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Abstract: Photoelectrochemical (PEC) water splitting, which is a type of artificial photosynthesis,
is a sustainable way of converting solar energy into chemical energy. The water oxidation
half-reaction has always represented the bottleneck of this process because of the thermodynamic
and kinetic challenges that are involved. Several materials have been explored and studied to address
the issues pertaining to solar water oxidation. Significant advances have recently been made in
the use of stable and relatively cheap metal oxides, i.e., semiconducting photocatalysts. The use
of BiVOy for this purpose can be considered advantageous because this catalyst is able to absorb
a substantial portion of the solar spectrum and has favourable conduction and valence band edge
positions. However, BiVOy is also associated with poor electron mobility and slow water oxidation
kinetics and these are the problems that are currently being investigated in the ongoing research
in this field. This review focuses on the most recent advances in the best-performing BiVO,-based
photoanodes to date. It summarizes the critical parameters that contribute to the performance
of these photoanodes, and highlights so far unresolved critical features related to the scale-up of
a BiVOy-based PEC water-splitting device.
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1. Introduction

Photoelectrochemical (PEC) water splitting is an alternative way of directly producing solar
fuels, that is, hydrogen and oxygen, from water. This process often makes use of semiconductor
photoelectrodes to convert solar energy to chemical energy [1,2], thus, enabling the abundant but
intermittent solar energy to be harvested, stored and converted into a form that can be stored easily.

In order to efficiently and sustainably split water into hydrogen and oxygen, several material
requirements have to be met simultaneously [3,4]: (1) a sufficient photo-voltage and an appropriate
band alignment to split the water; (2) substantial absorption of the solar spectrum, which prevalently
consists of visible light; (3) efficient and fast transport of the charges between the semiconductor and
the electrolyte solution; and (4) stability and cost-effectiveness. The search for suitable materials that
can satisfy these requirements is the focus of the current on-going studies on photocatalysts [5].

PEC water splitting, which is a form of artificial photosynthesis, has been studied extensively
since it was first reported by Fujishima and Honda in 1972 [6], when they used a TiO, photoanode
and a Pt cathode to demonstrate the process by irradiating a photoanode with UV light. It is well
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known that the bottleneck of this process lies in the water oxidation half reaction, which produces
oxygen [7,8]. The water oxidation reaction causes a bottleneck because, as shown in Equation (1),

2H,0 < Oy +4HT + 4de™
4H' +4e” < 2H, (1)
2H,O — 2H,; + O,

it is a 4-electron oxidation process of two water molecules coupled with the removal of four protons,
to produce a weak oxygen-oxygen bond [9]. Since a photochemical process would be necessary for
water splitting to take place, there is still a need for accumulated stepwise one-electron transfers under
very specific photon-flux-density conditions. The challenge lies in the difficulty involved in preserving
an oxidized state in a desired microenvironment and in avoiding its quenching as it awaits the arrival
of the next photon [10].

Several studies have been conducted to evaluate appropriate materials that can serve as efficient
photoanodes in order to overcome this bottleneck [11-14]. The focus of this review is on the use of
BiVO, photoanodes for solar water oxidation.

1.1. BiVOy as a Photoanode

Metal oxides [15,16], such as BiVOy, are the preferred materials for photoanodes, because of their
ability to withstand oxidizing conditions and because of their general low-cost [4]. Compared to other
metal oxides, the difference between the valence and the conduction band edge positions of BiVOy is
more strategic and relatively low (~2.4 eV), and, it therefore requires less bias potential.

BiVO, was first synthesized by Roth and Waring in 1963 via solid state and melting reactions [17].
Interest in the study of BiVO, was initially due to the ferroelastic properties of the material, and its
ferroelastic-paraelastic transition reported at 528 K (255 °C) [18], a property that depends on the crystal
structure. BiVOy has three main crystal forms: a monoclinic scheelite, a tetragonal zircon-type and
a tetragonal scheelite structures [18,19]. An irreversible transition from the tetragonal zircon-type to
the monoclinic scheelite structure occurs at calcination temperatures of about 400-500 °C. Moreover,
a reversible transition occurs between the monoclinic-scheelite and the tetragonal scheelite structures
at a temperature of 255 °C, the same temperature that is responsible for the ferroelastic-paraelastic
transition. Apart from temperature-induced transitions, it has also been reported that mechanical
grinding at room temperature could irreversibly transform the tetragonal structure into a monoclinic
structure [20]. Of the three BiVOy crystal structures, the monoclinic scheelite structure is the one that is
most commonly used for photocatalysis because of its higher activity than the other structures [5].

The Bi in monoclinic scheelite BiVOy, is coordinated to O in a distorted oxygen octahedron,
while V is the centre of a distorted oxygen tetrahedron, thus implying oxidation states of Bi** (5d'%6s2),
V5* (3dY), and O?~ (2p°®), according to Walsh et al. [21]. Moreover, the valence band mainly consists
of O 2p, coupled to Bi 6s, while the conduction band is dominantly constituted by V 3d states,
with contributions from the O 2p and Bi 6p states [21,22]. These couplings result in an upward
dispersion of the valence band, and a lowering of the conduction band to a minimum, thereby causing
symmetric electron and hole masses, which facilitate a relatively efficient charge carrier separation
and extraction. As far as its calculated optical absorption spectrum is concerned, it has been reported
that the fundamental band-edge transitions are dipole-allowed, beginning at 2.1 eV and with peaks
at 2.4 eV, and thus display absorption in the visible light range. Cooper et al. [22] stated that the
poor electron mobility of BiVOy could be a consequence of the localization of the V 3d orbitals in the
conduction band minimum, due to its poor overlapping with the Bi 6p orbitals.

In 1998, Kudo et al. [23] first reported the photoactivity of a BiVO, powder for the water splitting
reaction and measured the production of Oy, under visible light irradiation, in the presence of Ag*
that was used as a hole scavenger. This opened up a whole new era in which the potential of BiVO,
has been explored as a photoanode.



Catalysts 2017,7, 13 3 0of 23

1.1.1. Advantages of BiVOy as a Photoanode

BiVOy has a relatively low band gap energy of 2.4 eV, which makes it capable of readily absorbing
visible light [23,24]. Therefore, its theoretical maximum photocurrent density is 7.5 mA/ cm? [25].
Assuming all the photons with energies above 2.4 eV are absorbed, the result is a 9% Solar-to-Hydrogen
(STH) efficiency [26].

Moreover, the conduction band edge position of BiVOy is favourably located, because it almost
coincides with the thermodynamic hydrogen evolution potential [19,27]. This promotes an earlier
photocurrent onset and the generation of a higher photocurrent in the low bias region than other
photoanodes [28]. These factors are essential to attain a high overall operating current and could
eventually lead to a higher STH efficiency [29].

Finally, BiVOy is an inexpensive and nontoxic material that is composed of earth-abundant
elements. In fact, it has been estimated that 135 ppm of vanadium and 0.17 ppm of bismuth are present
in the earth’s continental crust [30]. In general, like most metal oxides, it is also known to be stable
against chemical corrosion [31,32].

1.1.2. Disadvantages of BiVOy as a Photoanode

The use of BiVO, as a photoanode also involves some drawbacks. BiVO; is known to suffer
from poor electron mobility, and photon efficiency is therefore lost relatively easily to electron-hole
recombination [33,34]. This phenomenon is reportedly due to the fact that the VO, tetrahedra are not
connected to each other [35], thus making it hard for photogenerated electrons to flow towards the
conducting support.

In addition, in order to maximize the photogeneration of charges, the thickness of the material
has to be optimized according to the optical penetration depth [3]. However, BiVO, has a short hole
diffusion length, estimated as 70-100 nm [36,37], which compromises and restricts the necessary light
penetration depth.

Finally, BiVOy is known to exhibit poor water oxidation kinetics, and this constitutes a bottleneck
that still has to be overcome in the design of photoanodes.

This review paper deals with the top-performing BiVOy-based photoanodes, and discusses the
significant properties and strategies that have been applied to improve their performances. The aim
has been to analyse the still remaining critical issues, in order to guide the necessary developments,
and to achieve a high-scale PEC reactor based on a BiVO, photoanode for solar fuel production.

2. Top-Performing BiVO4-Based Photoanodes

The best-performing photoanodes that have been produced to date have been made via
a combination of several techniques that address the electron mobility and water oxidation kinetics
issues that are discussed in the following sections.

Figure 1 summarizes the recently produced BiVOy4-based photoanodes that have exhibited
the best performances in terms of photocurrent densities. All the photocurrent densities that are
reported hereafter refer to standard conditions, with an illumination of AM 1.5 G, an intensity of 1 sun
(100 mW /cm?), and measurement at about 1.23 V vs. RHE (reversible hydrogen electrode).

To date, the best photoanode reported is the WO3/BiVO, core-shell nanorod structure with Co-Pj,
which was synthesized by Pihosh et al. [38], and which yielded a photocurrent density of 6.72 mA /cm?
at 1.23 V vs. RHE. The WOj3 layer was synthesized via glancing angle deposition (GLAD), the BiVO,
via electrodeposition and the cobalt phosphate (Co-Pi) oxygen evolution catalyst (OEC) was added
via a photo-assisted electrodeposition. More details on the performance, correlated to the different
properties of these materials, are given in the following sections.
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Figure 1. Top-performing BiVOy-based photoanodes from 2011 to 2016 (measured at a standard
illumination of AM 1.5 G, and an intensity of 1 sun (100 mW/ cm?), obtained at 1.2-1.23 V vs. RHE).

2.1. Strategies Adopted to Enhance Reaction Kinetics in Solar Water Oxidation

Oxygen evolution catalysts (OECs) have brought about huge improvements in the photocurrent
density, as they reduce the kinetic barrier of water oxidation and provide unique catalytically active
sites with specific selectivity [39]. They promote the negative shift of the overpotential, which leads to
the necessity of less external energy to achieve photoelectrochemical water oxidation [40].

As is evident from the photoanodes presented in Figure 1, OECs are used in top-performing
BiVO, photoanodes to address the issue of poor water oxidation kinetics. Noticeable efforts have been
made to work with non-noble metals and earth-abundant materials as OEC materials.

The use of FeOOH as an OEC for BiVO,4 has shown an outstanding performance in the low-bias
region, as reported by Seabold and Choi [41]. A photocurrent density of 1 mA/cm? was achieved
with BiVO,/FeOOH electrodes at an applied potential as low as 0.5 V vs. RHE, as the best result,
and at 0.6 V vs. RHE on average, operating at a neutral pH condition in a phosphate electrolyte.
In the presence of FeOOH, the photocurrent onset was shifted by 0.5 V towards the flat band potential.
This is an important feature in the assembly of a complete photoelectrochemical cell, because it affects
the overall operating current density. In addition, a photocurrent density of 1.7 mA/cm? at 1.2 V vs.
RHE was obtained and maintained for 6 h, with only 2% of decay with FeOOH in comparison to the
significant decrease in photocurrent observed within a few minutes for the bare BiVOy. This suggests
that the FeOOH layer induced the photostability of BiVO,;/FeOOH. The use of FeOOH has been
replicated in other studies for these reasons [29,42].

Kim and Choi have shown that the use of NiOOH, as an OEC for BiVOy,, exhibits an earlier
photocurrent onset of 0.26 V vs. RHE versus the 0.31 V vs. RHE that was obtained for BiVO,/FeOOH.
The authors also confirmed that BiVO4/NiOOH has a more negative flat band potential than
BiVO,/FeOOH. However, a photocurrent density of 1.8 mA/ cm? at 0.6 V vs. RHE (3.3 mA /cm? at
1.23 V vs. RHE) has been reported for BiVO,/NiOOH, a value which falls below the 2.2 mA/ cm?
at 0.6 V vs. RHE (3.6 mA/cm? at 1.23 V vs. RHE) for BiVO,/FeOOH (all operated and measured at
neutral pH conditions in a phosphate electrolyte). In the same study, Kim and Choi reported that an
optimum dual OEC structure with FeOOH/NiOOH used in series is responsible for the simultaneous
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optimization of the BiVO,4/OEC and OEC/electrolyte junction [28,43]. A similar dual OEC structure
was employed by Shi et al. [44,45] to produce high performing BiVO, photoanodes.

