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Abstract: The Ni2P/SiO2 catalyst, which was prepared by in situ temperature-programmed reduction
and in the mixture with the inert (SiC, SiO2) or acidic (γ-Al2O3) material was studied in methyl
palmitate hydrodeoxygenation (HDO). Methyl palmitate HDO was carried out at temperatures of
270–330 ◦C, H2/feed volume ratio of 600 Nm3/m3, and H2 pressure of 3.0 MPa. Ni2P/SiO2 catalyst,
diluted with γ-Al2O3 showed a higher activity than Ni2P/SiO2 catalyst diluted with SiC or SiO2.
The conversion of methyl palmitate increased significantly in the presence of γ-Al2O3 most probably
due to the acceleration of the acid-catalyzed reaction of ester hydrolysis. The synergism of Ni2P/SiO2

and γ-Al2O3 in methyl palmitate HDO can be explained by the cooperation of the metal sites of
Ni2P/SiO2 and the acid sites of γ-Al2O3 in consecutive metal-catalyzed and acid-catalyzed reactions
of HDO. The obtained results let us conclude that the balancing of metal and acid sites plays an
important role in the development of the efficient catalyst for the HDO of fatty acid esters over
supported phosphide catalysts.
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1. Introduction

In the last decade, the development of new catalytic technologies that produce liquid
transportation fuels from renewables has seen a growing interest due to the depletion of available
fossil fuel resources and environmental issues [1–8]. Hydroprocessing of triglyceride-based feedstock,
including non-edible vegetable oils, tall oils, animal fats, and waste frying oils is an efficient way to
produce diesel and aviation fuel components [3,9–13]. Elimination of oxygen from the triglyceride
molecules proceeds through the different competing routes [11,12,14–16]: hydrodeoxygenation (HDO)
or decarboxylation/decarbonylation (DeCOx). Water molecules and alkanes with the same number of
carbon atoms are produced in the HDO pathway, while the DeCOx reactions give COx molecules and
alkanes with the shorter carbon chains. The hydroprocessing of triglyceride-based feedstock gives
the mixture of C15–C18 paraffins, called green or renewable diesel. This product is fully compatible
with fossil-derived diesel fuel; it has a high cetane number and good stability. The use of green diesel
improves the engine fuel economy and reduces the harmful emission when it is used in the mixture
with the fossil-derived fuels [11,17,18].

Until recently, the catalysts containing sulphide Co(Ni)Mo phase [15–17,19–24] or noble
metals [4,19,25–29] were intensively investigated in HDO of the real feedstock and model compounds.
Despite the high activity of noble metal catalysts, the high cost and shortage of noble metal restricted
their practical application. For hydrotreating catalysts, a sulphiding agent should be continuously fed
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to the reaction mixture to prevent deactivation [30]. Besides, water and carbon oxides can negatively
influence the catalytic properties of supported noble metal and metal sulphide catalysts [31–33].

To avoid the disadvantages of supported noble metals and sulphide catalysts, several new types of
systems containing supported base metals, preferentially Ni [13,34–39], or base metal carbides [40–42],
nitrides [43], and phosphides [44–54] were investigated in HDO. In particular, the nickel phosphide
catalysts exhibit the high activity and stability in the HDO of model compounds [44,46,48,50,55–66]
and vegetable oils [51,67], as well as in co-hydrotreatment of renewable oils with petroleum-derived
distillates [68].

Long-chain fatty acids and their esters are usually selected as model compounds because of
their structural similarity and common features of catalysts behaviour in the transformation of esters,
and specific and natural triglycerides [69,70]. Under HDO conditions, corresponding carboxylic
acids, aldehydes, alcohols, and alkenes are usually observed among the intermediate compounds
of aliphatic esters conversion. HDO of aliphatic esters into hydrocarbons proceeds through a
complicated reaction network, including hydrogenation-dehydrogenation, hydrogenolysis of C–O
and C–C bonds, hydrolysis, dehydration, and esterification reaction [11,16,19,44,71]. Both metallic and
acid-base properties play an important role in the transformation of the aliphatic ester into acid, which
could proceed through hydrogenolysis of C–O bond of ester group over metallic sites or through
acid-catalyzed hydrolysis. It was proposed that the conversion of ester to carboxylic acids could
proceed with participation of Brønsted acid sites of silica-supported nickel phosphide [44,47,56,57,62].
Besides, the Lewis acid sites of the alumina support were presumed to enhance the rate of hydrolysis
of aliphatic esters over sulphide catalysts [20,21]. It was observed that the reaction rate of ethyl stearate
HDO over Ru/TiO2 catalyst was enhanced by the addition of γ-Al2O3 [26], but this phenomenon was
not clarified.

