including cyclopropanation [36-38], C-H insertion [39,40], Si-H insertion [41],
tandem cyclopropanation/Cope rearrangement [42,43], tandem O-H insertion/[2,3] sigmatropic
rearrangement [44], vinylogous reactivity [45,46], tandem C-H insertion/Cope rearrangement [47,48],
or [3+2] cycloaddition [49] generating a variety of useful synthetic entities in excellent diastereo- and
enantioselectivity (Scheme 1).

Chiral dirhodium(II) carboxylate complexes constitute a very important class of dirhodium(II)
catalysts. Their structure consists of two rhodium atoms connected together through a unique
dirhodium bridge. This dirhodium axes is connected to four chiral electron withdrawing
carboxylate ligands and they have two vacant axial positions available for carbene binding [50,51].
Although several highly enantioselective dirhodium(II) carboxylate catalysts have been reported to
date [2,52] and their application spectrum has expanded dramatically, limited evidence is known on
how chirality is tailored at the active center of these complexes by its four chiral carboxylate ligands.
As a consequence, this article is providing an insight on how the knowledge around the structure of
dirhodium(Il) carboxylate complexes has evolved. This is with a particular emphasis on the impact of
this knowledge on enantioselectivity prediction and catalyst design. To the best of our knowledge,
this topic was last reviewed by Hansen and Davies in 2008 [53] and since then subsequent investigations
have offered alternative interpretations on the symmetry of chiral dirhodium(II) carboxylate complexes
and its relationship to their level of enantioselectivity.
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Scheme 1. Dirhodium(II)-mediated chemistry of methyl styryldiazoacetate (1) with different substrates.

2. Ligand Blocking Groups Arrangements

Generally for chiral dirhodium(II) carboxylate complexes, it is agreed that the ligand blocking
groups can adapt either an up () or down (B) positions around the catalyst core. It was also
assumed that, the ligand’s blocking group cannot be situated in the periphery of the dirhodium(II)
core as it would bump into the neighboring ligand [36,53]. Thus, by taking into account the a-
and B-arrangements for all four ligands, four possible conformations can be mainly considered:

w000 (Ci-symmetry), a,a,B,f (Co-symmetry), a,B,a,5 (Dy-symmetry) and a,a,a,8 (C1-symmetry)
(Figure 1) [2,4,36,53,54].

a,a,a,a (C4~Symmetry) a,a, 3, (Co-Symmetry) a,f,a,f (D-Symmetry)  a,a,a,f (C-Symmetry)

Figure 1. Main arrangements of ligand’s blocking groups around the dirhodium(II) core and

their point groups (the sterically blocking groups around the rhodium active sites are depicted as
ovals) [2,4,36,53,54].