The in situ production of Co-Pi as an OEC was first introduced by Kanan and Nocera [46].
Oxygen is generated at neutral pH using Co-Pi, under atmospheric pressure and room temperature.
Co-Pi OEC also demonstrates a self-healing nature in the presence of phosphate, which should ensure
the long-term stability of the catalyst system [47]. A 2-fold increase in photocurrent density and a 0.15 V
vs. RHE cathodic shift for the onset potential was reported by Abdi et al. [48]. Up to a 7-fold increase
in photocurrent density was also reported, following the use of Co-Pi [40,49-51]. Zhong et al. [51]
reported a low onset potential of 0.35 V vs. RHE for Co-Pi/W:BiVOy, which seems very promising for
use in tandem PEC cells.

Zhong et al. [52], in a different work, introduced CoOy as an OEC; it was found to be responsible
for an increase in the photocurrent density of bare BiVO, from about 1 mA/ cm? to about 1.5 mA /cm?
at 1.2 V vs. RHE, when operating at neutral pH in a phosphate electrolyte. The same authors then
used the dual OECs NiOOH (deposited in situ)/CoOy with an ultrathin ALD-deposited NiO layer on
top and added them to a BiVO, /Ti layer. This process was reported to triple the photocurrent density
at 0.6 V vs. RHE, yielding up to 3.5 mA/ cm? at 1.23 V vs. RHE photocurrent density, when operating
at neutral pH in a phosphate electrolyte. The NiO was responsible for passivating the BiVO, surface
states, with a consequent enhanced charge separation.

Joya et al. [53] reported the use of a cobalt carbonate (Co-Ci) OEC produced in situ, generated
from a CO, saturated bicarbonate solution containing Co?* ions. They reported that the Co-Ci OEC in
a HCO3~ /CO; electrolyte showed a stable current density of >2 mA/cm? at 1.35 V vs. NHE (normal
hydrogen electrode), and remained active for 16 h. It was also reported that Co-based OECs, such as
Co-Pi and Co-Cj, tend to lose stability in a phosphate electrolyte system during anodic water oxidation,
although, they also exhibit a sustained current density and higher stability in a HCO3~/CO; system.
Using the same OEC system at neutral pH, Jin Hyun Kim et al. [54] reported a shift in the onset
potential after adding Co-Ci to a BiVO,/WO3 photoelectrode, that is, from 0.5V vs. RHE to 0.2 V vs.
RHE. The Co-Ci/BiVO;/WO3 material yielded a photocurrent density of 3.5 mA/cm? at 1.23 V vs.
RHE, which was higher than the 2.5 mA /cm? produced at the same potential by the BiVO,/WO;
without any OEC. In another work, Jin Hyun Kim et al. [55] used the same OEC in a tandem cell
assembly, using a H and 3% Mo co-doped BiVO, photoanode, which yielded a photocurrent density
of 4.8 mA /cm? at 1.23 V vs. RHE, and then increased to 5 mA /cm? at 1.23 V vs. RHE when enhanced
by Co-Ci. This performance was similar to that of Co-Pi, but with a notable increase in stability.

In the OECs discussed above, it is important to note that most of the photoelectrochemical
tests were conducted using neutral pH electrolytes. This is an important aspect for BiVO4-based
photoanodes, because BiVO, gradually dissolves into the solution at extreme pH conditions during
long-time experiments. Furthermore, neutral pH conditions means less corrosivity of materials and
other components of the system, although maintaining a high activity under neutral pH environment
has been difficult to be proved. Thus, it is also essential to understand the stability of these OECs in
different pH environments.

The electrocatalytic stability of OECs, such as CoOy, Co-Pi, CoFeOy, IrOy, NiOy, NiCeOy, NiCoOy,
NiCuOy, NiFeOy, and NiLaOy has been tested in the OEC benchmarking procedures discussed in
the work of McCrory et al. [56,57]. These OECs were placed in both alkaline (1 M NaOH) and acidic
(1 M H,S04) environments, and held at a constant current density of 10 mA/ cm? for 2 h at a 1600 rpm
rotation rate while measuring the operating potential as a time function. Most of the catalysts exhibited
stable operations in alkaline conditions, showing only < 0.03 V shifts in overpotential, except for
CoFeOy and IrOy due to catalyst dissolution and loss of material, respectively. Only the IrO, exhibited
a stable operating overpotential of 0.27-0.30 V for 2 h in acidic conditions. All the other OECs exhibited
a dramatic increase in the overpotential after just a few minutes, thus indicating their instability.
The activity of other OECs, such as PdO, [39], Pt [44], MnyOs3 [58], and CoO [59] has also been
demonstrated in various studies, although their long-term stability has not yet been proved.
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In order to address the poor electron mobility issue using BiVOy as a photoanode in a PEC water
splitting system, several strategies have been employed to improve the intrinsic photocurrent density
that can be achieved by this material. The BiVO, photoanode has continuously been altered through
the different strategies, with the aim of improving its surface properties, enhancing the electron
transport mobility, and ultimately reducing the undesired electron-hole recombination. The most
successful of these strategies are described in Section 2.2.

2.2. Strategies Adopted to Enhance the Electron Mobility in Solar Water Oxidation
2.2.1. Morphology Control

Effect of Porosity and the Synthesis Procedure

Bare porous BiVOy [29] and bare nanoporous BiVO, [43] films have been synthesized via
electrodeposition, and have yielded photocurrent densities of 1.1 mA/ cm? and 1.8 mA/cm? at
1.23 V vs. RHE, respectively. The porosity of the material, which induces a higher surface area,
increases the volume of the depletion layer in the semiconductor and improves the electron-hole
separation [29]. Improvements in photocurrent densities of 1.7 mA/ cm? and 4.2 mA/cm? (at 1.23 V
vs. RHE), respectively, have been reported for each of these materials after addition of an FeOOH
O, evolution reaction (OER) co-catalyst to the bare porous BiVO4 and of an FeOOH/NiOOH OER
co-catalyst to the bare nanoporous BiVO;,.

Figure 2a shows an example of porous BiVO, that the authors synthesized using the
electrodeposition route of Kim and Choi [43]. An increased porosity was achieved on a F-doped
Tin Oxide (FTO) conductive surface, via the cathodic electrodeposition of BiOl, which served as
the bismuth precursor. The thin 2D structure of BiOI gave rise to a porous BiVOy structure upon
calcination, while in contact with vanadium precursors.

In another study by Hernandez et al. [60], dense and porous BiVO, photoanodes were synthesized
via a spin-coating technique. The photocurrent density achieved for the dense electrode reached
up to 3 mA/cm? at 1.23 V vs. RHE, when paired with a Co-Pi OER co-catalyst. Electrochemical
impedance spectroscopy (EIS) measurements showed that the charge transfer kinetics process in this
dense BiVO,4 was 3-fold faster than in the porous film. The porous film was found to have a higher
resistance to charge transfer across the electrode—electrolyte interface, which caused the electrons to
accumulate in the CB, and then to eventually recombine with the holes in the VB. However, the authors
stated that defective states, induced by the synthesis procedure, may have caused the higher charge
recombination in this particular porous photoanode. Indeed, the synthesis of porous BiVO, via another
physical deposition technique, that is, double magnetron sputtering, yielded a photocurrent density of
1.2 mA/cm? at 1.23 V vs. RHE [61], which is 4-fold greater than the above mentioned bare BiVOy that
was produced via spin-coating. Besides, similar or better results have recently been obtained by the
electrodeposition technique, as described above.

In short, the different characteristics that can be induced by synthesis processes have been
identified as being essential to achieve a high performance on bare BiVO, [60]. The crystallite
size was found to have a direct correlation to the O, production activity of BiVO, samples [62]
(i.e., doubling the size of the BiVOy crystals, from 90 to 170 nm increased the rate of O, evolution in
5-fold). The preferential orientation towards the {040} facets with respect to the {110} exposed surfaces,
is known to have a positive influence on the water oxidation photoactivity of scheelite monoclinic
BiVOy [63]. Moreover, the higher the distortion of the VO,3~ tetrahedron and the lower the V-O
distance, the higher is the mobility of the charge carriers in the material, and therefore the more the
charge recombination is limited. Finally, a reduced concentration of defects at the grain boundaries
of crystals sintered together, which can be achieved by controlling the crystallization (i.e., thermal
treatment steps) during the synthesis process, is able to diminish the superficial recombination [60,64].
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Figure 2. Morphology enhancement techniques for BiVO, synthesis. (a) Field emission scanning
electron microscopy (FE-SEM) image of porous BiVO,4 on FTO that the authors synthesized using the
electrodeposition route suggested by Kim & Choi [43]. (b) SEM image and (c) schematic diagram of the
synthesis of double-deck inverse opal WO3/BiVOy synthesized by Ma et al., adapted with permission
from [65], Copyright American Chemical Society, 2014.

Effect of Ordered Structures/Inverse Opals

Another method of altering the BiVO4 morphology involves the fabrication of compact, ordered
structures, such as inverse opals, which provide an ordered transport path for the electrons, thereby
enhancing electron mobility. In order to prepare inverse opals, well-ordered polystyrene (PS) spheres,
arranged in crystal templates, are placed on the substrates and are infiltrated with the BiVO, precursor
solution. The PS templates are then removed by annealing, and this leads to the production of inverse
opal structured-catalysts. Zhou et al. [35] were able to produce bare BiVO,, with a photocurrent
density of 0.6 mA/cm? at 1.23 V vs. RHE, using this technique. Doping with 2 at.% Mo increased the
photocurrent density to 1.1 mA/cm? at 1.23 V vs. RHE.

Ma et al. [65], produced a double-deck heterojunction structure of WO3 and BiVO, with an inverse
opal nanostructure, which yielded a high photocurrent density of 3.3 mA/cm? at 1.23 V vs. RHE,
without the aid of a dopant or an OER co-catalyst. Figure 2b shows the FE-SEM image of this
photoanode. It was achieved through the use of monodisperse PS scaffold films that had been
swollen via a methanol solvent and infiltrated with a WO3 precursor solution, as shown in Figure 2c.
The authors were able to induce the growth of BiVOj in a controlled manner, thus resulting in its even
distribution over the WOj5 skeleton.

2.2.2. Addition of n-Type Conductivity Dopants

Doping BiVO4 with Mo and W has been performed extensively [66-74]. Since W and Mo are
characterized to be shallow electron donors, their primary effect is to increase the charge carrier density,
thereby increasing the electron mobility by increasing the n-type conductivity of the BiVO, [75]. This,
and the superior n-type conductivity induced by Mo doping than by W doping, which results in
a higher promoting effect of the former, has been demonstrated by means of first-principle density
functional theory (DFT) calculations [67] and experimental results [22,69].

On the other hand, Thalluri et al. [62] identified the important role of the superficial amounts of W
and Mo dopants for the water oxidation reaction. They determined that charge carriers separation
is enhanced on the surface of BiVO;, for up to a certain amount of such dopants: 0.9 at.% of W or
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1.2 at.% of Mo, for which the superficial electron-hole recombination is reduced, and in turn, the BiVOy
photocatalytic activity is improved.

In a study by Pattengale et al. [76], it was reported that the W dopant replaces the V site, causing
the bulk structure to change to a mixture of monoclinic and tetragonal scheelite BiVO, structures,
while rendering the Bi centre less distorted than the undoped BiVOjy. These structural changes have
been inferred to eliminate hole traps, and therefore to extend the electron lifetime.

Park et al. [42] reported that 3 at.% Mo doping on the V site almost doubled the absorbed
photon-to-current efficiency (APCE), and also significantly enhanced the photocurrent density of bare
BiVOy, from between 0.1 and 0.2 mA /cm? at 1.23 V vs. RHE, reaching a final photocurrent density of
up to 1.0 mA/cm? at 1.23 V vs. RHE. After addition of an FeOOH OER co-catalyst, the photocurrent
density increased even more to 3 mA/ cm? at 1.23 V vs. RHE.