The above consideration let us propose that the use of the alumina support instead of silica could
improve the catalytic activity of the supported phosphide catalysts in aliphatic ester conversion, but the
preparation of Ni2P/γ-Al2O3 catalysts with the highly dispersed uniform phosphide nanoparticles is
a complicated task. The strong interaction between phosphate groups and alumina surface hinders the
reduction and impedes the formation of alumina-supported nickel phosphide [72–74]. Zhang et al. [65]
have observed that AlPO4 forms after TPR of Ni2P/γ-Al2O3 precursors, and Ni/γ-Al2O3 shows
a higher activity than Ni2P/γ-Al2O3.

To overcome this drawback and to verify the hypothesis about the enhancement of esters
conversion rate in the presence of alumina, the catalytic properties of supported Ni2P/SiO2 catalyst
mixed with the inert material (SiC or SiO2) or acidic support (γ-Al2O3) were compared in HDO of
methyl palmitate. It was found that catalytic activity of Ni2P/SiO2 catalyst in methyl palmitate HDO
was enhanced strongly in the presence of γ-Al2O3. The analysis of the product distribution in liquid
and gas phase depending on temperature and contact time allowed us to suggest a possible route of
methyl palmitate transformation caused by Lewis acid sites of alumina surface.

2. Results and Discussion

2.1. Catalyst Characterization

The characteristics of Ni2P/SiO2 sample reduced in a quartz tubular reactor ex situ and catalyst
after catalytic experiment are presented in Table 1.

According to the inductively coupled plasma atomic emission spectroscopy (ICP-AES) data, all
of the samples after reduction contained comparable amounts of Ni about 2.5 wt % with Ni/P molar
ratio approaching 2, whereas the precursor obtained after calcination at 500 ◦C for 4 h contained
the Ni/P ratio approaching 0.6 which is close to the initial ratio in the impregnation solution (0.5).
The Ni/P molar ratios obtained from Energy Dispersive X-ray Analysis of phosphide nanoparticles
by the TEM are about 1.5–1.6, the discrepancy with bulk ICP-AES (chemical analysis) may be due
to the locality of the transmission electron microscopy (TEM) method. The difference in Ni/P molar
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phosphorus in the form of volatile phosphorous-containing compounds (P4, PH3, P2H6, etc.) during
the temperature-programmed reduction of NiPxOy/SiO2 precursor [75–77]. PH3 or P2H6 species
produced in course of temperature-programmed reduction (TPR) could react with nickel-containing
oxide precursors [78] or metallic Ni, resulting in nickel phosphide formation [79–81].

Table 1. Physicochemical properties of the calcined NiPxOy/SiO2 precursor and Ni2P/SiO2 catalysts.

Sample Ni (wt %) Ni/P Molar Ratio (from EDX 2) DTEM (nm)

NiPxOy/SiO2 2.6 ± 0.3 - -
reduced ex situ Ni2P/SiO2 2.5 ± 0.2 1.5 ± 0.1 3.6 ± 0.8

Spent 1 Ni2P/SiO2 2.5 ± 0.2 1.6 ± 0.1 3.3 ± 0.7
1 After reaction in mixture with SiC; 2 EDX: Energy Dispersive X-ray Analysis.

The specific surface area and pore volume of Ni2P/SiO2 catalyst are decreased in comparison
with the SiO2 support (254 m2/g vs. 300 m2/g of SiO2, and 0.66 cm3/g vs. 0.80 cm3/g of SiO2), while
the average pore diameter is virtually the same (10.5 nm in contrast to 10.6 nm of SiO2).

The X-ray Diffraction (XRD) patterns of the Ni2P/SiO2 catalysts after ex situ reduction and after
catalytic experiment are shown in Figure 1. The diffraction pattern of the Ni2P/SiO2 catalysts after
ex situ reduction shows the diffraction lines (2θ—40.71◦, 44.61◦, 47.36◦, 54.18◦, 54.99◦) corresponding
to nickel phosphide, Ni2P (JCPDS powder diffraction file, card #03-0953). In addition, there is a broad
halo at 2θ ~15–30◦ attributed to amorphous silica. The XRD pattern of the Ni2P/SiO2 catalyst used in
the catalytic reaction additionally contained the peaks characteristic for the diluent, SiC, whose fine
grains cannot be separated completely. Nickel phosphide phase was not changed in the course of the
reaction (Figure 1, Table 1).

Figure 1. XRD patterns of Ni2P/SiO2 catalysts obtained by ex situ reduction and by in situ reduction
and exposed to the catalytic reaction.

