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Abstract: Immobilized and stabilized lipases are important biocatalytic tools. In this paper, different
tailor-made bifunctional supports were prepared for the immobilization of a new metagenomic lipase
(LipC12). The new supports contained hydrophobic groups (different alkyl groups) to promote
interfacial adsorption of the lipase and aldehyde groups to react covalently with the amino groups
of side chains of the adsorbed lipase. The best catalyst was 3.5-fold more active and 5000-fold
more stable than the soluble enzyme. It was successfully used in the regioselective deacetylation of
peracetylated D-glucal. The PEGylated immobilized lipase showed high regioselectivity, producing
high yields of the C-3 monodeacetylated product at pH 5.0 and 4 °C.

Keywords: regioselective hydrolysis; biocatalysis; lipase; interfacial activation; covalent immobilization;
tailor-made supports; enzyme stabilization

1. Introduction

Lipases (EC 3.1.1.3) normally catalyze the hydrolysis of carboxylic esters in aqueous media,
but they can also be used to synthesize carboxylic esters in water-restricted media, exhibiting high
regio-, chemo-, and enantioselectivity. Due to these properties, lipases have been used in different
reactions, standing out among the most widely used enzymes in biotechnology [1,2].

Recently, a new lipase, LipC12, was identified in a metagenomic library constructed from soil
samples contaminated with fat [3]. LipC12 had a specific activity against long-chain triglycerides
(e.g., olive oil 1722 U-mg ) that is comparable to the specific activities of several well-known commercial
lipases [3,4]. Furthermore, LipC12 was stable at moderate temperatures and in the presence of
co-solvents such as methanol, propanol, or acetone [3]. These features suggest that LipC12 might be
suitable for use in biocatalysis.
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Typically, industrial biocatalytic processes require that the lipases be immobilized since that
immobilization facilitates reutilization of the enzyme, reducing process costs [5]. The immobilization of
different lipases has been performed using different immobilization methods such as covalent linkage
with different reactive groups, electrostatic or hydrophobic adsorptions, entrapment, encapsulation, or
cross-linked enzyme aggregates (CLEAs); and using different materials such as nanomagnetic particles,
microspheres, organic or inorganic materials, porous and/or macroporous gel beads, graphene oxides,
exfoliated bentonite, and many others [6-19]. The different immobilization methods have enabled the
procurement of lipase catalysts with different properties in terms of activity, stability, and selectivity [5].

The most successful strategy used for lipase immobilization is adsorption on hydrophobic
supports [5,20]. This strategy has permitted the purification and immobilization of various lipases in a
single step [9,11,21,22]. These protocols are based on the special characteristics and mechanisms of
lipases. In aqueous media, lipases are in equilibrium between closed and open forms. In the closed
form, the lid, which is formed by a short alpha helix, secludes the catalytic site from the medium,
making it inaccessible to the substrate, such that the lipase is in an inactive state. In the open and active
form, the internal side of the lid and the surroundings of the active site form a hydrophobic pocket that
is exposed to the medium. The open form is stabilized upon contact of the lipase with a hydrophobic
surface, as occurs at the oil-water interface when lipases are used to hydrolyze triacylglycerides in
oil-in-water emulsions [9,11]. The adsorption of lipases in the open form at this interface leads to
high activity in a phenomenon that is called interfacial activation. Immobilization by adsorption
on hydrophobic surfaces takes advantage of this phenomenon by fixing the lipase predominantly
in its open conformation. This gives this method a significant advantage over other methods that
immobilize the lipase by other regions and which therefore allow the immobilized lipase to equilibrate
between the open and closed conformations. This method is specific and yields more active and
selective catalysts [23,24], this being especially important for the catalysis of complex reactions, such as
regioselective deprotection reactions with carbohydrates [25]. However, physical adsorption also has a
significant disadvantage: the association between the protein and the support is reversible, meaning
that the lipase can leach from the solid support, especially in the presence of low concentrations of
detergents or solvents [9].

One strategy for preventing the leaching of lipases from hydrophobic supports would be to create
covalent bonds between the adsorbed enzyme and the support. In fact, covalent immobilization of
enzymes using aldehyde-activated supports is a widely used technique [26]. However, a heterofunctional
support that combines hydrophobic and aldehyde groups in the same matrix has not previously
been described.

