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Abstract: Direct methane solid oxide fuel cells, operated by supplying methane to a 
Ni/YSZ anode, suffer from degradation via accumulation of carbon deposits on the Ni 
surface. Coating a 40 µm thin film of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) perovskite on the 
Ni/YSZ anode surface decreased the amount of carbon deposits, slowing down the 
degradation rate. The improvement in anode durability could be related to the oxidation 
activity of LSCF which facilitates oxidation of CH4 and carbon deposits. Analysis of the 
crystalline structure of LSCF revealed that LSCF was stable in the reducing anode 
environment under H2 and CH4 flow at 750 °C and retained its perovskite structure 
throughout the 475 h long-term stability test. 

Keywords: LSCF perovskite; SOFC anode; methane utilization; stability; redox;  
carbon deposition 

 

1. Introduction 

Perovskites are mixed metal oxides with the general formula of ABO3, in which A and B are  
two different metal cations. Perovskites have attracted vast interest in the catalysis area owing to the 
unique crystal structure, oxygen vacancy, redox and acid-base properties, and thermal stability.  
La1−xSrxCo1−yFeyO3 (lanthanum strontium cobalt iron oxide, LSCF) is a perovskite, which has been 
synthesized by incorporation of strontium and iron cations into a lanthanum cobalt oxide crystal structure.  

OPEN ACCESS 



Catalysts 2014, 4 147 
 

LSCF has found its application as oxygen membrane [1–4], catalyst for combustion and oxidative 
coupling of hydrocarbons [5–7], and electrocatalyst for redox reactions in solid oxide fuel  
cells (SOFCs) [8–12]. LSCF as an electrode for SOFC exhibits high mixed electronic-ionic 
conductivity, high thermal and chemical stability, and also compatibility with other fuel cell materials. 
Oxygen permeation fluxes through La1−xSrxCo1−yFeyO3 perovskite have been reported to be 
comparable or superior to those of YSZ (Y2O3 stabilized ZrO2) membranes at the same  
temperature [1–3,13].  

Different methods have been used to prepare LSCF perovskite including Pechini [14–16],  
glycine nitrate combustion [17], solid state reaction [18], and spray pyrolysis [19]. The Pechini 
method, a solution technique, has been shown to produce high purity and homogeneous perovskite 
phase with high surface area at low synthesis temperature without intermediate grinding.  
This approach immobilizes the metal ion precursors in a polyester network which is formed by citric 
acid and ethylene glycol [20,21]. We employed the Pechini method to synthesize LSCF perovskite for 
this study.  

Fuel cells offer a clean technology with high efficiencies for power generation from direct 
conversion of chemical energy to electrical energy using fuel and an oxidant. A solid oxide fuel cell 
consists of an anode and a cathode separated by a solid electrolyte. The anode is in contact with the 
fuel and the cathode is exposed to air. Figure 1 illustrates the operating principle of solid oxide fuel 
cell along with the reactions in presence of H2 or CH4 fuel. Oxygen from air adsorbs on the cathode 
surface becoming oxygen ion and the oxygen ion passes through the ion conducting electrolyte to meet 
the fuel on the anode side. Electrochemical oxidation of fuel on the anode/electrolyte interface 
generates products and releases electrons. The transfer of electrons from the anode to the cathode 
through an external circuit completes the electrochemical cycle [22].  

Figure 1. Schematic of solid oxide fuel cell operating principle. 

 

Among a wide variety of fuels that can be used in fuel cells, natural gas has generated significant 
interest because of its abundance in the United States. Therefore, development of a stable anode 
catalyst for direct utilization of methane as a major component of natural gas has been considered. 
Nickel in a conventional Ni/YSZ anode shows high catalytic activity for C–H bond dissociation and  
C–C bond formation in hydrocarbons. Formation of C–C bond, known as coking, deactivates the 
Ni/YSZ anode catalyst through the loss of active sites and microstructural damage [23,24]. A number 
of approaches were investigated to suppress the coking and delay the anode deactivation including the 
addition of steam [25], dilution of hydrocarbon fuel with CO2 [26,27], using the alternate anode 
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materials such as bimetallic anodes [28], and applying a non-coking barrier layer onto the anode 
surface [29,30]. 

This study investigated the effect of LSCF perovskite coating on the Ni/YSZ anode surface on  
long-term stability of the anode in direct CH4 SOFC. LSCF, which has been used frequently as a 
cathode [31–35], for the first time is used as a promoter in direct CH4 Ni/YSZ anode catalyst. LSCF 
was selected because of its oxidation activity and mixed conductivity as well as its moderate cost. The 
cost of LSCF powder is about three times greater than that of conventional Ni/YSZ anode powder.  