Abdi et al. [48] employed a gradient-doping technique on BiVO, using 0%-1% of W. This
technique has been reported to enhance the charge separation by 1.6-fold. The improvement is due
to the induced band bending, which brings about a desirable built-in electric field. The photocurrent
density of gradient-doped W reached 1.1 mA /cm? at 1.23 V vs. RHE. Adding a Co-Pi OER co-catalyst
was found to further enhance the photocurrent density to 3.6 mA /cm? at 1.23 V vs. RHE.

Gong et al. [77] reported an increase of up to 2.6-fold in photocurrent density when they performed
10 at.% doping of Mo on bare 150 nm thick BiVOy that had been produced by magnetron co-sputtering,
and reached a photocurrent density of 1.2 mA/cm? at 1.23 V vs. RHE.

Doping with PO4 oxoanion, which increased the activity 30-fold, due to the improved charge
transfer in the semiconductor-electrolyte interface, as shown by EIS analyses, has been reported by
Won Jun Jo et al. [69].

Tae Woo Kim et al. [28] recently performed N-doping on nanoporous BiVO, and, in the presence
of the FeFOOH /NiOOH OEC, they were able to reach a high photocurrent density value of 5 mA /cm? at
1.23 V vs. RHE versus the 4 mA/cm? at 1.23 V vs. RHE obtained without N-doping. IPCE values were
50% and 60% at 400 and 470 nm, respectively, at 0.6 V vs. RHE. Nitrogen was found to improve both the
light absorption and charge transport, due to a further lowering of the band gap energy, which gives
access to a wider range of the solar spectrum. This was accomplished by elevating the valence band
maximum (VBM), decreasing the static dielectric constant and improving electron mobility.

Jin Hyun Kim et al. [55] produced a dual-doped BiVO, photoanode, by means of an H-treatment
and the use of 3 at.% Mo, which yielded a photocurrent density of about 3 mA /cm? at 1.23 V vs. RHE.
The H; treatment and Mo-doping increased the charge carrier density significantly by two orders of
magnitude, due to the formation of intrinsic and extrinsic defects. Doping also extended the diffusion
length of the holes. The addition of a Co-Ci OER co-catalyst further increased the photocurrent density
to 49 mA/cm? at 1.23 V vs. RHE.

Monfort et al. [78] used Nb to enhance the photoelectrochemical performance of BiVO,. After the
addition of 10 at.% of Nb, the photocurrent density was increased from about 0.5 mA /cm? at 1.23 V
vs. RHE to about 2 mA/cm? at 1.23 V vs. RHE in a NaHCOj electrolyte. The enhanced activity was
attributed to the resulting hierarchical nanostructure, which favoured charge separation.

2.2.3. Heterojunction Formation

The charge recombination in BiVO, can be attributed to the short carrier diffusion length of
approximately 70-100 nm [36], which is much less than the required thickness for sufficient light
absorption. A heterojunction [79-81], formed with a more conductive core material, was investigated
to address this issue.

In a previously mentioned study by Ma et al. (Figure 2b,c), WO3 inverse opals were used as the
core structure and were reported to have better electron transporting properties than the BiVOy shell,
yielding a photocurrent density of 3.3 mA/cm? at 1.23 V vs. RHE. Similarly, a conducting inverse opal
network, made of Al-doped ZnO, was used by Zhang et al. [82] as an electron collector, and it yielded
a photocurrent density of 1.5 mA/cm? at 1.23 V vs. RHE.
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Pilli et al. [83] fabricated a CuWO,/BiVO, heterojunction by means of electrodeposition of the
CuWOy4 on FTO and the spray deposition of a highly porous BiVO; film on the electrodeposited
surface. An improvement of up to 1.8-fold in the photocurrent density, which reached values of about
1.6 mA /cm? and IPCE of 42% at 420 nm measured at 1.23 V vs. RHE, was attributed to the enhanced
charge collection efficiency. This heterojunction caused a shift in the onset potential of up to 0.23 'V,
when a NaHCO; electrolyte was used.

A core-shell WO3/BiVOy helix nanostructure, synthesized by Shi et al. [44], which was doped with
Mo and naturally doped with W from the WO3 core, produced a photocurrent density of 3.6 mA /cm?
at 1.23 V vs. RHE. The addition of an FeOOH/NiOOH co-catalyst yielded a high photocurrent density
of 5.35 mA /cm?2, and an IPCE of 90% between 330 and 450 nm at 1.23 V vs. RHE. Shi et al. stated that
the nanohelix structure improved light absorption, because of the resulting light scattering, and also
promoted charge separation by introducing a complex distribution of the electric field.

In a different work, Shi et al. [45] synthesized a mesoporous WOj3 bottom layer that was
spin-coated with a Mo-doped BiVOy. Natural doping of the W on the WOj layer occurred at the
BiVOy, due to their intimate contact during the annealing process. The photocurrent density that was
obtained was about 3 mA/cm? at 1.23 V vs. RHE, while a further addition of the FefOOH/NiOOH
OER co-catalyst brought the photocurrent density to a value of 4 mA/cm? at 1.23 V vs. RHE.

Rao et al. [84] fabricated a WO3/BiVOy core-shell nanowire photoanode, which was synthesized
via a combination of flame vapour deposition and drop-casting methods. A photocurrent density
of 3.1 mA/cm? at 1.23 V vs. RHE was reached. The W:BiVOj shell that they synthesized was only
60 nm thick, which is less than the 70-100 nm hole diffusion length reported in literature, as mentioned
earlier. In this case, hole/electron charges separation was enhanced because the holes were readily able
to reach the semiconductor/electrolyte interface. Furthermore, they reported that the axial electron
conductivity of the WO3; nanowire core was higher than that of the BiVO; film, thus, the preferential
flow of the photogenerated electrons was radially inward to the WO3 cores.

The highest photocurrent density recorded to date is for the CoPi-coated WO3/BiVOy core-shell
nanorods shown in Figure 3, synthesized by Pihosh et al. [38], which yielded a photocurrent density of
6.72 mA /cm? at 1.23 V vs. RHE, that is, about 90% of the maximum theoretical photocurrent density
of BiVO,4. An IPCE of 80%-90% was achieved at 400-500 nm at 1 V vs. RHE. The WO3 nanorods were
grown using GLAD, the BiVO, was synthesized via electrodeposition and the Co-Pi OEC was added
via a photo-assisted electrodeposition technique. The key improvement in BiVO, performance has
been attributed to the use of an extremely thin absorber (ETA) heterojunction structure to address the
problem concerning the short carrier diffusion length. This minimizes the electron-hole recombination.
In addition, Pihosh et al. reported that the ETA structure also enhanced the photon absorption, because
of a more efficient light scattering.

Sputtering GLAD
ITO/PYITO WO,-NRs
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Figure 3. (a) WO3/BiVO; core-shell nanowires (NWs) according to Rao et al. [84] and (b) WO3/BiVO;4
core-shell nanorods (NRs) by Pihosh et al. [38]. Image (a) reprinted with permission from [84],
Copyright American Chemical Society, 2014. Image (b) used under the Creative Commons CC-BY
license attributed to [38]. Copyright Nature Publishing Group, 2015.
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2.2.4. Use of Passivation Layers

Recent studies on improving the efficiency of semiconductor-based solar water-splitting devices,
such as in the review work by Liu et al. [85], introduced surface passivation layers on photoanodes.
Passivation layers have been used as an effective strategy to improve the charge-separation and transfer
processes across semiconductor-liquid interfaces, and thereby increasing the overall solar energy
conversion efficiencies. The passivation effects introduced by these thin layers include a reduction
in the charge recombination at surface states, an increase in the reaction kinetics, and the protection
of the semiconductor from chemical corrosion (see Figure 4). All of these effects will play a crucial
role in achieving highly efficient water-splitting devices in the near future. Semiconductor oxides
(i.e., TiOy, ZnO, ZnFe,O4, AlyO3, Gay0s, InyO3), oxygen evolution catalysts (OEC, i.e., CoOy, Ni,
Co-Pi, IrOy, Pt/SiO,, Ru/Pt), and other conductive materials such as graphene, have been used
as passivation layers on photo-electrodes for water oxidation purposes. The normal thickness of
passivation layers is <100 nm, but often only 1-2 nm is adopted to allow charge transfer, by means
of tunnelling, when valence band alignment is unfavourable for direct hole conduction. Passivation
layers have been fabricated by means of several techniques (i.e. ALD, spin-coating, electrochemical
deposition, sputtering, electron beam evaporation, floating transfer or dip-casting).

Passivatii)n Layer (¢) Passivati?n Layer
CB -~e, _/_'. CB - e _/_.‘
St mO kogr e

kre CHZO Pox K
M., No ; 0,
’ ™ Corrosion Eequasi-— - - - _ 76;_‘;5' koer
—’// VB —J Catalyst
h+ ¢nx' h’ . ¢.’7x
Semiconductor Liquid Semiconductor Liquid Semiconductor Liquid

Figure 4. (a,b) Comparison of an n-type semiconductor photoelectrode with/without a stabilizing
passivation layer and with/without corrosion in contact with an aqueous electrolyte. Corrosion may
reduce the light absorption and/or generate more surface defect states, which results in a more positive
onset potential and a reduced photocurrent; (c) Schematic illustration of the band structure of a surface
passivation layer on an n-type semiconductor. The photogenerated holes near the surface are in
competition with the trap site induced recombination of majority-carriers (e~) and the charge transfer
to the surface layer. The surface recombination rate (k) and electrode corrosion are suppressed on
the passivation surface and the interfacial charge-transfer rate for water oxidation (kogr) is improved.
Reproduced and adapted with permission of from [85]. Copyright The Royal Society of Chemistry, 2014.

BiVO, photoanodes have mainly been investigated in neutral conditions, because BiVO, gradually
dissolves under extreme pH conditions. In order to overcome such a problem, some specific passivation
layers were used on this material. Eisenberg et al. [86] used an anodic electrodeposition method to place
a thin layer of amorphous TiO; (80-120 nm thick deposited for 15-30 s). The prepared film, which is
shown in Figure 5, resulted in a significant photocurrent enhancement (up to 5.5-fold) as well as a shift
in the photocurrent onset potential to the negative direction of about 0.5 V. The authors explained that
the enhancement was in part due to the TiO; layer passivating the FTO surface, which was still not
completely covered by the W-doped BiVO,. This minimized the back-reduction of the photo-oxidized
intermediates on the conducting substrate. The TiO, layer also acts passivating defect sites on the
surface of the W-doped BiVOjy films, which can serve as recombination centres. The authors also noted
that another possible contribution might be an improved charge collection, caused by band bending at
the TiO,-BiVOy interface.

Ultrathin dual layers of TiO, and Ni have also been used to stabilize polycrystalline BiVO,
photoanodes against photocorrosion in an aqueous alkaline (pH = 13) electrolyte [87]. Conformal,
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amorphous TiO; layers were deposited onto thin BiVOj, films by means of atomic-layer deposition,
with Ni being deposited onto the TiO, by means of sputtering. Under simulated AM 1.5 illumination,
the dual-layer coating extended the lifetime of the BiVO, photoanodes during photoelectrochemical
water oxidation from minutes, for the bare BiVOy, to hours, for the modified electrodes.

(a) EEECH

Figure 5. Passivation layers in BiVO, photoanodes: (a) thin amorphous TiO,, reprinted with permission
from [86]. Copyright American Chemical Society, 2014; (b) ZnFe,Oy, reprinted with permission
from [88]. Copyright American Chemical Society, 2016.

ZnFe;Oy4 has also been used as a protection layer to stabilize BiVOy in a 0.1 M KOH solution [88].
A 10-15 nm thick ZnFe;O4 layer was conformally placed onto a nanoporous BiVOy electrode through
the photo-depositing of an FeOOH layer, followed by the drop casting of a zinc nitrate solution
and annealing. The resulting BiVO,4/ZnFe,O4 electrode generated a photocurrent density that was
>2 mA/cm? at 1.23 V versus RHE, with a significantly improved stability, compared to the pristine
BiVOy electrode. The incident and absorbed photon-to-current conversion efficiencies, along with the
absorption spectra, suggested that the ZnFe,O4 protection layer could also contribute to photocurrent
generation by increasing photon absorption and electron-hole separation.