2.1. «,B,a,B-Conformation

Initially, Hansen and Davies suggested that catalysts having two different carbene-formation
sites should not lead to high enantiocontrol [53]. In other words, complexes with a,a,B,5- and
«,B,0,B-arrangements (having C,- and D,-symmetry, respectively) are the only effective catalysts
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in terms of enantioselectivity as they possess two equivalent catalyst faces. While complexes with
«,u,u,x- and a,o,0,B-conformations, which have non-equivalent catalyst faces, are likely to induce low
or no enantioinduction as their more accessible and kinetically active face is achiral. This previous
proposal from Davies et al. originates from their discovery of Rhy(S-DOSP), catalyst (Scheme 2) [36],
which offered extraordinary enantioselectivity in a wide range of chemical transformations (up to
99% ee) [7,13,36,40,42,44,47,48,55-68]. This exceptional enantioselectivity of Rhy(S-DOSP); was
proposed to originate from a favored «,f,a,B-arrangement of ligands adapted during catalysis.
The arrangement that leads to a catalyst with two equivalent rhodium active sites and adequate
sterically overburden groups that can limit the trajectories approaching the axial carbene ligand
(Scheme 2) [7,13,36,53]. For example, low temperature Rhy(S-DOSP)4-catalyzed cyclopropanation of
styrene with methyl styryldiazoacetate resulted in the generation of the corresponding cyclopropane
product in more than 50:1 E/Z diastereomeric ratio and 98% ee (Scheme 2a) [13,69]. A general model
was then proposed to explain the observed stereochemical outcome [13,36,68,70]. In this model,
Rhy(S-DOSP), is assumed to favor the a,f,a,5-conformation during catalysis at which, the si-face of
the metal-carbene complex is protected by a ligand blocking group. The substrate will approach from
the re-face to generate the product in the observed absolute configuration (Scheme 2a).
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Scheme 2. Structure, Dy-symmetry and facial enantioselectivity in enantioselective cyclopropanation of
styrene with methyl styryldiazoacetate of Rhy(S-DOSP), and Rhy (S-biTISP), as proposed by Davies et al.
(a) Rhy(S-DOSP),-catalyzed reaction [13,36,69], (b) Rh;(S-biTISP),-catalyzed reaction [13,71].
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To support the D,-symmetry hypothesis of Rhy(S-DOSP),, the authors introduced the second
generation prolinate-based complex, Rhy(S-biTISP), (Scheme 2) [13,71,72]. As the ligands themselves
possess a Cp-symmetry, Rhy(S-biTISP), was anticipated to adapt the higher D,-symmetrical structure.
More importantly, the complex was expected to be more rigid at which, the ligands are conformationally
locked in the «,8,a,B-arrangement around the catalyst active centers. For this catalyst, not only both
faces are equivalent but also all staggered binding orientations of the axial carbene ligands are identical
with respect to the approaching substrate [13,53,71]. As expected by the authors, Rhy(S-biTISP),
demonstrated excellent enantioselectivity in the enantioselective intermolecular cyclopropanation
of styrene with methyl styryldiazoacetate leading to the generation of the cyclopropane product
in 98% ee (Scheme 2b) [13,71]. This result very well supported the proposed concept that the
observed enantioselectivity of Rhy(S-DOSP), originates from an «,f,a,5-conformation adapted during
catalysis. However, the use of Rhy(S-biTISP), catalyst preferentially resulted in the generation of
the (15,25)-cyclopropane product (Scheme 2b) which was the opposite to that obtained with the
Rhy(S-DOSP)4-catalysed reaction (Scheme 2a). The authors returned this difference in asymmetric
induction to the different preferred staggered orientation for the carbene binding which causes different
channels of the metal-carbene intermediate to be exposed to the approaching alkene [13].

In the same context, Rhy(R-BTPCP)4 was also reported as a catalyst that exhibited high
enantioselectivity levels [73-75]. For example, the Rhy(R-BTPCP),-catalyzed cyclopropanation of
styrene with methyl styryldiazoacetate generated the cyclopropane product in 92% ee [73]. Based on its
X-ray crystal structure, this enantioselectivity was again returned to the «,f,a,B-distribution of ligands
around the dirhodium(II) core (Scheme 3) [73].

Ph %
Ph i RR(RBTPCP) MO P
\/\H)J\OMe
N, DCM, 23 °C oh
92% ee

E/Z ratio >20:1

Br

Ph .

Rh,(R-BTPCP),, Ar = p-BrPh

Scheme 3. Rh,(R-BTPCP),-catalyzed cyclopropanation of styrene with methyl styryldiazoacetate and
the Dy-symmetric structure of Rhy(R-BTPCP),4 according to its X-ray crystal structure [73].

This research was further extended and, very recently, Davies et al. reported its analogue,
Rhy(R-3,5-(p-tBuPh)TPCP)4, as a very successful catalyst in achieving highly regio-, diastereo-
and enantio-selective C-H functionalization at the inactivated C2 position of n-alkanes and
terminally substituted n-alkyl compounds (Scheme 4) [52]. Again, X-ray crystallography along
with computational studies showed that the catalyst disfavors the existence of two adjacent
3,5-di(tert-butylphenyl)phenyl groups on the same face of the catalyst. Hence the preferred orientation
of ligands is «,8,a,8 around both catalyst’s active sites (Scheme 4) [52].
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Scheme 4. Rh;(R-3,5-di(p-tBuPh)TPCP),-catalysed C-H functionalization of pentane and substituted
n-alkanes and the D,-symmetric structure of the catalyst according to its X-ray crystal structure. The two
3,5-di(p-tBuPh)CgHs-groups are highlighted in yellow. (X-ray crystal structure adapted with permission
from Macmillan Publishers Ltd.: Liao, K.; Negretti, S.; Musaev, D.G.; Bacsa, ].; Davies, H.M.L. Nature
2016, 533, 230-234, Copyright 2017).