Figure 2 shows the TEM micrographs of ex situ reduced Ni2P/SiO2 sample (Figure 2A), and spent
Ni2P/SiO2 catalyst after testing in the mixture with SiC (Figure 2B). Nickel phosphide particles that are
uniformly distributed on the surface of silica are observed in the TEM images of both samples, with the
similar particle sizes distribution and the mean particles sizes of Ni2P (DTEM) equal to 3.6 ± 0.8 nm and
3.3 ± 0.7 nm, correspondingly. The TEM image of Ni2P/SiO2 catalyst (see Figure S1 in Supplementary
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Materials) reveals crystal lattice fringes with the d-spacing value of 2.05 Å corresponding to the (201)
reflection of the Ni2P crystalline phase (JCPDS #03-0953). According to the TEM data, the parameters
of the nickel phosphide phase were not changed significantly after testing in the methyl palmitate
HDO, as well as the Ni/P ratio determined in the phosphide particles by means of Energy Dispersive
X-ray Analysis (EDX) (Table 1).

Figure 2. Transmission electron microscopy (TEM) micrographs and particles size distribution of
Ni2P/SiO2 catalysts obtained by ex situ reduction (A) and by in situ reduction and exposed to the
catalytic reaction (B).

To explore the acidic properties of applied materials (Ni2P/SiO2 catalyst, as well as SiO2 and
γ-Al2O3), the NH3-TPD technique was employed. Prior to NH3-TPD experiments, the Ni2P/SiO2

catalyst was reduced in situ at 600 ◦C for 1 h in H2 flow to avoid the contact with air. This technique
helps to get away possible oxidation of nickel phosphide during passivation and/or transfer to
Autosorb-1 apparatus. Figure 3 shows the temperature-programmed desorption of ammonia
(NH3-TPD) profiles of Ni2P/SiO2 catalyst, SiO2, and γ-Al2O3 samples. Ni2P/SiO2 catalyst and
SiO2 support show only one peak corresponding to weak acidic sites with Tmax at 231 ◦C [61,82–84].
The total quantities of acid sites estimated by integration of NH3 desorption peaks are summarized in
Table 2. The total acidity of Ni2P/SiO2 catalyst is equal to 110 µmol/g. That was by 31% more than the
acidity of the silica support. It is known that in case of silica-supported nickel phosphide catalysts,
POx groups are responsible for the weak Brønsted acidity of NixPy/SiO2 catalysts [47,82,83].

Figure 3. Temperature-programmed desorption of ammonia (NH3-TPD) profiles of Ni2P/SiO2 catalyst,
silica (SiO2), and acidic support (γ-Al2O3) samples.
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Table 2. The characteristics of Ni2P/SiO2 catalyst, SiO2, and γ-Al2O3 samples.

Sample Treduction, ◦C
NH3-TPD

Tmax, ◦C Quantity, µmol/g

SiO2 - 231 84
Ni2P/SiO2 600 231 110

γ-Al2O3 - 237 106
335 315

On NH3-TPD curve of applied γ-Al2O3, two desorption peaks of ammonia centered at 237 and
335 ◦C were observed. The first desorption peak around 237 ◦C belongs to sites with the weakest
acidity responsible for physisorbed and chemisorbed ammonia. The second desorption peak at
the temperature of 337 ◦C was assigned to the moderate strength acid sites [85]. According to
literature [86,87], γ-Al2O3 shows typical Lewis acidity. It is clearly seen from our results that alumina
displays higher amount of acid sites in comparison with the Ni2P/SiO2 catalyst.

2.2. Hydrodeoxygenation of Methyl Palmitate over Ni2P/SiO2 Catalyst

Figure 4 shows the conversions of methyl palmitate and oxygen-containing compounds in the
temperature range of 250–330 ◦C over Ni2P/SiO2–SiC, Ni2P/SiO2–SiO2, and Ni2P/SiO2–γ-Al2O3

physical mixtures. Ni2P/SiO2 catalyst and diluent were taken in a volume proportion of 1:8.2. In these
experiments, the conversions of methyl palmitate and oxygen-containing compounds are increased
with the temperature growth overall studied systems; wherein, the Ni2P/SiO2–γ-Al2O3 mixture
displays the highest activity in the whole temperature range. The temperature dependencies of
methyl palmitate conversion over Ni2P/SiO2–SiC and Ni2P/SiO2–SiO2 do not significantly differ.
Common features in the behaviour of these systems are the minor differences between the curves of
methyl palmitate conversion and conversion of oxygen-containing compounds. A visible difference
(1–2%) is observed only at temperatures of 250 and 270 ◦C, indicating the formation of minor
amounts of oxygen-containing intermediates in the course of methyl palmitate HDO over Ni2P/SiO2

catalyst mixed with the inert materials, such as SiO2 or SiC. In these cases, the negligible amounts of
oxygen-containing compounds are observed among the reaction products (Figure 5). Such behaviour
led us to the conclusion that over Ni2P/SiO2–SiC and Ni2P/SiO2–SiO2 systems, the rate of methyl
palmitate conversion is much lower than the rates of further reaction steps of oxygenated intermediates
conversion. As a consequence, the methyl palmitate initial transformation determines the rate of
methyl palmitate HDO over Ni2P/SiO2–SiC and Ni2P/SiO2–SiO2 systems.