It is worth noting that, although significant advantages are possible with a surface passivation
layer, other problems may arise. The surface layer creates new interfaces that need to be considered.
While a surface layer can improve one property, it may simultaneously make another property worse.
However, the engineering of multiple component passivation layers can provide a solution for the
many material problems encountered in PEC water splitting.

2.2.5. Substrate Modification

Since the performance of the BiVO, photoanode is hindered to a great extent by the short hole
diffusion length, which is a very evident phenomenon when dealing with flat substrates, efforts have
been made to alter the conductive substrate surface by 3D nano-structuring to compensate for this
limitation. A few studies have recently reported the 3D structuration of the conductive substrate of
the BiVO, photoanode. However, it should be noted that expensive materials, such as Au and Pt,
were used in these techniques to enhance the conductivity of the engineered substrates.

Zhao et al. [89], for instance, deposited the BiVO, onto textured polydimethylsiloxane (PDMS)
substrates fabricated via a water-assisted transfer printing method. This was done to take advantage
of the enhanced light absorption, via a dual light-trapping strategy, and of the enhanced surface
reactions due to surface roughness. An Au film was deposited onto the 5iO,/Si wafer, via electron
beam deposition, to serve as an electron back collector and light reflector. Thin SnO, and BiVOy films
were then spin-coated onto this surface. A pristine 80 nm thick BiVO, photoanode was synthesized,
and it exhibited a photocurrent density of 1.37 mA/cm?, which increased to approximately 2 mA /cm?
at 1.23 V vs. RHE when enhanced by an FeOOH OER co-catalyst.

Another example concerns the work of Qiu et al. [90], who reported the synthesis of BiVO,
photoanode on an engineered nanocone substrate, which is shown in Figure 6. Engineered substrate
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structures, such as the nanocone, offers the advantage of depositing thicker materials with more
efficient charge separation. The cone nanostructure was prepared by means of reactive-ion etching
of SiO,, while its conductivity was enhanced through magnetron sputtering of Pt. A SnO; film
was then applied, by means of ultrasonic spray pyrolysis, as a blocking layer, to reduce back e~
recombination. Finally, BiVO, was formed via a sol-gel process, and the resulting photocurrent density
was 418 mA /cm? at 1.23 V vs. RHE.

It is worth mentioning that the substrate modification strategy is a key element for the
implementation of the photoanodes in a real PEC water splitting device. The development of
transparent, conductive, porous, and robust substrates, to be used as supports for photocatalytic
electro-active materials, is a demanding, technological development topic. In this context, tin oxide,
doped with Sb, In or F, and with nano-crystalline and microporous structures, has recently been
developed on glass substrates [91]. However, this kind of substrate can only be employed in PEC
devices without separated anode and cathode chambers; otherwise, they can be used as a PEC
electrolyzer window that supports a retro-illuminated anodic photocatalyst.

(2)

Figure 6. Pt/SnO, /Mo:BiVO, on an engineered nanocone substrate. (a) Schematic illustration of the
fabrication process of the conductive nanocone substrate; (b) scanning electron microscope (SEM)
image (60° tilting) of the final SiO,/Pt/SnO; nanocone arrays; (c) cross-sectional SEM images of
Mo:BiVO; on the SiO, /Pt/SnO; nanocone substrate. Some exposed nanocones were also marked in
the figure (c). Scale bars, 500 nm. Images adapted and used under Creative Commons CC-BY-NC
license, attributed to [90]. Reprinted with permission of from [90]. Copyright American Association for
the Advancement of Science, 2016.

In order for these materials to be used in a Polymeric Exchange Membrane (PEM)-type
photo-electrolysis device, to make a membrane-electrode assembly (MEA), the presence of
macroporosity is indispensable to allow the diffusion of the water, protons (H*) and produced gases.
For such a purpose, porous metal substrates (i.e., Ni or Ti meshes or foams) have been used as
supports for water splitting photocatalysts [92]. Nevertheless, under highly oxidizing conditions,
or in the presence of concentrated (acid or basic) electrolytes, they can suffer from low corrosion
stability; moreover, they can have a lower surface area than the nanostructured substrates. In order
to overcome some of such issues, a new design of FTO-covered quartz laser drilled electrodes was
recently proposed by Herndndez et al. [93,94]. As shown in Figure 7, this substrate combines several
advantages: good transparency (~62% of transmittance), high diffuse reflectance (~37%), low electric
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resistance, (<40 ()/square), and easy adhesion of the photo-catalysts; in addition, this substrate
allows the permeation of water, protons and gases, due to the presence of micrometric conical holes
(~30-150 um).

(@) o () ©)

$~30um} I¢~150um

Quartz substrate FTO 2.50cm

Figure 7. The FTO-laser-drilled electrode: (a) scheme of the cross-section; (b) photograph and
(c) optical microscopy image (view from FTO side). Reprinted with permission from [94]. Copyright
Elsevier, 2014.

2.3. Summary of BiVOy-Based Photoanodes with Photocurrent Densities > 3.5 mA/cm? at 1.23 V vs. RHE

A summary of the BiVOy-based photoanodes that have higher photocurrent densities than
3.5mA/cm? at 1.23 V vs. RHE is shown in Table 1, along with their measured efficiencies and
synthesis methods. These are currently the top-performing BiVO, photoanodes in the literature.

Table 1. BiVO,-based photoanodes with the highest photocurrent density to date.

Photocurrent luminated
Photoanode Density ! 2 Efficiency Stability Ref.
> Area (cm?)
(mA/cm?)
. Unspecified. IPCE 80%-90%,
WOs /Bl‘?;oé r};porods 6.72 Electrode Area: 400-500 nm at 1V Not reported [38]
Wi o 0.226 vs. RHE
SiOy/Pt/SnO, IPCE > 75%, <460 nm, 5
Mo:BiVO, nanocone 5.8 0.25 at 123V vs. RHE; APBE f'z’é"\l; 58 E‘}’I*E/ e 5‘*}: [90]
with Fe(Ni)OOH ~2.05% at0.62Vvs. RHE <7V VS or
WOj3/(W, Mo):BiVO, Unspecified. o About 3 mA/cm? at
helix nanostructures 5.35 Electrode Area: IPCE1933/0 \']332_?{?25 m at 1.23 V vs. RHE for [44]
with FeOOH/NiOOH 2.25 ’ ’ 7 days (8.7% decay)
N:BiVO, with 5.0 01-0.2 IPCE 50%-60%, 400-470 About 3.2 mA/cm? at (28]
FeOOH/NiOOH ’ o nm at 0.6 V vs. RHE 0.6 Vvs. RHE for 30 h
(H, 3% Mo):BiVO, i IPCE ~80%, 420 nm at About 3.5 mA /cm? at
with Co-Ci 49 Unspecified 1.23 V vs. RHE 1.03 V vs. RHE for 12 h [55]
Nanoporous BiVO, with 42 02 APBE 2.2% at 0.58 V vs. 2.73mA/cm? at 0.6 V [43]
FeOOH/NiOOH ’ ’ CE (Pt) vs. RHE for 48 h
SiOx/Pt/SnO; ABPE about 0.75% at
Mo:BiVO, nanocone 418 0.25 0.87 V vs. RHE Not reported (%01
. Unspecified.
WO3/(W, MO):BIVO4 .
with FeOOH/NiOOH 4.0 Electrzog; area: Not reported Not reported [45]
W(0%-1%) gradient- i Carrier separation
doped BiVO, with Co-Pi 36 Unspecified efficiency of up to 80% Not reported (48]
Nanoporous BiVO,
with FeOOH 3.6 0.2 Not reported Not reported [43]
1 Measured for a 3-electrode system at 1.2-123 V vs. RHE, AM 1.5 G illumination and intensity of 1 sun
(100 mW/cm?).

It can be seen from Table 1 that the best-performing BiVO, photoanodes to-date are generally
composed of the following components: (1) a heterojunction with conductive WOj5 as the core structure,
which is synthesized via physical deposition techniques, such as glancing and oblique angle deposition;
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(2) a BiVOy shell structure synthesized via a solution-based technique, with a notable preference for
scalable electrodeposition methods; (3) dopants, usually Mo and W, which increase the charge carrier
density and are normally introduced with the BiVO, precursors in a solution; and (4) OER co-catalysts,
which are generally Co-Pi or FeOOH/NiOOH that are used for the enhancement of the water oxidation
kinetics and incorporated via a photo-assisted electrodeposition technique.

3. Critical Issues Hampering the Scale-Up of BiVO4-Based PECs

While there have been numerous efforts to study the fundamental aspects of a PEC water splitting
system, and in particular, the critical photoanode assembly, the road to building efficient, robust,
and scalable functional devices still seems long and challenging. The target is to reach at least 10%
Solar-to-Hydrogen (STH) efficiency, and a lifetime of 10 years, for a device that costs US$100/m? to
manufacture, before these devices can be competitive with the PV + electrolyzer system [95]. However,
even putting together the best individual components cannot guarantee the formation of the most
efficient device. It is necessary for those components to work in conditions in which they are compatible.
This, however, is largely dictated by the interplay of certain factors, such as the operating conditions
and the material properties, which in turn are dictated by the adopted synthesis methods, stability,
scalability, and costs.

3.1. Synthesis Scalability

As can be seen from Table 1, the top performing BiVOy-based photoanodes prepared up till now
have a maximum deposited and illuminated area of 2.5 cm?, although in some cases this area has not
been specified. Nevertheless, it is known that the significant material properties that can affect the
photoelectrochemical activity are influenced to a great extent, if not dictated, by the adopted synthesis
method and the size of the electrode. As pointed out by Herndndez et al. [60], the non-uniformity of
a BiVOy film surface leads to issues in the preparation of larger-sized electrodes, which is necessary for
practical applications at a larger scale. The spin-coating technique has not yielded a uniform surface
for electrodes as large as 6 cm?, and the testing of these electrodes at different illuminated areas yielded
different results. Illuminating a 6 cm? area versus a 1 cm? area halved the photocurrent density. Thus,
emphasis should be on the use of scalable techniques, i.e., those that are able to produce uniform and
efficient electrodes with large deposited areas.

Synthesizing BiVO, photoanodes with high transparency is also essential for their use as light
absorbers in tandem cell devices [45]. Thus, the thickness of the material deposited onto the substrate
should be controlled and limited according to the chosen synthesis technique.

Moreover, the costs associated with the synthesis procedure should be considered in the scaling up
of PEC water splitting operations. Not only are these dependent on the cost of raw materials, but also
on the manner and the procedure by which the synthesis is conducted and on the techniques employed
to do so. This necessitates the use of less-complicated steps and mild operating conditions in order to
strike a balance between efficiency and cost-effectiveness. For example, electrodeposition, which is
a solutions-based synthesis technique, could prove to be very viable in this context. It is an already
proven industrial process, as it is used in industrial car painting, and it offers fine-tuning opportunities
for the morphology and other synthesis parameters due to its solutions-based nature [11]. In the same
manner, some physical deposition techniques such as the co-sputtering method are currently used at
high scales for the deposition of thin films for electronic components.

3.2. Oxygen Evolution Catalysts

Among the most successful and most efficient OECs known to date, and which are able to operate
under almost neutral pH conditions, the use of the Co-Pi type catalyst can be considered an easily
scalable solution. Self-healing catalysts, such as Co-Pi, Co-Ci, and Co-Bi, can be deposited in situ
with a certain amount (e.g. 0.5 mM) of Co?* jons in a solution of phosphate, carbonate, and borate
buffers, respectively, through the application of a fixed potential. However, the use of these catalysts
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requires the adoption of a buffered electrolyte for the control of the pH in the anodic chamber as well
as a proper control of the amount of Co?* ions in the solution. The latter aspect is indispensable to
guarantee the self-healing property of the electrode; however, it can also cause an overloading of
Co-Pi type catalysts on the surface of the electrode, which can happen when either the Co?" in the
solution or the applied bias are too high, with a consequent deactivation of the photoelectrode. In fact,
the Co-Pi photo-electrodeposition at 1.32 V vs. RHE over a period of 60 s has been reported to be the
optimum conditions for an enhanced performance of BiVO, photoanodes, while longer times can
lead to a reduction in the photo-electrode activity [59]. Therefore, long-term stability and deactivation
issues still have to be resolved before the current Co-based OECs can be used at a large scale.