2.2. a,,B,B- and a,a,0,a-Conformations

2.2.1. Global Catalyst Symmetry

The previous proposal that only catalysts with D;- and C,-symmetric structures are effective in
terms of enantiocontrol [53] relied also on Hashimoto’s reports for Rhy(S-PTTL)4. In 1993, Hashimoto,
Ikegami and co-workers first reported their famous complex, Rhy(S-PTTL)4 [76,77], as a catalyst
that manifested (along with its variants) high enantioselectivity levels in wide range of organic
transformations [2,54,78-84]. For example, in enantioselective [2,3]-sigmatropic rearrangement of the
cyclic propargylic oxonium ylide shown in Scheme 5a, Rh,(S-PTTL), provided the best enantioselectivity
of 79% ee of the corresponding allenic bearing benzofuran-3-one product (Scheme 5a) [85].

Hashimoto et al. initially proposed that Rhy(S-PTTL)4 favors the «,«,8,8-conformation during
catalysis. This assumption was based on the X-ray crystal structure of its analogue, Rh,(S-PTPA),, which
also showed moderate to good enantioselectivity in some asymmetric transformations [76,79,85,86].
For example, in aromatic C-H insertion of a-diazoketones, Rhy(S-PTPA), resulted into the formation of
the corresponding 1-alkyl-1-phenyl-2-indanones in up to 95% ee (Scheme 5b) [86]. The X-ray crystal
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structure of Rhy(S-PTPA), showed that the catalyst is adapting the a,«,,8-conformation in solid state
(Scheme 5b) [76,85-87].

Based on Hashimoto’s hypothesis, a general model was proposed to account for the observed
enantioselectivity with Rhy(S-PTTL)4 [85,86,88,89]. In this model, it was proposed that Rhy(S-PTTL),
preferentially adapts the a,«,8,B8-conformation during catalysis. The carbene orients itself at which,
its bulky side is directed away from the catalyst walls (Scheme 5a). The substrate approaches from the
re-face to generate the product in the observed absolute configuration.
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Scheme 5. (a) Rhy(S-PTTL)4-catalyzed enantioselective tandem propargylic oxonium ylide
formation/[2,3]-sigmatropic rearrangement (Facial selectivity of the Rhy(S-PTTL),-stabilized carbene
according to the model proposed by Hashimoto et al. [85]); (b) Rhy(S-PTPA)4-catalyzed enantioselective
aromatic C-H insertion reaction and the Cp-symmetric structure of the catalyst according to its reported
X-ray crystal structure [76,85-87].
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Later, Davies et al. noticed that, in some reactions, the steric bulk of the ligand affects the
enantioselectivity of the catalyst at which the enantioselectivity increased by increasing the steric bulk at
the a-carbon of the ligands. For example, in dirhodium(II)-catalyzed enantioselective tandem carbonyl
ylide formation/intermolecular 1,3-dipolar cycloaddition of a-diazoketones, the best enantioselectivity
was observed when Rhy(S5-PTTL)4 was used as a catalyst (74% ee), followed by Rhy(S-PTV)4 (51% ee)
and Rhy(S-PTA)4 (35% ee) [90] (Scheme 6a). As a consequence, Davies et al. suggested that the logical
way to further develop the Rhy(S-PTTL), catalyst is to substitute the tert-butyl group connected to
the a-carbon with a much bulkier hydrocarbon group. Accordingly, they introduced Rhy(S-PTAD)4
catalyst which is derived from L-adamantylglycine ligands (Scheme 6b) [37]. As expected, this catalyst
succeeded to afford enantioselectivity levels superior to Rhy(S-PTTL)4 in different asymmetric
transformations [37,88,91-95]. For example, Rh,(S-PTAD);-catalyzed cyclopropanation of styrene with
x-diazobenzylphosphonate resulted into the generation of the corresponding cyclopropylphosphonate
product in high levels of enantioselectivity (99% ee) compared to Rhy(S-DOSP)4 (34% ee), Rhy(S-biTISP),
(88% ee) and Rhy(S-PTTL)4 (97% ee) (Scheme 6b) [37].
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Scheme 6. (a) Dirhodium(II)-catalyzed enantioselective tandem carbonyl ylide formation/intermolecular
1,3-dipolar cycloaddition of a-diazoketones [90]; (b) Rhy(S-PTAD),-catalyzed enantioselective synthesis
of dimethyl 1,2-diphenylcyclopropylphosphonate [37].
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Up to this point, Hansen and Davies theoretical assumption that only catalysts with «,a,5,8- and
«,B,&,B-arrangements results in high enantioselectivity and not the others [53] was very well supported
by scientific evidence. Nevertheless in 2009, Fox et al. were able to capture an X-ray crystal structure
for Rhy(S-PTTL)4 [78,87]. Surprisingly, the obtained structure revealed that the catalyst is adapting the
«,u,0,0-conformation in solid state and not the expected a,«,8,5-conformation (Figure 2). Furthermore,
the structure showed that the catalyst is having a rectangular chiral cavity (C- rather than C4-symmetry)
with only one ethyl acetate axial ligand coordinated to the rhodium atom from the cavity face.