In the present work, novel tailor-made alkyl-aldehyde supports were prepared (Scheme 1).
The novel supports contain: (i) a very dense layer of different hydrophobic moieties (different alkyl
groups) that are able to absorb lipases at neutral pH; and (ii) a high concentration of aldehyde groups
that are able to react covalently with the enzyme, especially at alkaline pH. The presence of different
groups with different functions on the surface of the support should permit better control of the
immobilization, which occurs through a two-step mechanism: first the enzyme adsorbs onto the
hydrophobic groups and then the aldehyde groups react with it, immobilizing it covalently.

These novel functionalized supports were used to immobilize the novel lipase LipC12,
and the stability, activity, and regioselectivity of the new heterogeneous biocatalyst were tested.
The best heterogeneous biocatalyst that was obtained was used in the regioselective hydrolysis of
per-O-acetylated D-glucal, an interesting building block for the synthesis of various tailor-made
di- and trisaccharides.
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Scheme 1. (A) Preparation of new tailor-made alkyl-aldehyde supports; (B) Mechanism of

immobilization-stabilization of lipases in the open form on new alkyl-aldehyde supports. n = C8
(1-octanethiol); C12 (1-dodecanethiol) and C18 (1-octadecanethiol).

2. Results and Discussion

2.1. Preparation of New Alkyl-Aldehyde Supports

Agarose beads were utilized as the base matrix for the construction of different bifunctional
supports. The surface of the support, which is rich in primary hydroxyl groups, was activated in
alkaline conditions, with epiclorohydrin, forming epoxy groups and diol groups (Scheme 1A). The total
amount of activated primary hydroxyl groups was around 65 umol-g~!, with epoxy groups accounting for
23 umol-g~! and diol groups accounting for 42 pmol-g ! (Table 1). The epoxy groups were functionalized
with different bifunctional hydrophobic agents (octane-, dodecane-, and octadecane-thiol) in order to
have supports containing groups with different degrees of hydrophobicity for interfacial adsorption
of the lipase (Scheme 1A). The diol groups were then oxidized with sodium periodate, producing
aldehyde groups. These aldehyde groups are capable of reacting covalently with different amine
groups of the protein. Immobilization of the lipase on this support occurs in two steps: first, the enzyme
adsorbs hydrophobically in an orientation that favors the open form; second, the aldehyde groups
react covalently with the side chains of lysine that are exposed at the surface of the enzyme, fixing it
covalently o the support (Scheme 1B).

Table 1. Quantification of groups on the new alkyl-aldehyde supports.

Support Ligands (umol-g—1) Diol Groups (umol-g—1)
Agarose-Epoxy 23 +04 43 £ 04
C8-aldehyde 23+1 43+1
Cl12-aldehyde 21+£1.6 41+16
C18-aldehyde 19+11 38+1.1

The number of epoxy/ligands groups was calculated from the difference in periodate consumption
between the hydrolyzed support and the initial epoxy support as described in the methods section. Results
are expressed as the average of triplicate assays =+ the standard error of the mean.
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2.2. Immobilization of LipC12 on New Alkyl-Aldehyde Supports

Figure 1 shows the immobilization of LipC12 by adsorption onto the new alkyl-aldehyde supports.
LipC12 was quite rapidly immobilized at pH 7.0 on all bifunctionalized supports, with complete
immobilization (i.e., >95% removal of activity from the supernatant) occurring in less than 2 h.
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Figure 1. Immobilization courses of LipC12 on new alkyl-aldehyde supports. ((J) C8-aldehyde;
(O) C12-aldehyde; (A) C18-aldehyde. (¢) Control. Symbols: Black (suspension); Hollow (supernatant).
Results are expressed as the average of triplicate assays =+ the standard error of the mean.

LipC12 was activated by adsorption onto the support, with the activities measured for the
suspension being significantly higher than that of the original supernatant (Figure 1). The highest
value of recovered activity, 380%, was obtained with the preparation Cl12-aldehyde/LipC12.
The preparations C8-aldehyde/LipC12 and C18-aldehyde/LipC12 also showed high values of
recovered activity (>200%), showing the hyperactivation of lipase LipC12 immobilized these supports
(Table 2). The results show that these new tailor-made supports allowed the immobilization of this
lipase in its open conformation via interfacial activation [9,11].