The development of non-noble metal OECs that operate in acidic conditions is of utmost
importance. If the PEC water splitting device is to be operated using pure water, as is the case of PEM
electrolyzers, the anodic chamber is bound to become acidic, due to the induced H* gradient in the cell,
since H* ions continuously form in the anode and migrate towards the cathode. At present, this issue
still remains a challenge, as only noble-metal (Ru and Ir) -based OECs are able to dominate acidic media
stability [56,57]. This is particularly challenging for the use of OECs with BiVO4-based photoanodes,
because BiVO, gradually dissolves when subjected to a solution with extreme pH conditions. Hence,
a proper engineering of the interphases between the BiVOy, a passivating/protecting layer, and the
OEC is required to sustain a stable operation.

In addition, in order to be used in integrated devices, the OECs have to be transparent enough to
avoid blocking the light as it passes through the light-absorbing photoanode in a tandem illumination
mode. However, when made of non-noble metal oxides, relatively higher catalyst loadings are needed
to achieve a comparable performance with that of noble metals. The higher catalyst loading affects the
transparency of the material and may induce the eventual optical losses due to absorption and light
scattering [96].

3.3. Long-Term Stability

In order to be practical, PEC water splitting systems have to be stable for a long period
of time, the typical benchmark being a lifetime of 10 years [97,98]. However, achieving such
a lifetime still remains a challenge as scientists are still trying to overcome the effect of the strong
reductive and oxidative properties of the photogenerated electron-hole pair on the stability of
semiconductor electrodes.

Toma et al. [99] recently performed a mechanistic study on the chemical and photochemical
transformations of BiVO, photoanodes in which insights are given about issues concerning the source
of instability in BiVO, photoanodes. In this study, it was shown that the degradation of the BiVOy,
photoanodes takes place under all aqueous testing conditions and was seen to be accelerated by
illumination, as well as by increase of the pH and of the applied anodic bias. This phenomenon was
prevalently attributed to the following: (1) an inability to achieve self-passivation, brought about by
the inability to form a stable Bi-O surface phase, due to kinetic limitations on the room-temperature
structural transformation of V-deprived degradation product; and (2) an accumulation of holes on the
surface of the lattice, which were observed to cause the BiVO, destabilization.

Among the top-performing BiVOy-based photoanodes summarized in Table 1, the longest stability
test was for the WO3/(W, Mo):BiVO, helix nanostructures with FeOOH /NiOOH [44], which lasted
seven days, and demonstrated a decay of 8.7% in the photocurrent density. Evidently, the 10-year
stability target is still far from being achieved as current research trends are still focusing on solving
the problem of inefficiency.

3.4. Large-Scale PEC Prototype Issues: The ARTIPHYCTION Experience

To the best of the authors” knowledge, the partners in the EU-FP7 FCH JU founded project:
ARTIPHYCTION (No. 303435) were the first to develop a large-scale 1.6 m? PEC that was validated in
TRL5 (see Figure 8), for the direct production of Hy from sunlight via water splitting [100]. The best
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results were obtained with a CoPi-catalysed Mo-doped BiVO,; photoanode (made by means of
a spin-coating method) and the Co nanoparticle-based cathodic electro-catalyst that was used in
the final Artiphyction prototype, which showed a potential of a 3% overall sunlight conversion
efficiency into Hy. However, mass-transfer and kinetics limitation phenomena (bubbles formation and
accumulation on the electrode surface) caused a decrease in the performance of up to about 2% during
long-term operation.

The significant problem of bubble formation and evolution on a BiVO4 photoanode, and their
consequences on the efficiency of a photoelectrochemical cell were recently analysed through theoretical
models in the framework of the same project [100,101]. Herndndez et al. [102] proposed a percolation
approach to explain the time variation (decrease) of the photocurrent density during bubble generation
in a porous BiVOy4 photoanode. They proposed a correlation between a bubble-covering factor (f3)
and the current density, for different applied bias and illumination conditions. In fact, the produced
O, bubbles first tend to stick to the electrode surface, thus decreasing the effective area, increasing
the interfacial electric resistance, and increasing the ohmic losses. In addition, Gliozzi et al. [101]
developed a model based on the adsorption theory (similar to Langmuir’s isotherm). They showed
that the time dependence of the current density is influenced by two characteristic periods of time:
one short period, related to the electric charging of the surface layer, and another long period, related to
the kinetics of the O, bubble coverage (adsorption—-desorption). Moreover, they showed that the latter
also depended on the applied bias potential.
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Figure 8. (a) Photograph and (b) close view of the 1.6 m? Artiphyction prototype made of 100 PEC
cells (each of them with a 8 x 8 cm? BiVO,-based window); (c) photo of a single PEC cell of the
prototype under operation; (d) I-V plots for a single PEC window of the Artiphyction prototype.
Blue line: I-V power generation curve of the Si-PV cell for each window; red and black line/dotted line:
initial and final PEC cell performance under 1 sun irradiation (AM 1.5 G); light-blue lines: possible
performance degradation of a PEC cell prototype.

A unique feature of the Artiphyction system, other than being the first attempt to scale-up a PEC
for water splitting, is that the outer case of the photo-electrolyser was exploited to insert low-cost Si
PV cells that provide the bias potential necessary for the prototype. In addition, in order to guarantee
a continuous operation for the 1000 h of testing, the system was designed so that each single unit
of the PEC reactor would operate close to the maximum point in the I-V diagram. Therefore, in the
case of system deactivation, such a point should be shifted towards higher voltages, as can be seen in
Figure 8d, in order to keep the current drop and the H; production rate reduction at less than 10%.
Hence, the maximum overall H, production of this prototype was slightly higher than 1 g/h.

The previous results indicate that, in order to fully achieve the ambitious goals of STH efficiency
(>10%) and a stability of more than 10 years, more engineering efforts are still necessary to improve
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the photoelectrolyser reactor design, with the aim of ameliorating its fluid dynamics, as well as of
a further optimizing the photo-electroactive materials so as to achieve their efficient scale-up.

3.5. BiVOy-Photoanode PEC Tandem Device Assemblies

Although relatively favourable and strategic, compared to other metal oxides, such as Fe;O3 and
WOj;, the conduction band edge of BiVO; still does not allow water to be completely split without
an applied bias, thus, its use as a photoanode in tandem PEC water splitting devices has also been
studied recently.

The most frequently studied PEC tandem assemblies today are those made with multijunction
and perovskite photovoltaic (PV) solar cells. The most notable BiVO4-photoanode PEC tandem devices
with PV solar cells reported to date are summarized in Table 2.

Recent developments of BiVO4-photoanode PEC tandem devices have yielded an STH efficiency
that reaches up to 8.1%. While this is very encouraging, the challenge remains concerning the costs
of fabricating these materials at a larger scale. Multijunction PV cells are complex and expensive,
and the current tandem assemblies still cannot compete with the conventional ways of producing Hj
which costs US$ 2-3/kg [103]. Meanwhile, the emerging perovskite solar cells could alternatively offer
a cheaper solution. However, more research is required to solve the intrinsic stability issues that still
remain for perovskite solar cells.

Table 2. BiVO, photoanode-based PEC-PV /perovskite Tandem Devices.

Photocurrent
BiVO,4 Photoanode In Tandem with STH Efficiency Density ! Stability Ref.
(mA/cm?)
WOj3/BiVO,4 nanorods 2-jn o Tested for 1 h,
with Co-Pi GaAs/InGaAsP 8.1% 656 sustained for 1 h [38]
WO3/(W, Mo):BiVO,4 with . o Tested for 10 h,
FeOOH/NiOOH Hybrid cDBR 71% 57 sustained for 10 h [43]
SiOx/Pt/SnO,; Mo:BiVOy, . o
nanocone with perovsclzlltle solar 6.2% 5.82 58% dleOC}aly over [90]
Fe(Ni)OOH
W(0%—1%) gradient- . . o Tested for 1 h,
doped BiVO, with Co-Pi ZjnaSiPv 4.9% 40 sustained for 1 h [48]
(H, 3% Mo):BiVO, CH3;NH;3Pblg Wired: 48 Tested for 10 h, [55]
with Co-Ci perovskite single jn  4%Wireless: 3% ’ sustained for 10 h

! Measured at 1.2-123 V vs. RHE, AM 1.5 G illumination and intensity of 1 sun (100 mW /cm?).

4. Conclusions

PEC water splitting and artificial photosynthesis offer a truly sustainable way of converting solar
energy into chemical energy. The use of BiVOy-based photoanodes for PEC systems has improved
greatly over the years and continues to improve, as pointed out in this review work, and in time this
will lead to the fabrication of a more efficient and scalable device. Certain constraints still have to
be addressed in order to put this into practice, e.g., the long-time stability and scale-up of both the
photoanode and the PEC device; however, going in this direction and focusing on solving such issues
could pave the way to the commercialization of the PEC technology, for a sustainable production of
clean fuels and chemicals via the artificial photosynthesis process.

Acknowledgments: The authors would like to acknowledge the EACEA Erasmus + SINCHEM Grant (FPA
2013-0037), the European Commission FP7 Projects: NMP-2012 Eco?CO, (No. 309701), and FCH JU Artiphyction
(No. 303435) for the financial support.

Author Contributions: K.R.T. did the literature review; K.R.T. and S.H. equally contributed in writing the paper;
N.R. conceived and critically revised the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Catalysts 2017,7, 13 18 of 23

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Gray, H.B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7. [CrossRef] [PubMed]

Von de Krol, R.; Grdtzel, M. Photoelectrochemical Hydrogen Production. Electron. Mater. Sci. Technol. 2012,
102, 13-21.

Chen, Z.; Dinh, H.N.; Miller, E. Introduction. In Photoelectrochemical Water Splitting; Springer: New York, NY,
USA, 2013; pp. 1-5. [CrossRef]

Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, SSW.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar Water
Splitting Cells. Chem. Rev. 2010, 110, 6446—-6473. [CrossRef] [PubMed]

Martinez Suarez, C.; Hernandez, S.; Russo, N. BiVOy as photocatalyst for solar fuels production through
water splitting: A short review. Appl. Catal. A Gen. 2015, 504, 158-170. [CrossRef]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238,
37-38. [CrossRef] [PubMed]

Hurst, ] K. Catalysts for Solar Fuel Production. Science 2010, 328, 315-316. [CrossRef] [PubMed]

Gritzel, M.; Moser, J. Solar Energy Conversion. In Electron Transfer in Chemistry; Wiley-VCH: Weiheim,
Germany, 2001; Volume 5, pp. 589-644.