a)

Figure 2. (a) Space filling structure of mono(EtOAc) adduct of Rh,(S-PTTL), (top view); Schematic
illustration of the rectangular binding pocket of Rhy(S-PTTL)y; (b) Space filling structure of mono(EtOAc)
adduct of Rhy(S-PTTL)4 (side view). (Adapted from Adly, EG.; Gardiner, M.G.; Ghanem, A. Chem. Eur.
J. 2016, 22, 3447, Copyright 2017, with permission from John Wiley and Sons).

Based on the new information, Fox et al. introduced a new model to account for the
enantioselectivity exhibited by Rhy(S-PTTL), in enantioselective cyclopropanation of styrene with
«-alkyldiazoesters (Scheme 7) [78,87]. In this model, Rhy(S-PTTL)s was proposed to keep its
a,o,0,6-conformation during catalysis and the carbene is anticipated to align itself within the
wide dimension of the catalyst’s rectangular cavity leaving its si-face accessible by the substrate.
Also according to Fox model, the tert-butyl groups are crucial to restrict the reactivity to the chiral
cavity face of the catalyst and limit the racemic background reaction.

Hexane ?\ /\
-78 °C
g >95:5dr
99% ee

Scheme 7. Facial selectivity of the Rh,(S-PTTL),-stabilized carbene according to the model proposed
by Fox et al. [78,87].
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Fox model was very well supported by the results obtained earlier for Rhy(S-PTAD),4 by being
more enantioselective than Rhy(S-PTTL)4 [37,91-93,95,96]. The results were very relevant as the much
bulkier adamantyl groups would more efficiently block the carbene ligands from coordinating to
the achiral rhodium face (shrouded by the adamantly groups) compared to the tert-butyl groups
of Rhy(S-PTTL)4 leading to the observed more enantioselective outcome. Moreover, Fiirstner et al.
recently succeeded in capturing an X-ray crystal structure of the Rh,(5-PTTL);=C(MeOCgH4)CO,Me
intermediate (Figure 3) [97]. The obtained structure showed that the entire carbene resides within
a long narrow pocket formed by the four N-phthalimido groups of Rhy(S-PTTL),, that adapt an
a0 ,0-arrangement (Co-symmetric). The overall situation looked, therefore, in good agreement with
the model proposed by Fox. But, low temperature NMR data for this intermediate returned a single
set of signals for the four chiral carboxylate ligands [97]. This observation was not in a good accord
with a Cy-symmetric binding site as proposed by the Fox model.

Figure 3. Space-filling model of the Rhy(S-PTTL)4 = C(MeOC¢H4)CO,;Me unit (top view). (Reprinted
from Werlé, C.; Goddard, R.; Philipps, P; Fares, C.; Fiirstner, A. Angew. Chem. Int. Ed. 2016, 55, 10760,
Copyright 2017, with permission from John Wiley and Sons).