Table 2. Principal parameters for immobilization of the lipase LipC12 on new alkyl-aldehyde supports.

Support Immobilization Efficiency (%)  Recovered Activity ® (%) Recovered Activity after Reduction ©
C8-aldehyde >95 357 346
C12-aldehyde >95 380 370
C18-aldehyde >95 252 256

2 Calculated as the difference between the initial and final activities in the supernatant after 2 h of immobilization;
P Recovered activity (%), measured as the ratio between the real activity (U-g ! support) of immobilized LipC12
and theoretical activity of the immobilized LipC12 (U-g~! support); ¢ Recovered activity (%) after incubation at
pH 10 for 1 h and reduction with NaBHy.

In order to fix LipC12 covalently to the support, the immobilized preparations were incubated at
different pH values (7.0, 8.5, and 10) for 1 h. After the incubation, the imine bonds formed between
the enzyme and the support were then reduced by adding sodium borohydride. This reduction did
not affect the activity of the immobilized enzyme (Table 2). No leaching of lipase was found after
incubation in surfactants.

2.3. Thermal Inactivation of Different Immobilized LipC12 Preparations

The various immobilized LipC12 preparations previously incubated at different pH values were
incubated in phosphate buffer 25 mM at 55 °C. In all cases, the thermal stability of the derivatives
incubated at pH 10 was higher than that incubated at pH 8.5 and 7.0 or the only adsorbed preparations
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(Figure S1). At pH 7.0, the reactivity of the amino groups of the enzymes was not high enough to
produce a covalent attachment with the aldehyde groups; at pH 10, the increase in the reactivity of the
amine groups of side chains close to the lid that promote the rigidification on this region resulting in
a high stabilization. At 55 °C, C8-aldehyde/LipC12, C12-aldehyde/LipC12, C18-aldehyde/LipC12
conserved more than 80% of their activity after 24 h (Figure 2A) while the half-life of the soluble
enzyme was 37 min.
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Figure 2. Thermal inactivation of LipCl2 immobilized on different alkyl-aldehyde supports.
(A) Inactivation was performed at pH 7.0, 55 °C after incubation at pH 10 for 1 h; (B) Inactivation
was performed at pH 7.0, 80 °C after incubation at pH 10 for 1 h. (M) Cl12-aldehyde/LipC12;
(@) C8-aldehyde/LipC12; (A) C18-aldehyde/LipC12 and (O) Soluble enzyme. Results are expressed as
the average of triplicate assays + the standard error of the mean.

After 24 h incubation at 80 °C, C8-aldehyde/LipC12 and C12-aldehyde/LipC12 still had residual
activities above 50%, while the residual activity of C18-aldehyde/LipC12 was only 20% (Figure 2B).
Intermediary spacer arms (C8 and C12) supports produced a slight increment in the stability effect
achieved when compared with C18. The half-lives were 22 h for C8-aldehyde/LipC12 and 21 h for
C12-aldehyde/LipC12, while the soluble lipase lost 50% of the activity after only 15 s. This means
that the alkyl-aldehyde-lipase preparations were from 2000- to 5000-fold more stable than the soluble
enzyme (Table 3). Considering the retention of activity (Table 2) and stability, the C12-aldehyde/LipC12
preparation was chosen for the remaining studies.

Table 3. Half-lives (in hours) of the different immobilized preparations at 80 °C.

Preparations ? Half-Life (t%) at80°C  Stability Factor

Soluble enzyme 0.004 -
C8-aldehyde/LipC12 22 5500
C12-aldehyde/LipC12 21 5250
C18-aldehyde/LipC12 8 2000

2 Preparations were incubated at 80 °C. Aliquots were withdrawn periodically for quantification of residual
enzymatic activity to estimate the half-life according to Henley and Sadana [27].