Betley, T.A.; Wu, Q.; Van Voorhis, T.; Nocera, D.G. Electronic design criteria for O-O bond formation via
metal-oxo complexes. Inorg. Chem. 2008, 47, 1849-1861. [CrossRef] [PubMed]

Inoue, H.; Shimada, T.; Kou, Y.; Nabetani, Y.; Masui, D.; Takagi, S.; Tachibana, H. The water oxidation
bottleneck in artificial photosynthesis: How can we get through it? An alternative route involving
a two-electron process. ChemSusChem 2011, 4, 173-179. [CrossRef] [PubMed]

Kang, D.; Kim, TW.; Kubota, S.R.; Cardiel, A.C.; Cha, H.G.; Choi, K.S. Electrochemical Synthesis of
Photoelectrodes and Catalysts for Use in Solar Water Splitting. Chem. Rev. 2015, 115, 12839-12887. [CrossRef]
[PubMed]

Young, K.J.; Martini, L.A.; Milot, R.L.; Snoeberger, R.C.; Batista, V.S.; Schmuttenmaer, C.A.; Crabtree, RH.;
Brudvig, G.W. Light-driven water oxidation for solar fuels. Coord. Chem. Rev. 2012, 256, 2503-2520.
[CrossRef] [PubMed]

Tachibana, Y.; Vayssieres, L.; Durrant, J.R. Artificial photosynthesis for solar water-splitting. Nat. Photonics
2012, 6, 511-518. [CrossRef]

Blakemore, J.D.; Crabtree, R.H.; Brudvig, G.W. Molecular Catalysts for Water Oxidation. Chem. Rev. 2015,
115, 12974-13005. [CrossRef] [PubMed]

Harriman, A.; Pickering, L.].; Thomas, ].M.; Christensen, P.A. Metal Oxides as Heterogeneous Catalysts for
Oxygen Evolution under Photochemical Conditions. . Chem. Soc. Faraday Trans. 1 1988, 84, 2795-2806.
[CrossRef]

Kiwi, ]J.; Grétzel, M. Hydrogen evolution from water induced by visible light mediated by redox catalysis.
Nature 1979, 281, 657-658. [CrossRef]

Roth, R.; Waring, J. Synthesis and stability of bismutotantalite, stibiotantalite and chemically similar ABO,
compounds. Am. Miner. 1963, 18, 1348-1356.

Lim, AR; Choh, SH.; Jang, M.S. Prominent ferroelastic domain walls in BiVOy crystal. ]. Phys.
Condens. Matter 1995, 7, 7309-7323. [CrossRef]

Kudo, A.; Omori, K.; Kato, H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and
Highly Crystalline BiVO, Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and
Photophysical Properties. . Am. Chem. Soc. 1999, 121, 11459-11467. [CrossRef]

Bhattacharya, A K. Phase transition in BiVOy. Mater. Lett. 1997, 30, 7-13. [CrossRef]

Walsh, A.; Yan, Y.; Huda, M.N.; Al-Jassim, M.M.; Wei, S.-H. Band Edge Electronic Structure of BiVOy:
Elucidating the Role of the Bi s and V d orbitals. Chem. Mater. 2009, 21, 547-551. [CrossRef]

Cooper, ] K,; Gul, S.; Toma, EM.; Chen, L.; Glans, P--A.; Guo, J.; Ager, ]JW.; Yano, J.; Sharp, I.D. Electronic
Structure of Monoclinic BiVOy. Chem. Mater. 2014, 26, 5365-5373. [CrossRef]

Kudo, A.; Ueda, K.; Kato, H.; Mikami, I. Photocatalytic O, evolution under visible light irradiation on BiVOy
in aqueous AgNOj solution. Catal. Lett. 1998, 53, 229-230. [CrossRef]


http://dx.doi.org/10.1038/nchem.141
http://www.ncbi.nlm.nih.gov/pubmed/21378780
http://dx.doi.org/10.1007/978-1-4614-8298-7
http://dx.doi.org/10.1021/cr1002326
http://www.ncbi.nlm.nih.gov/pubmed/21062097
http://dx.doi.org/10.1016/j.apcata.2014.11.044
http://dx.doi.org/10.1038/238037a0
http://www.ncbi.nlm.nih.gov/pubmed/12635268
http://dx.doi.org/10.1126/science.1187721
http://www.ncbi.nlm.nih.gov/pubmed/20395500
http://dx.doi.org/10.1021/ic701972n
http://www.ncbi.nlm.nih.gov/pubmed/18330975
http://dx.doi.org/10.1002/cssc.201000385
http://www.ncbi.nlm.nih.gov/pubmed/21271684
http://dx.doi.org/10.1021/acs.chemrev.5b00498
http://www.ncbi.nlm.nih.gov/pubmed/26538328
http://dx.doi.org/10.1016/j.ccr.2012.03.031
http://www.ncbi.nlm.nih.gov/pubmed/25364029
http://dx.doi.org/10.1038/nphoton.2012.175
http://dx.doi.org/10.1021/acs.chemrev.5b00122
http://www.ncbi.nlm.nih.gov/pubmed/26151088
http://dx.doi.org/10.1039/f19888402795
http://dx.doi.org/10.1038/281657a0
http://dx.doi.org/10.1088/0953-8984/7/37/005
http://dx.doi.org/10.1021/ja992541y
http://dx.doi.org/10.1016/S0167-577X(96)00162-0
http://dx.doi.org/10.1021/cm802894z
http://dx.doi.org/10.1021/cm5025074
http://dx.doi.org/10.1023/A:1019034728816

Catalysts 2017,7, 13 19 of 23

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Payne, D.J.; Robinson, M.D.M.; Egdell, R.G.; Walsh, A.; McNulty, J.; Smith, K.E.; Piper, L.E]J. The nature of
electron lone pairs in BiVOy. Appl. Phys. Lett. 2011, 98, 46—49. [CrossRef]

Hu, S.; Xiang, C.; Haussener, S.; Berger, A.D.; Lewis, N.S. An analysis of the optimal band gaps of light
absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 2013, 6,
2984-2993. [CrossRef]

Abdi, EF;; Firet, N.; van de Krol, R. Efficient BiVO, Thin Film Photoanodes Modified with Cobalt Phosphate
Catalyst and W-doping. ChemCatChem 2013, 5, 490-496. [CrossRef]

Park, Y.; McDonald, K.J.; Choi, K.S. Progress in bismuth vanadate photoanodes for use in solar water
oxidation. Chem. Soc. Rev. 2013, 2321-2337. [CrossRef] [PubMed]

Kim, TW,; Ping, Y.; Galli, G.A.; Choi, K.S. Simultaneous enhancements in photon absorption and charge
transport of bismuth vanadate photoanodes for solar water splitting. Nat. Commun. 2015, 6, 8769. [CrossRef]
[PubMed]

McDonald, K.J.; Choi, K.S. A new electrochemical synthesis route for a BiOI electrode and its conversion to
a highly efficient porous BiVO, photoanode for solar water oxidation. Energy Environ. Sci. 2012, 5, 8553-8557.
[CrossRef]

Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta
1964, 28, 1273-1285. [CrossRef]

Kronawitter, C.X.; Vayssieres, L.; Shen, S.; Guo, L.; Wheeler, D.A.; Zhang, ].Z.; Antoun, B.R.; Mao, S.S.
A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energy Environ. Sci. 2011,
4, 3889-3899. [CrossRef]

Cho, S.; Jang, ] W.; Lee, KH.; Lee, ].S. Research update: Strategies for efficient photoelectrochemical water
splitting using metal oxide photoanodes. APL Mater. 2014, 2, 10703. [CrossRef]

Ma, Y.; Pendlebury, S.R.; Reynal, A.; le Formal, E; Durrant, ].R. Dynamics of photogenerated holes in
undoped BiVOy photoanodes for solar water oxidation. Chem. Sci. 2014, 5, 2964. [CrossRef]

Sinclair, T.S.; Hunter, B.M.; Winkler, J.R.; Gray, H.B.; Astrid, M.M. Materials Horizons Factors affecting
bismuth vanadate photoelectrochemical performance. Mater. Horiz. 2015, 22-24.

Zhou, M.; Bao, J.; Xu, Y.; Zhang, J.; Xie, J.; Guan, M.; Wang, C.; Wen, L.; Lei, Y.; Xie, Y. Photoelectrodes
based upon Mo:BiVOy inverse opals for photoelectrochemical water splitting. ACS Nano 2014, 8, 7088-7098.
[CrossRef] [PubMed]

Abdi, EE,; Savenije, T.].; May, M.M.; Dam, B.; Van De Krol, R. The Origin of Slow Carrier Transport in BiVO,
Thin Film Photoanodes. J. Phys. Chem. Lett. 2013, 4, 2752-2757. [CrossRef]

Retti, A.J.E.; Lee, H.C.; Marshall, L.G,; Lin, ].-F.,; Capan, C.; Lindemuth, J.; McCloy, ].S.; Zhou, J.; Bard, A.].;
Mullins, C.B. Combined Charge Carrier Transport and Photoelectrochemical Characterization of BiVOy
Single Crystals: Intrinsic Behavior of a Complex Metal Oxide. |. Am. Chem. Soc. 2013, 135, 11389-11396.
[CrossRef] [PubMed]

Pihosh, Y.; Turkevych, I.; Mawatari, K.; Uemura, J.; Kazoe, Y.; Kosar, S.; Makita, K.; Sugaya, T.; Matsui, T.;
Fujita, D.; et al. Photocatalytic generation of hydrogen by core-shell WO3/BiVO,4 nanorods with ultimate
water splitting efficiency. Sci. Rep. 2015, 5, 11141. [CrossRef] [PubMed]

Kim, J.H.; Jang, ] W.; Kang, H.].; Magesh, G.; Kim, ].Y.; Kim, ].H.; Lee, J.; Lee, ].S. Palladium oxide as a novel
oxygen evolution catalyst on BiVO, photoanode for photoelectrochemical water splitting. J. Catal. 2014, 317,
126-134. [CrossRef]

Wang, D.; Li, R.; Zhu, J.; Shi, J.; Han, J.; Zong, X.; Li, C. Photocatalytic water oxidation on BiVO, with
the electrocatalyst as an oxidation cocatalyst: Essential relations between electrocatalyst and photocatalyst.
J. Phys. Chem. C 2012, 116, 5082-5089. [CrossRef]

Seabold, J.A.; Choi, K.S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode
coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 2186-2192.
[CrossRef] [PubMed]

Park, Y.; Kang, D.; Choi, K.-5. Marked enhancement in electron-hole separation achieved in the low bias
region using electrochemically prepared Mo-doped BiVO, photoanodes. Phys. Chem. Chem. Phys. 2014, 16,
1238-1246. [CrossRef] [PubMed]


http://dx.doi.org/10.1063/1.3593012
http://dx.doi.org/10.1039/c3ee40453f
http://dx.doi.org/10.1002/cctc.201200472
http://dx.doi.org/10.1039/C2CS35260E
http://www.ncbi.nlm.nih.gov/pubmed/23092995
http://dx.doi.org/10.1038/ncomms9769
http://www.ncbi.nlm.nih.gov/pubmed/26498984
http://dx.doi.org/10.1039/c2ee22608a
http://dx.doi.org/10.1016/0016-7037(64)90129-2
http://dx.doi.org/10.1039/c1ee02186a
http://dx.doi.org/10.1063/1.4861798
http://dx.doi.org/10.1039/c4sc00469h
http://dx.doi.org/10.1021/nn501996a
http://www.ncbi.nlm.nih.gov/pubmed/24911285
http://dx.doi.org/10.1021/jz4013257
http://dx.doi.org/10.1021/ja405550k
http://www.ncbi.nlm.nih.gov/pubmed/23869474
http://dx.doi.org/10.1038/srep11141
http://www.ncbi.nlm.nih.gov/pubmed/26053164
http://dx.doi.org/10.1016/j.jcat.2014.06.015
http://dx.doi.org/10.1021/jp210584b
http://dx.doi.org/10.1021/ja209001d
http://www.ncbi.nlm.nih.gov/pubmed/22263661
http://dx.doi.org/10.1039/C3CP53649A
http://www.ncbi.nlm.nih.gov/pubmed/24296682

Catalysts 2017,7, 13 20 of 23

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Kim, T.W.; Choi, K.-S. Nanoporous BiVO,; Photoanodes with Dual-Layer Oxygen Evolution Catalysts for
Solar Water Splitting. Science 2014, 343, 990-994. [CrossRef] [PubMed]

Shi, X.; Choi, L.Y,; Zhang, K.; Kwon, J.; Kim, D.Y,; Lee, ] K,; Oh, S.H.; Kim, ] K.; Park, J].H. Efficient
photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix
nanostructures. Nat. Commun. 2014, 5, 4775. [CrossRef] [PubMed]

Shi, X,; Jeong, H.; Oh, S.J.; Ma, M.; Zhang, K.; Kwon, J.; Choi, L.T.; Choi, LY.; Kim, HK,; Kim, ] K. Unassisted
photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon
recycling. Nat. Commun. 2016, 7, 11943. [CrossRef] [PubMed]