Figure 4. Effect of temperature on the conversions of methyl palmitate (solid symbols, solid
lines) and oxygen-containing compounds (empty symbols, dash lines) over Ni2P/SiO2–SiC
(triangles), Ni2P/SiO2–SiO2 (squares) and Ni2P/SiO2–γ-Al2O3 (circles) systems. Reaction conditions:
PH2 —3.0 MPa, H2/feed—600 Nm3/m3, weight hourly space velocity (WHSV)—5 h−1.
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Figure 5. Effect of temperature on the composition of the liquid feed obtained in the HDO of methyl
palmitate over Ni2P/SiO2–SiC system. Reaction conditions: PH2 —3.0 MPa, H2/feed—600 Nm3/m3,
WHSV—5 h−1. MP—methyl palmitate (C15H31COOCH3), PA—palmitic acid (C15H31COOH),
C16O—hexadecanal (C15H31CHO), C16OH—hexadecanols (C16H33OH), PP—palmityl palmitate
(C15H31COOC16H33), C15=—pentadecene (C15H30), C15—n-pentadecane (C15H32), C16=—hexadecane
(C16H32), C16—n-hexadecane (C16H34).

Completely different behaviour in HDO of methyl palmitate is demonstrated by
Ni2P/SiO2–γ-Al2O3 system. First of all, the activity of Ni2P/SiO2 catalyst is increased sharply when
acidic γ-Al2O3 is used instead of the inert diluents. At 290 ◦C, the methyl palmitate conversion reaches
78.7% in comparison with 20.4% and 18.9% obtained over Ni2P/SiO2–SiC and Ni2P/SiO2–SiO2

systems (Figure 4). Then, a noticeable gap is observed between the conversion of methyl palmitate
and the conversion of oxygen-containing compounds over Ni2P/SiO2–γ-Al2O3, along with the
appreciable amounts of oxygenated intermediates detected among the reaction products at the reaction
temperature of 250, 270, and 290 ◦C (Figures 4–6). The observed results reveal that the conversion of
methyl palmitate over Ni2P/SiO2–γ-Al2O3 system precedes with a higher rate than the conversion of
intermediate oxygenates. The possible routes of methyl palmitate transformation should be analyzed
to clarify the possible reasons of methyl palmitate conversion acceleration in the presence of γ-Al2O3.

Figure 6. Effect of temperature on the composition of the liquid feed obtained in the HDO
of methyl palmitate over Ni2P/SiO2–γ-Al2O3 system. Reaction conditions: PH2 —3.0 MPa,
H2/feed—600 Nm3/m3, WHSV—5 h−1. MP—methyl palmitate (C15H31COOCH3), PA—palmitic
acid (C15H31COOH), C16O—hexadecanal (C15H31CHO), C16OH—hexadecanols (C16H33OH),
PP—palmityl palmitate (C15H31COOC16H33), C15=—pentadecene (C15H30), C15—n-pentadecane
(C15H32), C16=—hexadecane (C16H32), C16—n-hexadecane (C16H34).



Catalysts 2017, 7, 329 7 of 17

Several routes of conversion of methyl esters of fatty acids over silica-supported nickel phosphide
catalysts were discussed in the literature [14,44–48,50,53,56,57,60,63,65,74,88,89]. The proposed
schemes were based on the distributions of the reaction products in the liquid and gas phases
vs. methyl palmitate conversion (or weight hourly space velocity (WHSV)). The main products
of methyl palmitate HDO over Ni2P/SiO2 catalysts were hexadecane and pentadecane; palmitic
acid, hexadecanal, hexadecanols, palmityl palmitate, unsaturated C15=, and C16= hydrocarbons were
identified as the intermediate products. Methane, CO, and methanol were observed in the gas phase.