2.4. Effect of Temperature and pH on Activity of Free and Immobilized LipC12

The optimum temperatures for the activity of free and immobilized LipC12 were determined over
the temperature range of 20-90 °C. The maximum activity of the free enzyme was obtained at 30 °C
while the optimal temperature for C12-aldehyde/LipC12 was 70 °C (Figure 3).
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Figure 3. Effect of temperature on free and C12-aldehyde/LipC12 activity. (®) Soluble LipC12;
(M) C12-aldehyde/LipC12. The activity was determined using p-nitrophenyl proprionate (pNPP)
as the substrate, at pH 7.0. Results are expressed as the average of triplicate assays & the standard error

of the mean.

This shift in the optimal temperature was related to the improvement of the stability of the
obtained preparation. The high improvement after adsorption and covalent linkage is important
because it permits the transformation of a mesophilic enzyme into an enzyme with properties that
are similar to, or even better than, those of enzymes from thermophile organisms, such as Bacillus

thermocatenolatus lipase (BTL) and Thermus thermophilus lipase (TTL) [28,29].

In relation to the effects of pH on activity, the maximum activity was obtained at around pH 7.0
for both free LipC12 and C12-aldehyde/LipC12 (Figure 4).

Figure 4.
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Effect of pH on free and Cl2-aldehyde/LipC12 activity.

(@) Soluble LipC12;

(M) C12-aldehyde/LipC12. The activity was determined using p-nitrophenyl proprionate (pNPP) as the

substrate. Results are expressed as the average of triplicate assays + the standard error of the mean.

2.5. Regioselective Hydrolysis of 3,4,6-tri-O-acetyl-D-glucal by Immobilized LipC12

C12-aldehyde/LipC12 was used to catalyze the hydrolytic deacetylation of per-O-acetylated-D-glucal
(1). The yield of this reaction depends strongly on the reaction conditions. The principal variables
assayed were the pH and temperature. Additionally, the recovering of the optimal catalyst with PEG
was performed. This treatment has demonstrated that it is able to improve the activity and stability [30].
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The activity of the soluble enzyme was also assayed. However, at 25 °C, its activity was extremely low,
so no attempt was made to assay it at 4 °C (data not shown).

At 25 °C, low regioselectivity was C12-aldehyde/LipC12 at both pH 7.0 and pH 5.0, producing
only around 10% yield of monodeacetylated products at 100% conversion (Table 4). The PEGylated
preparation, C12-aldehyde/LipC12-PEG, had a slightly improved regioselectivity at pH 5.0 and 25 °C,
although the yield of 3-OH product (2) was only 22%.

Table 4. Regioselective hydrolysis of 3,4,6-tri-O-acetyl-D-glucal (1) using C12-aldehyde/LipC12.

OAc OAc OH OAc
AcO —== Biocatalyst HO — AcO S AcO —
1 3 4

C

2
. o Spe.a.ﬁ ¢ Time  Total Conversion ? Yield2  Yield3  Yield 4 Other b
Preparation pH T°C Activity o o o o Products
1 (h) (%) (%) (%) (%) o
(U-mg™7) * (%)
C12-aldehyde
/LipC12 7.0 4 18 96 77 52 1 7 17
Cl12-aldehyde
/LipC12 5.0 4 4 96 34 26 1 1 6
Cl12-aldehyde
/LipC12-PEG 5.0 4 15 96 81 69 0 3 9
C12-aldehyde
/LipC12 7.0 25 140 24 100 5 4 0 91
Cl12-aldehyde
/LipC12 5.0 25 140 24 100 11 0 0 89
Cl2aldehyde 55 110 24 100 2 2 2 74

/LipC12-PEG

(1)- 3,4,6-tri-O-acetyl-D-glucal; (2)- 4,6-di-O-acetyl-D-glucal; (3)- 3,4-di-O-acetyl-D-glucal; and (4)- 3,6-di-O-acetyl-
D-glucal; * x10~3; @ Total conversion of substrate (1) with different products; ® D-glucal and dideacetylated products.

The regioselectivity was higher at 4 °C than at 25 °C (Table 4). At pH 7.0, 52% of C-3-OH product
(2) was obtained at 77% conversion, with slight conversion into 4-OH product (4) (7%) and 6-OH
product (3) (1%), reducing the undesired product in 17% (Table 4). The PGEylation of this catalyst
(C12-aldehyde/LipC12-PEG) allowed an improvement of the regioselectivity. This catalyst produced
69% of 3-OH product (2) at 81% conversion, and only 3% of 4-OH product (4) (Table 4).