Fox proposal was also challenged by data reported from different research groups. Adly, Ghanem
and co-workers reported the X-ray crystal structure of Rhy(S-PTAD), [98]. Similar to Rhy(S-PTTL)y,
the obtained structure showed that the catalyst is adapting the «a,a,a,4-conformation in solid state,
however, the catalyst was observed to form a bis(EtOAc) adduct when crystalized from ethyl
acetate/n-hexane (Figure 4). This observation contradicted with the assumption proposed by Fox et al.
in their model and confirmed that the adamantyl groups are not completely blocking the “achiral”
catalyst face. In other words, there is still enough room for a Lewis basic ligand to coordinate to the
achiral axial rhodium site. This observation provided direct evidence that both Rh atoms are still
accessible by the diazo substrates even after the introduction of the bulkier adamantyl groups [98].
In addition, results have shown that complexes with tert-butyl groups at their a-carbon produced
enantioselectivity levels similar and sometimes higher than Rhy(S-PTAD), which carries the bulkier
adamantyl groups [98].

Also, different reported observations confirmed the flexibility of the PTTL ligands around the
rhodium active center, especially in solution and emphasized the effect of the shape and size of
the axial ligand on the overall structure of the dirhodium(ll)-carbene intermediate. For example,
2D heteronuclear NOESY data reported by the groups of Charette [54] and Duddeck [99],
independently, confirmed that Rhy(S-PTTL)4 and analogues have a mobile conformation in solution.
This confirms the existence of other conformers with at least one N-phthalimido group is flipped
downward. Further and based on X-ray crystallographic data, Rhy(S-PTTL)4(NC-CgH4-CN) adduct
was found to adapt a conformation in which one of the ligands is twisted by only about 80°
in solid state [87]. In other words, the ligand’s blocking group lies in the periphery of the
catalyst, the case that was originally supposed to be problematic due to steric constraints [36,53].
Gardiner and Ghanem [2,100] also succeeded to grow crystals of Rhy(S-PTPA)4(EtOAc), and
Rhy(S-PTPA)4(MeOH)(H,0) and they found that different conformations exist for each of these adducts



Catalysts 2017, 7, 347 10 of 19

at which, all of them feature inequivalent axial coordination sites unlike its original «,«,,B-structure
previously reported by Hashimoto [76,85-87]. The Rhy(S-PTPA)4(EtOAc); adduct exhibited an
«,u,0,5-conformation, while Rhy(S-PTPA)4(MeOH)(H,0) adduct exhibited an a,&,x,x-conformation in
solid state.

Figure 4. Space filling structure of bis(EtOAc) adduct of Rhy(S-PTAD), viewed along the Rh-Rh axis
(a) into the chiral crown cavity, (b) onto the achiral Rh coordination site shrouded by the adamantyl
groups. (c) Side view of bis(EtOAc) adduct of Rhy(S-PTAD),. (Adapted from Adly, EG.; Gardiner, M.G.;
Ghanem, A. Chem. Eur. ]. 2016, 22, 3447, Copyright 2017, with permission from John Wiley and Sons).

2.2.2. Local Ligand Symmetry

Following the classical way of catalyst design, all reported chiral dirhodium(II) carboxylate
complexes derived from L-amino acid ligands were designed to have a symmetric N-protecting groups
for the construction of the chiral ligands [4,53]. However in 2004, Miiller and Ghanem reported several
Rhy(S-NTTL)4 analogues at which, one hydrogen on the N-protecting group is substituted to generate
catalysts carrying asymmetric N-protecting groups for asymmetric cyclopropanation of styrene with
dimethyl malonate [101] and Meldrum’s acid [102] (Scheme 8). The authors were surprised when
screening results revealed that Rhy(S-4-Br-NTTL)4-catalyzed cyclopropanation proceeded with far
improved levels of enantioselectivity compared to Rhy(S-NTTL),.

Unfortunately, the authors had no success in growing X-ray quality crystals for Rhy(S-4-Br-NTTL),.
Instead, the X-ray crystal structure of Rhy(S-NTTL)4 (Figure 5) was used as a model to account for
the enhanced enantioselectivity that accompanied Rhy(S-4-Br-NTTL), [102]. The authors proposed
that, if Rhy(S-4-Br-NTTL), is retaining a similar structure to Rhy(S-NTTL), during catalysis (following
Fox et al. proposal), the bromo-substituents would be situated at the cavity rim and are likely to
exert a strong influence on the enantiofacial discrimination of the approaching substrate leading to
the observed enhanced enantioselectivity. The authors also returned the improved performance of
the 4-Br substituted catalyst over the 4-Cl analogue to the size of the substituents. The larger bromo-
substituents are expected to exert more influence at the cavity rim leading to higher enantioselectivity
in the case of Rhy(5-4-Br-NTTL)y.