The generally accepted reactions of methyl palmitate include hydrogenolysis of the C–O bond
in the methoxy group giving CH4 and the corresponding acid, as well as hydrogenolysis of the
ester C–O bond, leading to aldehyde and methanol (Scheme 1). Along with the hydrogenolysis
reactions, hydrolysis of ester giving the acid and methanol as a result of ester and water interaction
is also considered [56,57,62,64,65]. The acid P–OH groups of Ni2P particles supported on silica
have been proposed to provide the hydrolysis reaction [44,46]. Further conversion of palmitic acid
could theoretically proceed through the decarboxylation reaction giving pentadecane or through the
hydrogenation to hexadecanal. The proceeding of the first reaction over Ni2P/SiO2 catalysts is unlikely
because no CO2 has been observed in the outlet gas [44,46,56,57]. Hexadecanal can be transformed into
the C15 or C16 hydrocarbons. Decarbonylation and dehydroformylation reactions give pentadecane and
pentadecene, while hydrogenation of hexadecanal produces hexadecane-1-ol, which is transformed to
hexadecane through the subsequent dehydration and hydrogenation. Palmityl palmitate has also been
identified in a small amount due to the acid-catalyzed reversible esterification reaction.

Scheme 1. Proposed reaction network of methyl palmitate hydrodeoxygenation (HDO) over
Ni2P/SiO2.

The yields of palmitic acid and palmityl palmitate increase noticeably when γ-Al2O3 is used
instead of inert SiC in the mixture with the Ni2P/SiO2 catalyst (Figure 6). The increase in palmitic acid
yield indicates the increasing rates of reaction producing palmitic acid. Hydrogenolysis reactions are
unlikely over Lewis acid sites of alumina without hydrogen-supplying metal sites in close proximity.
Only small amounts of oxygenated products without any alkane were obtained over alumina in the
same conditions. The concept of hydrogen spillover from metal sites of Ni2P to the ester or other
reagents adsorbed on the alumina surface is also doubtful; R. Prins in his review [90] has called into
question the availability of hydrogen spillover from a metal surface to the surface of a non-reducible
supports, such as γ-Al2O3, SiO2, MgO, and zeolites. The most reliable explanation is based on the idea
that the conversion rate of methyl palmitate increases due to Lewis acidity of alumina, which is known
to provide the acid-catalyzed reaction, such as hydrolysis, dehydration, and esterification [60,74].
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The hydrolysis of methyl palmitate proceeds on the Lewis acid sites of alumina, increasing the rate
of methyl palmitate conversion. Besides, the proceeding of other acid-catalyzed reactions is observed
in the presence of γ-Al2O3, providing the additional support of the proposed hypothesis. The product
distribution in the gas phase obtained at a nearly complete conversion of methyl palmitate (99.7%
conversion is reached over Ni2P/SiO2–γ-Al2O3 system and 91.6%—over Ni2P/SiO2–SiC at 330 ◦C) is
shown in Figure 7. Dimethyl ether appears among the gas phase products of methyl palmitate HDO
when γ-Al2O3 was used instead of SiC as a diluent, pointing out to the proceeding of the acid-catalyzed
reaction. On the other hand, the quantity of CO is nearly the same, confirming the negligible impact
of alumina on the decarbonylation reaction. CO2 is also found but in amounts by two orders of
magnitude less than CO, so the contribution of the decarboxylation reaction can be neglected. Methane
is produced in a smaller amount in the presence of γ-Al2O3, and this observation can be considered
as an indirect indication of methane origin through the hydrogenation of methanol rather than via
hydrogenolysis of the C–O bond in the methoxy group. Some amount of methanol is consumed by the
formation of dimethyl ether over Lewis acid sites of alumina instead of hydrogenation to methane.

Figure 7. The composition of the gas phase products of methyl palmitate HDO obtained over
Ni2P/SiO2–γ-Al2O3 system (at 99.7% conversion of MP) and Ni2P/SiO2–SiC (at 91.6% conversion of
MP). Reaction conditions: PH2 —3.0 MPa, H2/feed—600 Nm3/m3, WHSV—5 h−1.

The yield of palmitic acid decreases and the yield of palmityl palmitate increases with the
proceeding of the reaction due to the reversible esterification of palmitic acid with hexadecanol
(Figure 8). The esterification and dehydrogenation reactions compete for hexadecanol; as a
consequence, it is observed only in a small amount in the studied range of reaction conditions
(Figure 6, Figure 7, Figure 8). Reversible palmityl palmitate hydrolysis starts only after the complete
consumption of palmitic acid, the produced palmitic acid, and hexadecanol are converted, as described
earlier. Hexadecan-2-ol is also observed among the reaction products that can be produced through
the dehydration of hexadecan-1-ol and subsequent hydration of hexadecene to hexadecan-2-ol.
Concentrations of hexadecan-1-ol and hexadecane-2-ol were summed to give hexadecanols yield.
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Figure 8. Yields of oxygenated intermediates vs. XMP over Ni2P/SiO2–γ-Al2O3 system Reaction
conditions: PH2 —3.0 MPa, H2/feed—600 Nm3/m3, T—270 ◦C, WHSV—5 h−1. PA—palmitic acid
(C15H31COOH), C16O—hexadecanal (C15H31CHO), C16OH—hexadecanols (C16H33OH), PP—palmityl
palmitate (C15H31COOC16H33).