The PEGylated catalyst was reused in three reaction cycles at 4 °C and similar reaction yields were
obtained, demonstrating its reusability (Figure S2). However, the recycle of the catalysts in this reaction
are not reported, these data are similar to others obtained by different authors for the hydrolysis of
esters as reported by Macario et al. [31], where the catalyst (lipase of Rhizomucor miehei immobilized on
zeolites) was used in the hydrolysis of methyl myristate for four cycles or Cao et al. [12] that recycled
the catalyst (nanohybrids of Yarrawia lipolytica lipase) for 12 reaction cycles using pNPP as substrate.

3. Materials and Methods

3.1. Materials

The strains E. coli TOP10 (Invitrogen, Carlsbad, CA, USA) and BL21(DE3) (Novagen, Madison,
M1, USA) and the vector pET-28a(+) (Novagen, Madison, MI, USA) were used as the recombinant
protein expression system. Agarose 4 BCL was purchased from Agarose Bead Technologies (Madrid,
Spain). Epichlorhydrine, iminodiacetic acid, triethylamine, sodium borohydride, sodium periodate,
1-octanothiol, 1-dodecanothiol, 1-octadecanethiol, tri-O-acetyl-D-glucal, polyethylene glycol (1.500),
nickel(Il) chloride hexahydrate, and high molecular weight protein (Sigma Marker™) were purchased
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from Sigma (Sigma-Aldrich, St. Louis, MO, USA). The substrate p-nitrophenyl proprionate (pNPP)
was synthesized according to Ghosh et al. [32]. All other chemicals used were of analytical grade.

3.2. Overexpression of Recombinant LipC12

E. coli BL21(DEB3) cells carrying the pET28a(+)/1lipC12 plasmid were grown in 500 mL of LB medium at
37 °C until an ODgqg of 0.5 and induced by the addition of Iso-propyl 3-D thiogalactopyranoside (IPTG)
to a final concentration of 0.5 mM. The induced culture was incubated for a further 16 h at 20 °C before
harvesting the cells by centrifugation (10,000 rpm for 5 min) at 4 °C. The cell pellet was re-suspended
in 30 mL of lysis buffer (50 mM Tris-HCl pH 7.5, 500 mM NaCl, 10 mM (-mercaptoethanol, 1% (v/v)
Triton X-100 and 10% (v/v) glycerol) and disrupted by ultrasonication in an ice bath (15 cycles of
20-s pulses, 90 W, with 30-s intervals), using a SONICATOR® XL 2020 (Heat Systems-Ultrasonics Inc.,
New Highway, Farmingdale, NY, USA). The crude extract was then centrifuged at 15,000 rpm 30 min
at 4 °C to pellet the cell debris.

3.3. Protein Content Determination and Electrophoresis Analysis

Protein content was determined by the Bradford method [33] using a Coomassie Protein Assay Kit
(Pierce Biotechnology, Rockford, IL, USA) with bovine serum albumin as the standard. Electrophoresis
of protein samples was done with 12% (w/v) SDS-PAGE [34] and the gel was stained with Coomassie
Brilliant Blue R-250 and destained with methanol/acetic-acid/water (5/1/4 v/v/v). A mixture
of high molecular weight proteins (Sigma Marker™, Sigma-Aldrich®) was used as the molecular
weight standard.

3.4. Lipase Activity Assay

Lipase activity was determined using p-nitrophenyl proprionate (p-NPP) as the substrate. Free or
immobilized enzyme was added to the reaction mixture (0.4 mM pNPP, mM NaH,PO,4 pH 7.0) and the
increase of absorbance was monitored at 348 nm (at pH 7, €348 nm = 5150 M~L.em™1) [35]. One unit
of activity (U) was defined as the production of 1 umoL of p-nitrophenol per minute, under the
assay conditions.