Kanan, M.W.; Nocera, D.G. In situ formation of an oxygen-evolving catalyst in neutral water containing
phosphate and Co?*. Science 2008, 321, 1072-1075. [CrossRef] [PubMed]

Lutterman, D.A.; Surendranath, Y.; Nocera, D.G. A Self-Healing Oxygen-Evolving Catalyst. . Am. Chem. Soc.
2009, 131, 3838-3839. [CrossRef] [PubMed]

Abdi, FE; Han, L.; Smets, A.H.M.; Zeman, M.; Dam, B.; van de Krol, R. Efficient solar water splitting by
enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 2013, 4,
1-7. [CrossRef] [PubMed]

Zhong, D.K.; Gamelin, D.R. Photoelectrochemical Water Oxidation by Cobalt Catalyst (“Co-Pi”)x-Fe;O3
Composite Photoanodes Oxygen Evolution and Resolution of a Kinetic Bottleneck. J. Am. Chem. Soc. 2010,
132, 4202-4207. [CrossRef] [PubMed]

Pilli, S.K.; Furtak, T.E.; Brown, L.D.; Deutsch, T.G.; Turner, J.A.; Herring, A.M. Cobalt-phosphate (Co-Pi)
catalyst modified Mo-doped BiVO, photoelectrodes for solar water oxidation. Energy Environ. Sci. 2011,
4,5028. [CrossRef]

Zhong, D.K,; Choi, S.; Gamelin, D.R. Near-Complete Suppression of Surface Recombination in Solar
Photoelectrolysis by “Co-Pi” Catalyst-Modified W:BiVOy. J. Am. Chem. Soc. 2011, 133, 18370-18377.
[CrossRef] [PubMed]

Zhong, M.; Hisatomi, T.; Kuang, Y.; Zhao, J.; Liu, M,; Iwase, A.; Jia, Q.; Nishiyama, H.; Minegishi, T.;
Nakabayashi, M.; et al. Surface Modification of CoOy Loaded BiVO,4 Photoanodes with Ultrathin p-Type NiO
Layers for Improved Solar Water Oxidation. J. Am. Chem. Soc. 2015, 137, 5053-5060. [CrossRef] [PubMed]
Joya, K.S.; Takanabe, K.; De Groot, H.J.M. Surface generation of a cobalt-derived water oxidation
electrocatalyst developed in a neutral HCO?~ /CO, system. Adv. Energy Mater. 2014, 4, 2-7.

Kim, J.H.; Magesh, G.; Kang, H.J.; Banu, M.; Kim, J.H.; Lee, J.; Lee, ].S. Carbonate-coordinated cobalt
Co-catalyzed BiVO,/WO3 composite photoanode tailored for CO, reduction to fuels. Nano Energy 2015, 15,
153-163. [CrossRef]

Kim, J.H,; Jo, Y;; Kim, ].H,; Jang, ] W.; Kang, H.J.; Lee, Y.H.; Kim, D.S.; Jun, Y.; Lee, ].S. Wireless Solar Water
Splitting Device with Robust Cobalt-Catalyzed, and Perovskite Solar Cell in Tandem: A Dual Absorber
Artificial Leaf. ACS Nano 2015, 9, 11820-11829. [CrossRef] [PubMed]

McCrory, C.C.L; Jung, S.; Peters, ].C.; Jaramillo, T.F. Benchmarking heterogeneous electrocatalysts for the
oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977-16987. [CrossRef] [PubMed]

McCrory, C.C.L.; Jung, S.; Ferrer, LM.; Chatman, S.M.; Peters, ].C.; Jaramillo, T.F. Benchmarking Hydrogen
Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. ]. Am.
Chem. Soc. 2015, 137, 4347-4357. [CrossRef] [PubMed]

Pickrahn, K.L.; Park, SW.; Gorlin, Y.; Lee, H.B.R.; Jaramillo, T.F.; Bent, S.F. Active MnO,, Electrocatalysts
Prepared by Atomic Layer Deposition for Oxygen Evolution and Oxygen Reduction Reactions. Adv. Energy
Mater. 2012, 2, 1269-1277. [CrossRef]

Jia, Q.; Iwashina, K.; Kudo, A. Facile fabrication of an efficient BiVOy thin film electrode for water splitting
under visible light irradiation. Proc. Natl. Acad. Sci. USA 2012, 109, 11564-11569. [CrossRef] [PubMed]
Hernédndez, S.; Gerardi, G.; Bejtka, K.; Fina, A.; Russo, N. Evaluation of the charge transfer kinetics of
spin-coated BiVO; thin films for sun-driven water photoelectrolysis. Appl. Catal. B Environ. 2016, 190, 66-74.
[CrossRef]

Thalluri, S.M.; Rojas, R.M.; Rivera, O.D.; Hernandez, S.; Russo, N.; Rodil, S.E. Chemically induced porosity
on BiVOy films produced by double magnetron sputtering to enhance the photo-electrochemical response.
Phys. Chem. Chem. Phys. 2015, 17, 17821-17827. [CrossRef] [PubMed]


http://dx.doi.org/10.1126/science.1246913
http://www.ncbi.nlm.nih.gov/pubmed/24526312
http://dx.doi.org/10.1038/ncomms5775
http://www.ncbi.nlm.nih.gov/pubmed/25179126
http://dx.doi.org/10.1038/ncomms11943
http://www.ncbi.nlm.nih.gov/pubmed/27324578
http://dx.doi.org/10.1126/science.1162018
http://www.ncbi.nlm.nih.gov/pubmed/18669820
http://dx.doi.org/10.1021/ja900023k
http://www.ncbi.nlm.nih.gov/pubmed/19249834
http://dx.doi.org/10.1038/ncomms3195
http://www.ncbi.nlm.nih.gov/pubmed/23893238
http://dx.doi.org/10.1021/ja908730h
http://www.ncbi.nlm.nih.gov/pubmed/20201513
http://dx.doi.org/10.1039/c1ee02444b
http://dx.doi.org/10.1021/ja207348x
http://www.ncbi.nlm.nih.gov/pubmed/21942320
http://dx.doi.org/10.1021/jacs.5b00256
http://www.ncbi.nlm.nih.gov/pubmed/25802975
http://dx.doi.org/10.1016/j.nanoen.2015.04.022
http://dx.doi.org/10.1021/acsnano.5b03859
http://www.ncbi.nlm.nih.gov/pubmed/26513688
http://dx.doi.org/10.1021/ja407115p
http://www.ncbi.nlm.nih.gov/pubmed/24171402
http://dx.doi.org/10.1021/ja510442p
http://www.ncbi.nlm.nih.gov/pubmed/25668483
http://dx.doi.org/10.1002/aenm.201200230
http://dx.doi.org/10.1073/pnas.1204623109
http://www.ncbi.nlm.nih.gov/pubmed/22699499
http://dx.doi.org/10.1016/j.apcatb.2016.02.059
http://dx.doi.org/10.1039/C5CP01561H
http://www.ncbi.nlm.nih.gov/pubmed/26089196

Catalysts 2017,7, 13 21 of 23

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Thalluri, S.M.; Martinez Suarez, C.; Hussain, M.; Hernandez, S.; Virga, A.; Saracco, G.; Russo, N. Evaluation
of the Parameters Affecting the Visible-Light-Induced Photocatalytic Activity of Monoclinic BiVOy for Water
Oxidation. Ind. Eng. Chem. Res. 2013, 52, 17414-17418. [CrossRef]

Thalluri, S.M.; Martinez Suarez, C.; Herndndez, S.; Bensaid, S.; Saracco, G.; Russo, N. Elucidation of important
parameters of BiVOy responsible for photo-catalytic O, evolution and insights about the rate of the catalytic
process. Chem. Eng. J. 2014, 245, 124-132. [CrossRef]

Hernéndez, S.; Thalluri, S.M.; Sacco, A.; Bensaid, S.; Saracco, G.; Russo, N. Photo-catalytic activity of BiVOy
thin-film electrodes for solar-driven water splitting. Appl. Catal. A Gen. 2015, 504, 266-271. [CrossRef]

Ma, M.; Kim, ].K.; Zhang, K.; Shi, X.; Kim, S.].; Moon, J.H.; Park, ].H. Double-deck Inverse Opal Photoanodes:
Efficient Light Absorption and Charge Separation in Heterojunction. Chem. Mater. 2014, 26, 5592-5597.
[CrossRef]

Berglund, S.P; Rettie, A.J.E.; Hoang, S.; Mullins, C.B. Incorporation of Mo and W into nanostructured BiVO,
films for efficient photoelectrochemical water oxidation. Phys. Chem. Chem. Phys. 2012, 14, 7065-7075.
[CrossRef] [PubMed]

Luo, W,; Li, Z,; Yu, T,; Zou, Z. Effects of surface electrochemical pretreatment on the photoelectrochemical
performance of Mo-doped BiVOy. J. Phys. Chem. C 2012, 116, 5076-5081. [CrossRef]

Park, HS.; Kweon, K.E; Ye, H.; Paek, E.; Hwang, G.S. Factors in the Metal Doping of BiVO, for
Improved Photoelectrocatalytic Activity as Studied by Scanning Electrochemical Microscopy (SECM) and
First-Principles Density-Functional Calculation. J. Phys. Chem. C 2011, 115, 17870-17879. [CrossRef]

Jo, WJ.; Jang, JW.; Kong, K.J.; Kang, H.].; Kim, ].Y.; Jun, H.; Parmar, K.P.S.; Lee, ].S. Phosphate doping into
monoclinic BiVO, for enhanced photoelectrochemical water oxidation activity. Angew. Chem. Int. Ed. 2012,
51,3147-3151. [CrossRef] [PubMed]

Parmar, K.P.S.; Kang, H.]J.; Bist, A.; Dua, P; Jang, ].S.; Lee, ].S. Photocatalytic and photoelectrochemical water
oxidation over metal-doped monoclinic BiVO,4 photoanodes. ChemSusChem 2012, 5, 1926-1934. [CrossRef]
[PubMed]

Luo, W,; Yang, Z.; Li, Z.; Zhang, J.; Liu, J.; Zhao, Z.; Wang, Z.; Yan, S.; Yu, T.; Zhou, Z. Solar hydrogen
generation from seawater with a modified BiVO4 photoanode. Energy Environ. Sci. 2011, 4, 4046—4051.
[CrossRef]

Jeong, HW.; Jeon, TH.; Jang, J.S.; Choi, W.; Park, H. Strategic modification of BiVO, for improving
photoelectrochemical water oxidation performance. J. Phys. Chem. C 2013, 117, 9104-9112. [CrossRef]

He, H.; Berglund, S.P; Rettie, A.J.E.; Chemelewski, W.D.; Xiao, P.; Zhang, Y.; Mullins, C.B. Synthesis of
BiVOy nanoflake array films for photoelectrochemical water oxidation. J. Mater. Chem. A 2014, 2, 9371-9379.
[CrossRef]

Yao, W.; Iwai, H.; Ye, J. Effects of molybdenum substitution on the photocatalytic behavior of BiVOy.
Dalton Trans. 2008, 1426-1430. [CrossRef] [PubMed]

Thalluri, S.M.; Herndndez, S.; Bensaid, S.; Saracco, G.; Russo, N. Green-synthesized W- and Mo-doped
BiVO, oriented along the {040} facet with enhanced activity for the sun-driven water oxidation. Appl. Catal.
B Environ. 2016, 180, 630-636. [CrossRef]

Pattengale, B.; Ludwig, J.; Huang, J. Atomic Insight into the W-Doping Effect on Carrier Dynamics and
Photoelectrochemical Properties of BiVO, Photoanodes. J. Phys. Chem. C 2016, 120, 1421-1427. [CrossRef]
Gong, H.; Freudenberg, N.; Nie, M.; Van De Krol, R.; Ellmer, K. BiVO, photoanodes for water splitting with
high injection efficiency, deposited by reactive magnetron co-sputtering. AIP Adv. 2016, 6, 45108. [CrossRef]
Monfort, O.; Sfaelou, S.; Satrapinskyy, L.; Plecenik, T.; Roch, T.; Plesch, G.; Lianos, P. Comparative study
between pristine and Nb-modified BiVO; films employed for photoelectrocatalytic production of H; by
water splitting and for the photocatalytic degradation of organic pollutants under simulated solar light.
Catal. Today 2016, 280, 51-57. [CrossRef]

Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor heterojunction
photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234-5244.
[CrossRef] [PubMed]

Su, J.; Guo, L.; Bao, N.; Grimes, C.A. Nanostructured WO3/BiVOy heterojunction films for efficient
photoelectrochemical water splitting. Nano Lett. 2011, 11, 1928-1933. [CrossRef] [PubMed]


http://dx.doi.org/10.1021/ie402930x
http://dx.doi.org/10.1016/j.cej.2014.02.017
http://dx.doi.org/10.1016/j.apcata.2015.01.019
http://dx.doi.org/10.1021/cm502073d
http://dx.doi.org/10.1039/c2cp40807d
http://www.ncbi.nlm.nih.gov/pubmed/22466715
http://dx.doi.org/10.1021/jp210207q
http://dx.doi.org/10.1021/jp204492r
http://dx.doi.org/10.1002/anie.201108276
http://www.ncbi.nlm.nih.gov/pubmed/22344930
http://dx.doi.org/10.1002/cssc.201200254
http://www.ncbi.nlm.nih.gov/pubmed/22927058
http://dx.doi.org/10.1039/c1ee01812d
http://dx.doi.org/10.1021/jp400415m
http://dx.doi.org/10.1039/c4ta00895b
http://dx.doi.org/10.1039/b713338c
http://www.ncbi.nlm.nih.gov/pubmed/18322621
http://dx.doi.org/10.1016/j.apcatb.2015.07.029
http://dx.doi.org/10.1021/acs.jpcc.5b11451
http://dx.doi.org/10.1063/1.4947121
http://dx.doi.org/10.1016/j.cattod.2016.07.006
http://dx.doi.org/10.1039/C4CS00126E
http://www.ncbi.nlm.nih.gov/pubmed/24841176
http://dx.doi.org/10.1021/nl2000743
http://www.ncbi.nlm.nih.gov/pubmed/21513345

Catalysts 2017,7, 13 22 of 23

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.
101.

Murcia-Lopez, S.; Fabrega, C.; Monllor-Satoca, D.; Herndndez-Alonso, M.D.; Penelas-Pérez, G.; Morata, A.;
Morante, J.R.; Andreu, T. Tailoring Multilayered BiVO,4 Photoanodes by Pulsed Laser Deposition for Water
Splitting. ACS Appl. Mater. Interfaces 2016, 8, 4076—4085. [CrossRef] [PubMed]

Zhang, L.; Reisner, E.; Baumberg, ].]. Al-doped ZnO inverse opal networks as efficient electron collectors in
BiVO, photoanodes for solar water oxidation. Energy Environ. Sci. 2014, 7, 1402. [CrossRef]

Pilli, S.K.; Deutsch, T.G.; Furtak, T.E.; Brown, L.D.; Turner, ].A.; Herring, A.M. BiVO,/CuWOy heterojunction
photoanodes for efficient solar driven water oxidation. Phys. Chem. Chem. Phys. 2013, 15, 3273-3278.
[CrossRef] [PubMed]

Rao, PM.; Cai, L; Liu, C.; Cho, I.S; Lee, C.H.; Weisse, ].M.; Yang, P.; Zheng, X. Simultaneously
Efficient Light Absorption and Charge Separation in WO3/BiVO, Core/Shell Nanowire Photoanode for
Photoelectrochemical Water Oxidation. Nano Lett. 2014, 14, 1099-1105. [CrossRef] [PubMed]

Liu, R.; Zheng, Z.; Spurgeon, J.; Yang, X. Enhanced photoelectrochemical water-splitting performance of
semiconductors by surface passivation layers. Energy Environ. Sci. 2014, 7, 2504-2517. [CrossRef]
Eisenberg, D.; Ahn, H.S.; Bard, A.J. Enhanced Photoelectrochemical Water Oxidation on Bismuth. J. Am.
Chem. Soc. 2014, 136, 14011-14014. [CrossRef] [PubMed]

Mcdowell, M.T,; Lichterman, M.E,; Spurgeon, ].M.; Hu, S.; Sharp, I.D.; Brunschwig, B.S.; Lewis, N.S. Improved
Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of Dual-Layer Thin TiO, /Ni Coatings.
J. Phys. Chem. C 2014, 118, 19618-19624. [CrossRef]

Kim, T.W.; Choi, K.S. Improving Stability and Photoelectrochemical Performance of BiVO,4 Photoanodes in
Basic Media by Adding a ZnFe,O4 Layer. J. Phys. Chem. Lett. 2016, 7, 447-451. [CrossRef] [PubMed]

Zhao, ].; Guo, Y,; Cai, L.; Li, H.; Wang, K.X,; Cho, LS.; Lee, C.H.; Fan, S.; Zheng, X. High-Performance Ultrathin
BiVO,4 Photoanode on Textured Polydimethylsiloxane Substrates for Solar Water Splitting. ACS Energy Lett.
2016, 1, 68-75. [CrossRef]

Qiu, Y,; Liu, W,; Chen, W.; Chen, W.; Zhou, G.; Hsu, P; Zhang, R.; Liang, Z.; Fan, S.; Zhang, Y.; et al.
Efficient solar-driven water splitting by nanocone BiVOy-perovskite tandem cells. Sci. Adv. 2016, 2, e1501764.
[CrossRef] [PubMed]

Arsenault, E.; Soheilnia, N.; Ozin, G.A. Periodic macroporous nanocrystalline antimony-doped tin oxide
electrode. ACS Nano 2011, 5, 2984-2988. [CrossRef] [PubMed]

Long, X.; Li, J.; Xiao, S.; Yan, K.; Wang, Z.; Chen, H.; Yang, S. A strongly coupled graphene and FeNi double
hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. Int. Ed.
2014, 53, 7584-7588. [CrossRef] [PubMed]

Hernéndez, S.; Tortello, M.; Sacco, A.; Quaglio, M.; Meyer, T.; Bianco, S.; Saracco, G.; Pirri, C.E; Tresso, E. New
Transparent Laser-Drilled Fluorine-doped Tin Oxide covered Quartz Electrodes for Photo-Electrochemical
Water Splitting. Electrochim. Acta 2014, 131, 184-194. [CrossRef]

Hernandez, S.; Saracco, G.; Alexe-Ionescu, A.L.; Barbero, G. Electric investigation of a photo-electrochemical
water splitting device based on a proton exchange membrane within drilled FTO-covered quartz electrodes:
Under dark and light conditions. Electrochim. Acta 2014, 144, 352-360. [CrossRef]

Pinaud, B.A.; Benck, J.D.; Seitz, L.C.; Forman, A.].; Chen, Z.; Deutsch, T.G. Technical and economic
feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry.
Energy Environ. Sci. 2013, 6, 1983-2002. [CrossRef]

Mckone, J.R.; Lewis, N.S.; Gray, H.B. Will Solar-Driven Water-Splitting Devices See the Light of Day?
Chem. Mater. 2013, 26, 407—414. [CrossRef]

Bard, A.J.; Fox, M.A. Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen Water
Splitting. Acc. Chem. Res. 1995, 28, 141-145. [CrossRef]

Park, HS.; Lee, H.C.; Leonard, K.C.; Liu, G.; Bard, A.J. Unbiased photoelectrochemical water splitting
in Z-scheme device using W/Mo-doped BiVO,; and Zn,Cd;_,Se. ChemPhysChem 2013, 14, 2277-2287.
[CrossRef] [PubMed]

Toma, EM.; Cooper, ].K.; Kunzelmann, V.; McDowell, M.T.; Yu, ]J.; Larson, D.M.; Borys, N.J.; Abelyan, C.;
Beeman, J.W.; Yu, KM,; et al. Mechanistic insights into chemical and photochemical transformations of
bismuth vanadate photoanodes. Nat. Commun. 2016, 7, 12012. [CrossRef] [PubMed]

Artiphyction. Available online: http://www.artiphyction.org (accessed on 20 November 2016).

Gliozzi, A.S.; Herndndez, S.; Alexe-Ionescu, A.L.; Saracco, G.; Barbero, G. A model for electrode effects based
on adsorption theory. Electrochim. Acta 2015, 178, 280-286. [CrossRef]


http://dx.doi.org/10.1021/acsami.5b11698
http://www.ncbi.nlm.nih.gov/pubmed/26804929
http://dx.doi.org/10.1039/c3ee44031a
http://dx.doi.org/10.1039/c2cp44577h
http://www.ncbi.nlm.nih.gov/pubmed/23348367
http://dx.doi.org/10.1021/nl500022z
http://www.ncbi.nlm.nih.gov/pubmed/24437363
http://dx.doi.org/10.1039/C4EE00450G
http://dx.doi.org/10.1021/ja5082475
http://www.ncbi.nlm.nih.gov/pubmed/25243345
http://dx.doi.org/10.1021/jp506133y
http://dx.doi.org/10.1021/acs.jpclett.5b02774
http://www.ncbi.nlm.nih.gov/pubmed/26781042
http://dx.doi.org/10.1021/acsenergylett.6b00032
http://dx.doi.org/10.1126/sciadv.1501764
http://www.ncbi.nlm.nih.gov/pubmed/27386565
http://dx.doi.org/10.1021/nn2000492
http://www.ncbi.nlm.nih.gov/pubmed/21391718
http://dx.doi.org/10.1002/anie.201402822
http://www.ncbi.nlm.nih.gov/pubmed/24910179
http://dx.doi.org/10.1016/j.electacta.2014.01.037
http://dx.doi.org/10.1016/j.electacta.2014.08.057
http://dx.doi.org/10.1039/c3ee40831k
http://dx.doi.org/10.1021/cm4021518
http://dx.doi.org/10.1021/ar00051a007
http://dx.doi.org/10.1002/cphc.201201044
http://www.ncbi.nlm.nih.gov/pubmed/23494937
http://dx.doi.org/10.1038/ncomms12012
http://www.ncbi.nlm.nih.gov/pubmed/27377305
http://www.artiphyction.org
http://dx.doi.org/10.1016/j.electacta.2015.07.043

Catalysts 2017,7, 13 23 of 23

102. Hernandez, S.; Barbero, G.; Saracco, G.; Alexe-Ionescu, A.L. Considerations on oxygen bubble formation
and evolution on BiVOy porous anodes used in water splitting photoelectrochemical cells. J. Phys. Chem. C
2015, 119, 9916-9925. [CrossRef]

103. Olateju, B.; Kumar, A. Techno-economic assessment of hydrogen production from underground coal
gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen
from oil sands. Appl. Energy 2013, 111, 428-440. [CrossRef]

® © 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1021/acs.jpcc.5b01635
http://dx.doi.org/10.1016/j.apenergy.2013.05.014
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	BiVO4 as a Photoanode 
	Advantages of BiVO4 as a Photoanode 
	Disadvantages of BiVO4 as a Photoanode 


	Top-Performing BiVO4-Based Photoanodes 
	Strategies Adopted to Enhance Reaction Kinetics in Solar Water Oxidation 
	Strategies Adopted to Enhance the Electron Mobility in Solar Water Oxidation 
	Morphology Control 
	Addition of n-Type Conductivity Dopants 
	Heterojunction Formation 
	Use of Passivation Layers 
	Substrate Modification 

	Summary of BiVO4-Based Photoanodes with Photocurrent Densities > 3.5 mA/cm2 at 1.23 V vs. RHE 

	Critical Issues Hampering the Scale-Up of BiVO4-Based PECs 
	Synthesis Scalability 
	Oxygen Evolution Catalysts 
	Long-Term Stability 
	Large-Scale PEC Prototype Issues: The ARTIPHYCTION Experience 
	BiVO4-Photoanode PEC Tandem Device Assemblies 

	Conclusions 