Later, Adly and Ghanem investigated this further and they introduced a new approach for
the design of dirhodium(II) carboxylate complexes. This approach is through the reduction of
the N-protecting group symmetry by the inclusion of a bulky substituent at the catalyst’s cavity
rim. By the application of their new approach, the authors were able to introduce their catalyst,
Rh;(S-*""PTTL)4 (Scheme 9) [89,98,103]. For this catalyst, the planarity of the N-phthalimido groups
is maintained but the local symmetry of the N-protecting group was reduced from Cy, to C;s by
virtue of the substituents. Screening of Rhy(S-"PTTL), in different enantioselective cyclopropanation
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reactions demonstrated that, generally, Rhy(S-"'PTTL), is more enantioselective than Rhy(S-PTTL),
while returning comparable enantioselectivity to Rhy(S-PTAD)4 (Scheme 9) [98].
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Scheme 8. Dirhodium(Il)-catalyzed enantioselective cyclopropanation of styrene with dimethyl
malonate [101] and Meldrum’s acid [102].

Figure 5. Space filling structure of bis(EtOAc) adduct of Rhy(S-NTTL), (top and side view). (Reprinted
from Ghanem, A.; Gardiner, M.G.; Williamson, R.M.; Miiller, P. Chem. Eur. |. 2010, 16, 3291, Copyright
2017, with permission from John Wiley and Sons).

The X-ray crystal structure of Rhy(S-*“'PTTL); showed that the catalyst is adapting the
a,,0,0-conformation in solid state (Scheme 9) featuring the tert-butyl substituents similarly disposed
towards the “corner” of the nearly square-shaped cavity. The cavity is approximately square if
compared to the reported structure of Rhy(S-PTTL)4. The authors claimed that the added tert-butyl
substituent on the N-phthalimido group in Rhy(S-*"PTTL), reinforced the overall chiral twist of the
cavity, while, at the same time, not placing added steric hindrance to the binding of axial carbene
ligand [98]. The authors proposed that, if this geometry is relevant during catalysis, it is likely to be
the reason for the observed enhanced enantioselectivity relative to its parent, Rhy(S-PTTL),.
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Scheme 9. Rhy(S-*""PTTL),-catalyzed enantioselective synthesis of dimethyl 1,2-
diphenylcyclopropylphosphonate and X-ray crystal structure of Rhy(S-“'PTTL)s (top view).
(X-ray crystal structure adapted from Adly, F.G.; Gardiner, M.G.; Ghanem, A. Chem. Eur. J. 2016, 22,
3447, Copyright 2017, with permission from John Wiley and Sons).

2.3. a,a,0, B-Conformation

In 2012, Charette et al. explored the replacement of one of the ligands of Rhy(S-TCPTTL),
(the chlorinated version of Rhy(S-PTTL)4) with N-phthalimido-2-aminoisobutyric acid ligand (PTAiB).
This led to the generation of the lower symmetry heteroleptic complex, Rhy(S-TCPTTL)3(PTAiB) [104].
The X-ray crystal structure of this complex revealed that it is adapting the a,a,«,8-conformation in solid
state (Scheme 10). Surprisingly, screening results demonstrated that lowering the global symmetry
of the catalyst had a beneficial impact on its enantioselectivity. In the cyclopropanation reaction of
alkenes with a-nitro diazoacetophenones, Rh;(S-TCPTTL)3(PTAiB) resulted into the formation of the
cyclopropane product in 96.4% ee which was higher compared to its parent Rhy(S-TCPTTL)4 (92.4% ee)
(Scheme 10).