Summarizing the described results, we have proposed that synergism of Ni2P/SiO2 and γ-Al2O3

physical mixture in methyl palmitate HDO is provided by the additional conversion of the initial ester
through the hydrolysis over Lewis acid sites of alumina. The further balancing of the metal sites of
Ni2P/SiO2 and acid sites of γ-Al2O3 in one reactor can increase the activity of the catalytic systems.
An apparent lag was observed between methyl palmitate conversion and overall oxygen-containing
compounds conversion over the Ni2P/SiO2–γ-Al2O3 system. This indicates a lower rate of the
metal-catalyzed reactions. To reduce this imbalance, a higher amount of Ni2P/SiO2 catalyst was used
in the catalytic experiments: the Ni2P/SiO2 catalyst and γ-Al2O3 were taken in the proportion of 1:3.6
instead of 1:8.2.

Figure 9 shows the conversions of methyl palmitate and oxygen-containing compounds in the
temperature range of 250–330 ◦C over Ni2P/SiO2–γ-Al2O3 physical mixtures with the catalyst and
γ-Al2O3 volume ratio of 1:8.2 and 1:3.6. The increase of catalyst portion in the reactor results in the
evident growth of methyl palmitate conversion, which is provided by the cooperation of metal
and acid sites in the methyl palmitate HDO through the complicated set of acid-catalyzed and
metal-catalyzed reactions.

Figure 9. Effect of temperature on the conversions of methyl palmitate (solid symbols, solid lines) and
oxygen-containing compounds (empty symbols, dash lines) over Ni2P/SiO2–γ-Al2O3 systems with
different Vcat:VAl2O3 ratio. Reaction conditions: PH2 —3.0 MPa, H2/feed—600 Nm3/m3, WHSV—5 h−1.
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3. Experimental

3.1. Materials

Silicon carbide (SiC, Chelyabinsk Plant of Abrasive Materials, Chelyabinsk, Russia), silica (SiO2,
ChromAnalyt, Moscow, Russia), and alumina (γ-Al2O3, JSK Promkataliz, Ryazan, Russia) were
obtained from commercial suppliers; the characteristics of these materials are presented in Table 3.
Silica was crushed and sieved to 0.25–0.50 mm before the nickel phosphide supporting; silica and
alumina grains with the size of 0.10–0.20 mm were used for catalyst dilution (without any special
pretreatment). Ni(OAc)2·4H2O (Reakhim, Samara, Russia, ≥99%), (NH4)2HPO4 (Alfa Aesar, Ward
Hill, MA, USA, technical grade, P2O5 ≤ 53 wt %), HNO3 (Reakhim, Samara, Russia, ≥70%) were
used for the catalyst preparation. Methyl palmitate (C15H31COOCH3, Sigma-Aldrich, St. Louis, MO,
USA, ≥97%) was used as the reactant; n-dodecane (C12H26, Acros Organics, Morris Plains, NJ, USA,
≥99%) was used as the reaction medium. Methyl palmitate, palmitic acid (C15H31COOH, Across
Organics, Morris Plains, NJ, USA, ≥98%), n-hexadecane (C16H34, Acros Organics, Morris Plains, NJ,
USA, ≥99%), and n-pentadecane (C15H32, Acros Organics, Morris Plains, NJ, USA, ≥99%) were used
as the standards to calibrate the flame ionization detector response for gas chromatography.

Table 3. Characteristics of silicon carbide, silica, and alumina.

Characteristics SiC SiO2 γ-Al2O3

Shape Grains sphere cylinder
Size of granules (mm) 0.1–0.2 4 4 × 1.5

SBET (m2/g) 1 300 235
Dpore (nm) - 10.6 13.4

Pore volume (cm3/g) - 0.80 0.79

3.2. Catalyst Synthesis

The silica-supported nickel phosphide catalyst was prepared by impregnation of silica with the
solution of precursors followed by the drying, calcination, and temperature-programmed reduction
(TPR). Silica grains (0.25–0.50 mm) were incipiently impregnated with an aqueous solution of
Ni(CH3COO)2·4H2O and (NH4)2HPO4 that was stabilized by nitric acid, the concentrations of reagents
were adjusted to obtain a catalyst containing about 2.5 wt % of Ni with the Ni/P ratio being equal
to 0.5. The impregnated silica was dried at 110 ◦C for 4 h and then calcined at 500 ◦C for 4 h.
The obtained precursor was reduced in the catalytic reactor in situ directly before the experiments.
For the characterization of the catalyst by physicochemical methods, the precursor of the Ni2P/SiO2