3.5. Preparation of Supports

3.5.1. Epoxy-Agarose

The epoxy-agarose support was prepared according to Mateo et al. [26]. Briefly, 10 g of agarose
BLC (cross-linked 4% agarose beads) was mixed with 44 mL of distilled water, 3.2 g of NaOH, 200 mg
of NaBHy, 16 mL of acetone, and 11 mL of epichlorohydrin. The suspension was stirred for 16 h at 25 °C.
The epoxy-agarose was washed with an excess of water, filtered through a glass filter, and stored at 4 °C.

3.5.2. Epoxy-Agarose-IDA-Ni%*

The epoxy-agarose support was treated with 0.5 M iminodiacetic acid in solution at pH 11 for different
durations (1, 3, 5, and 24 h), 25 °C. The support was then chelated with a NiCl, solution (30 mg-mL_l)
for 1 h. Finally, the support was washed, filtered under using a glass filter, and stored at 4 °C.

3.5.3. Alkyl-Agarose-Aldehyde

The epoxy-agarose support was treated with 100 mM of different alkyl thiols (1-octanothiol;
1-dodecanothiol and 1-octadecanethiol) in a 25 mM NaHCOj; solution at pH 10 for 24 h, 25 °C. For the
treatment with 1-octadecanethiol, 50% (v/v) acetone was used as a co-solvent. The reagent was
solubilized using a 50:50 (v/v) mixture of acetone and NaHCOj3 solution. After that, the supports were
oxidized with NalO4 (100 mM), washed, filtered through a glass filter, and stored at 4 °C.
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The number of epoxy/ligand groups was calculated from the difference in periodate consumption
between the hydrolyzed support and the initial epoxy support. Periodate consumption was quantified
using potassium iodide, as previously described [36].

3.6. Purification of Recombinant LipC12

The purification was performed using the IDA-Ni?* supports prepared from agarose gel beads
and activated with different amounts of metal chelate groups [37]. The optimal support was that
obtained after 3 h of activation with IDA (data not shown). For the purification, 4 mL of crude
extract (3.2 mg-mL~1) was offered for 1 g of support and the residual activity of the supernatant was
monitored over time. After that, the support was washed three times with 25 mM NaH;PO4 pH 7.0
and resuspended in the same buffer at increasing concentrations of imidazole. Figure S3 shows the
protein band corresponding to the molecular mass of LipC12 (32 kDa) after SDS-PAGE of the eluate
from IDA-Ni?* support at 50 mM of imidazole. Table S1 summarizes the results of the purification
step, showing an activity yield of 58%. The specific hydrolytic activity against pPNPP was 6.2 U-mg .
This preparation was used in further experiments of immobilization.

3.7. Enzyme Immobilization

A standard protocol was established for the immobilization of LipC12 on all supports. One gram
of support was suspended in 4 mL of enzyme solution (containing 0.6 mg of protein) in 25 mM
NaH;PO4 at pH 7, 25 °C and left under mild stirring. The time course of immobilization was evaluated
by determining the activity (Section 3.4) in aliquots of the supernatant and suspension removed over
time. After the immobilization, the preparations were washed with 25 mM NaH,PO, pH 7.0 and
incubated in 4 mL of 25 mM NaHCO; at different pH values (7.0, 8.5, 10) at 25 °C for 1 h. Finally,
the preparations were reduced by adding NaBH, (1 mg-mL~!) at pH 10 and leaving the mixture under
stirring for 30 min.

The immobilization efficiency (IE, %) was calculated as:

Ai —A f
El = ———— x 100% 1)
A
where A; is the hydrolytic activity (U) of the enzyme solution before immobilization and Ay is the
hydrolytic activity (U) remaining in the supernatant at the end of the immobilization procedure.

The recovered activity (R, %) was calculated as:

R = j—; x 100% 2)
where Ay is the observed hydrolytic activity the immobilized preparation (U-g~! of support) and A
is the theoretical activity of the immobilized preparation (U-g~! of support), calculated based on the
amount of activity removed from the supernatant during the immobilization procedure.

In some assays, immobilized preparations were treated after reduction with PEG (polyethylene
glycol). PEG was used as an additive due to its protective effect on the enzymes described in the
literature [30,38]. To assay, 1 g of immobilized preparation was added to 10 mL phosphate buffer
pH 7.0 25 mM containing 40% PEG1500 (w/v). The suspension was stirred for 2 h at 25 °C. After that,
the preparation was washed, filtered under using a glass filter, and stored at 4 °C.