Also in the same year, Fox et al. reported the mixed ligated complex, Rhy(S-PTTL);(TPA)
(Scheme 11) [105]. The X-ray crystal structure of this complex showed that all of the N-phthalimido
groups are on one face of the complex in a structural similarity to Rhy(S-PTTL); but with an
incomplete chiral pocket (analogous to an a,a,a,B-arrangement). Rhy(S-PTTL)3(TPA) returned its
best enantioselectivity in the cyclopropanation of styrene with ethyl a-diazobutanoate (88% ee)
which was higher than the observed enantioselectivity with Rhy(S-PTTL)4 in the same reaction
(79% ee) (Scheme 11). The scope of this catalyst was expanded to include other substrate classes,
namely aliphatic alkynes, silylacetylenes and a-olefins, that were particularly challenging in
intermolecular cyclopropanations with a-alkyl-a-diazoesters. Generally, Rhy (S-PTTL)3(TPA) was able
to catalyze enantioselective cyclopropanations returning yields and enantioselectivities comparable
and sometimes higher than Rh,(S-PTTL)4 [105].
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Scheme 10. Enantioselective cyclopropanation reaction of alkenes with a-nitro diazoacetophenones and
X-ray crystal structure of Rhy(S-TCPTTL)3(PTAiB). (X-ray crystal structure adapted with permission from

Lindsay, VN.G.; Charette, A.B. ACS Catal. 2012, 2, 1221. Copyright 2017 American Chemical Society).
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Scheme 11. Enantioselective cyclopropanation of styrene with ethyl a-diazobutanoate and structure of
Rhy(S-PTTL)3(TPA) according to its X-ray crystal structure [105].

3. Conclusions

From the above demonstration, all models proposed to account for the enantioselectivity observed
with different dirhodium(Il) carboxylate catalysts relied mainly on the obtained X-ray crystal structures
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of these catalysts (except for Rhy(S-DOSP), and related prolinate-based complexes). However, due to
crystal packing, m-stacking and/or existence of axial and lattice solvent molecules within the crystal
unit cell, the static pose of a catalyst and its chiral ligands portrayed in its X-ray crystal structure does
not validate the adaption of the catalyst to the same conformation in solution and during catalysis.
In other words, based on the size and the shape of the axial carbene ligand, as well as the reaction
solvent used, the metal-carbene intermediate may adapt a different conformation during catalysis to
the one observed in its X-ray crystal structure.

In fact, carboxylate ligands contain conformationally mobile units [13,54,87,98,99] which might
give the ability to the dirhodium(ll) catalyst to adapt its conformation to the particular substrate
undergoing the reaction. Then enantioselection mechanisms can mainly originate from the different
preferred reaction channels as a function of the different steric interactions taking place between
the approaching substrate and the formed dirhodium(ll)-carbene complex. This can explain
the compatibility of a particular dirhodium(II) carboxylate catalyst with a particular substrate
returning high levels of enantioselectivity, while the same catalyst might not retain the same level
of enantioselectivity after switching to a different substrate. As a result, catalyst optimization is
always necessary in method development to find the optimum catalyst that can return the highest
possible level of enantioselectivity with the particular substrate undergoing the reaction. Based on
that, researchers must not only limit their focus on the four main conformations of dirhodium(II)
carboxylate complexes and an expansion in the considered conformational space is essential.

Even by relying on the catalyst X-ray crystal structures alone to justify the observed
enantioselectivity, it is obvious from the demonstration above that dirhodium(II) carboxylate catalysts
with a,o,0,0-, a,a,0,6-, a,0,B,8- and a,B,x,B-ligand arrangements were all reported to lead to high
levels of enantioselectivity. As a consequence, the original proposal that catalysts with «,«,8,5- and
«,B,0,B-geometries will only result in high enantioselectivity [53] can no longer be considered as valid.
In other words, symmetry of the catalyst is not a mandatory prerequisite for achieving high levels of
enantioselectivity. Subsequently, the use of high symmetry ligands as the traditional way to produce
high symmetry catalysts [53] may not be as essential as previously thought.

All in all, although the knowledge around the structure of dirhodium(Il) carboxylate complexes
has been expanded dramatically in the last decade, the topic is still in its infancy. With the fast
development in X-ray crystallography, computational chemistry and NMR spectroscopy, researchers
may prosper in solving the mystery behind this topic. This, in turn, will aid to a great extent in the
design of highly stereoselective chiral dirhodium(Il) catalysts in the future.
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