catalyst was reduced ex situ in quartz tubular reactor in a stream of H2 (150 mL/min per gram of
precursor) at 600 ◦C (heating rate 3 ◦C/min up to 380 ◦C and then 1 ◦C/min until to 600 ◦C) for 3 h,
and then cooled to the ambient temperature. Finally, the sample was passivated in a flow of 1% O2/He
(80 mL/min) for 1 h. The optimal conditions for the preparation of Ni2P/SiO2 samples from the
phosphate precursor have been defined earlier [56,57].

3.3. Catalyst Characterization

The elemental analysis of the reduced catalysts and calcined precursors was performed using
inductively coupled plasma atomic emission spectroscopy (ICP-AES) on Optima 4300 DV (Perkin
Elmer, Villebon-sur-Yvette, France). The textural properties of the catalysts were determined using
nitrogen physisorption at 77 K with an ASAP 2400 instrument (Micromeritics Instrument Corp.,
Norcross, GA, USA) within the partial pressure range 10−4–1.0. The catalysts were degassed at 250 ◦C
for 12 h up to a residual pressure <10–1 Pa before the measurements. Textural characteristics were
calculated using a conventional method reported elsewhere [91].
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XRD measurements were performed on an X-ray diffractometer Bruker D8 Advance (Bruker,
Karlsruhe, Germany) using copper radiation (Cu Kα–1.5418 Å) in the 2θ scanning range of 10–70◦.
The qualitative phase analysis was carried out using the JCPDS—International Centre for Diffraction
Data database [92].

The samples were studied using transmission electron microscopy (TEM) with a JEM-2010
transmission electron microscope (JEOL, Tokyo, Japan) with an accelerating voltage of 200 kV and
resolution of 0.14 nm. The local elemental composition was analyzed with an energy-dispersive
EDX spectrometer, equipped with a Si (Li) detector (energy resolution—130 eV). To obtain statistical
information, the structural parameters of ca. 300 particles were measured.

The acidic properties of the samples were analyzed by temperature-programmed desorption of
ammonia (NH3-TPD), using an Autosorb-1 apparatus (Quantachrome Instruments, Boynton Beach,
FL, USA) in the temperature range from 100 to 600 ◦C. Prior to adsorption of ammonia 0.25 g of
each sample was reduced at 600 ◦C for 1 h in an H2 flow (25 mL/min) and then cooled to 120 ◦C.
Subsequently, the sample was saturated with NH3 for 30 min. The physically adsorbed ammonia was
desorbed from the sample with He flow (25 mL/min) at 120 ◦C for 30 min. Desorption of the chemically
adsorbed part of ammonia was started by increasing the temperature from 120 ◦C up to 600 ◦C at a
heating rate of 10 ◦C/min. The desorbed NH3 was detected by a thermal conductivity detector.

3.4. Catalytic Experiments

The catalytic properties of Ni2P/SiO2 catalyst mixed with SiC, SiO2, or γ-Al2O3 in the HDO of the
methyl palmitate (MP) were studied in the trickle-bed reactor (inner diameter—9 mm, length—265 mm).
The catalytic properties of these systems were studied at hydrogen pressure 3.0 MPa, H2/feed volume
ratio 600 Nm3/m3, and WHSV 5 h−1 (calculated as (mass of MP per h)/(mass of the catalyst)) in the
temperature range of 250–330 ◦C. The dependence of product distribution on MP conversion was
investigated at 270 ◦C varying WHSV in the range from 2 to 10 h−1. The solution of methyl palmitate
(10 wt % of MP corresponding to 1.183 wt % of oxygen) in n-dodecane was used in the experiments
with n-octane as the internal standard.

The calcined precursor of Ni2P/SiO2 catalyst (0.5 mL, grain sizes—0.25–0.50 mm) was mixed
with the SiC, SiO2, or γ-Al2O3 (4.1 mL, grain sizes—0.10–0.20 mm) and was loaded into the reactor.
The catalyst precursor was reduced in situ in 60 mL/min H2 flow and atmospheric pressure, the
reactor was heated from room temperature to 380 ◦C (at 3 ◦C/min) and then to 600 ◦C (at 1 ◦C/min)
and maintained at 600 ◦C for 3 h. After the reduction, the temperature was decreased to the reaction
temperature and pressure was increased up to 3.0 MPa. Then the solvent was fed into the reactor that
was replaced by the reaction mixture after the wetting of the catalyst during 1 h. The liquid products
were collected every h until steady-state condition; the duration of each stage was not less than 6 h.