3.8. Thermal Stability

The thermal stabilities of free and immobilized LipC12 were assessed by incubation in sodium
phosphate buffer (25 mM, pH 7.0) in a water bath at 55 and 80 °C. Inactivation was modeled based
on the deactivation theory proposed by Henley and Sadana [19]. Inactivation parameters were
determined from the best-fit model of the experimental data which was the one based on a two-stage
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series inactivation mechanism with residual activity. Half-life was used to compare the stability of the
different preparations, being determined by interpolation from the respective models described in [39].

3.9. Effect of pH and Temperature on the Activity of Free and Immobilized LipC12

The optimum temperature for the activity of free and immobilized LipC12 was determined over
the temperature range of 20-90 °C. The effect of pH on the activity was determined over a range of
pH 4.0-8.0, at 25 °C, using citrate (pH 4.0-6.0) and phosphate (pH 6.0-8.0) buffers at 25 mM. The activity
was determined using p-nitrophenyl proprionate (pNPP) as substrate (Section 3.4). The activities were
calculated in relation to controls that were treated identically, but without enzyme to control of
spontaneous hydrolysis of the substrate.

3.10. Hydrolysis of 3,4,6-tri-O-acetyl-D-glucal

For the hydrolysis of peracetylated 3,4,6-tri-O-acetyl-D-glucal, 200 mg of immobilized Lipc12 was
added to a solution (1.5 mL) of substrate-1 (1 mM) in 25 mM of phosphate (pH 7.0) or acetate (pH 5.0)
buffer. The reaction was carried out at 25 or 4°C, 50 rpm. Samples were removed and analyzed by
reverse phase HPLC (Spectra Physic SP 100, Thermo Fisher-Scientific, Waltham, MA, USA) using
a Kromasil C18 column (25 cm x 0.4 cm, 5 um-J) and a UV detector (Spectra Physic SP 8450, Thermo
Fisher-Scientific, Waltham, MA, USA) set at 220 nm. The mobile phase utilized was acetonitrile (20%)
in milli-Q water. The products were characterized and identified as previously described in [24].
Retention times were: 3,4,6-tri-O-acetyl-D-glucal 1-24.6 min, C-3 monodeacetylated 2-6.3 min, C-6
monodeacetylated 3-6.6 min and C-4 monodeacetylated 4-8.1 min. One unit of activity (U) was defined
as the hydrolysis of 1 pmol of substrate per hour. Activities were expressed as specific activities
(U per mg of immobilized protein). The reutilization of immobilized preparations was studied using
the same reaction conditions as described above.

4. Conclusions

Bifunctional supports with aldehyde and different hydrophobic groups have been synthesized.
The main advantage of the immobilization protocol developed in the current work is the ease with
which the amounts of aldehyde and hydrophobic groups on the surface of the support can be
controlled. This enables modulation of immobilization conditions which may be adapted to the
immobilization/stabilization of proteins which may be limited in commercial supports. This versatile
strategy could also be applied to synthesize supports with other hydrophobic groups to immobilize
different lipases, producing catalysts with different properties. These modulated lipase biocatalysts
could be used to produce products that are difficult synthesize by traditional methods.

The use of different supports allowed us to obtain immobilized preparations of LipC12 with
different activities and stabilities. The best catalyst was 3.5-fold more active and 5000-fold more stable
than the soluble enzyme. Thus, the immobilization procedure converted a mesophilic enzyme into
an enzyme that can operate at high temperature, with a maximal activity obtained at 70 °C.

The optimal catalyst was used for the regioselective hydrolysis of peracetylated-D-Glucal.
The highest yield of the C-3 monodeacetylated product was 69% with a conversion of 81%, at pH 5
and 4 °C using the PEGylated preparation.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/6/12/191/s1,
Figure S1: SDS-PAGE analyses of the LipC12 purification; Figure S2: Thermal stability of different preparations of
LipC12; Figure S3: Hydrolysis of 3,4,6-tri-O-acetyl-D-glucal during successive reaction cycles; Table S1: Summary
of the purification of LipC12.
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