The reaction products were identified using a gas chromatography–mass spectrometry technique
(GC-MS) produced by Agilent Technologies 7000 GC/MS Triple QQQ GC System 7890A (Santa Clara,
CA, USA) with a VF-5MS quartz capillary column (30 m × 0.25 mm × 0.25 µm). Helium was used
as the carrier gas with a constant flow of 1 mL/min. The sample (injection volume = 0.5 µL) was
injected using the split mode (split ratio 1:50), with the injector temperature and GC-MS interface
temperature, both at 300 ◦C. The column temperature was programmed: 50 ◦C for 10 min than
from 50 to 300 ◦C at 10 ◦C/min. The MS scan interval was 0.2 s. The liquid samples were analyzed
with a gas chromatography system (Agilent 6890N, Santa Clara, CA, USA) that was equipped with
HP-1MS column (30 m × 0.32 mm × 1.0 µm) and flame ionization detector (FID). The contents of
the components were calculated using absolute calibration factors for methyl palmitate, palmitic
acid, n-pentadecane and n-hexadecane (Figures S2–S5 in Supplementary Materials). For hexadecanal,
hexadecanol-1, hexadecanol-2 and palmityl palmitate we used efficient carbon number to calculate FID
response factors. The carbon balance across the reactor for all experiments was >95%. The gas phase
was analyzed using a Chromos GC-1000 chromatograph (Chromos, Dzerzhinsk, Russia), which was
equipped with columns packed with 80/100 mesh HayeSep® (Sigma-Aldrich, St. Louis, MO, USA)
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and FID. The concentrations of CO and CO2 were determined with FID after the conversion of carbon
oxides to methane in the methanator, containing a reduced Pd catalyst at 340 ◦C. The detection limit of
the CO, CH4, and CO2 concentrations was 1 ppmv.

The total oxygen content in the reaction mixture was determined using CHNSO elemental
analyzer Vario EL Cube (Elementar Analysensysteme GmbH, Hanau, Germany).

The conversion of methyl palmitate (XMP), overall conversion of oxygen-containing compounds
(XOCC), and yield of ith compound (Yieldi) were calculated in accordance with the equations:

XMP =

(
1 − nMP

n0
MP

)
× 100%, (1)

XOCC =

(
1 − nO

n0
O

)
× 100%, (2)

Yieldi =
ni

n0
MP

× 100%, (3)

where n0
MP and nMP are the initial and current methyl palmitate content in the reaction mixture

expressed in mol/L, n0
O and nO are the initial and current oxygen content in the reaction mixture

expressed in mol/L, ni is the amount of ith compound in the product expressed in moL/L.

4. Conclusions

The behaviour of Ni2P/SiO2 catalyst taken in the mixture with the inert (SiC, SiO2) or acidic
(γ-Al2O3) material has been studied in methyl palmitate HDO. The catalytic activity of Ni2P/SiO2

catalyst increases significantly when γ-Al2O3 is used instead of SiC or SiO2 for the catalyst dilution.
Methyl palmitate conversion to the oxygenated intermediates is shown to be the rate-determining step
over the Ni2P/SiO2–SiC and Ni2P/SiO2–SiO2 systems, and can be increased due to the acceleration
of ester hydrolysis over Lewis acid sites of alumina over Ni2P/SiO2–γ-Al2O3 system. Synergism
of Ni2P/SiO2 and γ-Al2O3 physical mixture in methyl palmitate HDO has been explained by the
cooperation of the metal sites of Ni2P/SiO2 and acid sites of γ-Al2O3 for metal- and acid-catalyzed
reactions. The balancing of metal and acid sites via the change of Ni2P/SiO2 and γ-Al2O3 proportion
in the reactor is shown to increase activity. The activity of the phosphide catalysts in the HDO of
aliphatic ester can be improved by the employment of the support with the acidic properties, but the
appropriate supporting procedure should be developed, which preserves the acidity of support during
preparation. It is the upcoming challenge for the researchers because the precursors of phosphide
catalysts have a tendency to interact with the non-inert support and deteriorate surface properties.
The intentional use of observed synergism between metal sites of Ni2P and acid sites of γ-Al2O3 in
providing methyl palmitate HDO would play an important role in the development of the effective
catalyst for the HDO of fatty acid esters over supported phosphide catalysts.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/7/11/329/s1,
Figure S1: TEM image of Ni2P/SiO2 catalyst reduced ex situ, Figure S2: GC FID calibration graph of methyl
palmitate, Figure S3: GC FID calibration graph of palmitic acid, Figure S4: GC FID calibration graph of
n-pentadecane, Figure S5: GC FID calibration graph of n-hexadecane.
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