Although perovskite materials with mixed electronic-ionic conductivity are widely used as cathodes 
for solid oxide fuel cells, the catalytic and electrocatalytic oxidation activity of perovskites enable the 
reversible oxygen redox reaction Equation (1) to occur on anodes at the operating temperature  
of SOFC. 

O2 + 4e− ↔ 2O2− (1) 

The occurrence of Equation (1) in reverse direction for oxidation of CH4 and carbon deposits could be 
one of the key reasons for LSCF to slow down anode degradation. Activity and long-term stability of a 
Ni/YSZ anode and a Ni/YSZ anode promoted with LSCF (LSCF-Ni/YSZ) was studied in CH4 by 
continuous monitoring of electrochemical performances. 

2. Results and Discussion 

Figure 2 shows voltage-current (V-I) curves and Nyquist plots of impedance spectra for the Ni/YSZ 
anode fuel cell recorded in He/H2 (100 sccm, 50 vol% H2) after 18 h of reduction and in He/CH4  
(25 vol% CH4) after 1 h of switching fuels. The Ni/YSZ anode fuel cell generated a maximum current 
density of 295 mA/cm2 in H2 and CH4. The relatively low current density of the fuel cell resulted from 
high resistance of the thick anode and electrolyte layers. Fuel cell resistance is a function of the 
thickness of the anode, electrolyte and cathode [36]. The ohmic resistances (the intercept of the high 
frequency impedance arc with the X-axis) of the Ni/YSZ anode in H2 and CH4 are the same. Ohmic 
resistance resulted from resistance against ion transfer through electrolyte and electrodes, and electron 
transfer through electrodes and current collectors. Polarization resistances were obtained by 
subtraction of ohmic contribution from total resistance (the X value at the lowest frequency of 
impedance arc). The polarization resistances were 7.2 and 6.1 Ω∙cm2 in H2 and CH4, respectively.  
The absolute value of cathode polarization was assumed to remain constant. Therefore, the change in 
polarization resistance was ascribed to the change in anode polarization after switching fuels.  
The change in anode polarization was shown by the ratio of polarization resistance toward oxidation of 
CH4 to that of H2, which is 0.8 in the current study, compared to 2.5 in our previous work [37].  
Values reported for polarization resistance ratios of CH4 to H2 vary from 1.8 to 13.6 depending on 
operating conditions and fuel cell specifications [38–40]. The greater polarization resistance of the 
Ni/YSZ anode fuel cell in H2 is consistent with the sharper slope of the corresponding V–I curve at 
low current densities, where voltage loss is dominated by activation polarization [41]. Lower 
polarization resistance in CH4 than H2 could be related to carbon formation from CH4 dissociation 
Equation (2). 

CH4(g) → Cad + 4Had (2) 
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Small amounts of carbon deposits may connect some isolated Ni particles, converting them to active 
sites for electrochemical reactions and allowing the produced electron to transport to the external 
circuit [42]. 

Figure 2. V–I curves and Nyquist plots of impedance spectra for the Ni/YSZ anode fuel cell 
tested at 750 °C in He/H2 (100 sccm, 50 vol% H2) and He/CH4 (100 sccm, 25 vol% CH4). 
Impedance spectra were recorded at open circuit voltage (OCV) with frequency range  
of 106–0.05 Hz. t0 is the time at which He/H2 was switched to He/CH4. YSZ = Y2O3  
stabilized ZrO2. 

 

Figure 3 shows V–I curves and Nyquist plots of impedance spectra for the LSCF-Ni/YSZ anode 
fuel cell in He/H2 (100 sccm, 50 vol% H2) after 16 h of reduction and in He/CH4 (25 vol% CH4) after 3 h 
of switching fuels. Fuel cell operation in H2 and CH4 fuel generated a maximum current density of  
340 and 355 mA/cm2, respectively. The ohmic resistance in CH4 is lower than that in H2. This could be 
due to the gradual penetration of Ag, which has been used for current collection, into the cathode 
microstructure leading to an increase in electronic conductivity [43]. The cross-sectional EDX 
mapping indicated the presence of Ag across the cathode (result not shown). Polarization resistance of 
the LSCF-Ni/YSZ anode fuel cell in H2 was 3 Ω∙cm2, which is greater than the 2.3 Ω∙cm2 in CH4.  
The greater polarization resistance in H2 was also observed for the Ni/YSZ anode fuel cell.  

Figure 3. V–I curves and Nyquist plots of impedance spectra for the LSCF-Ni/YSZ anode 
fuel cell tested at 750 °C in He/H2 (100 sccm, 50 vol% H2) and He/CH4 (100 sccm,  
25 vol% CH4). Impedance spectra were recorded at OCV with frequency range of 106–0.1 Hz. 
t0 is the time at which He/H2 was switched to He/CH4. LSCF = La0.6Sr0.4Co0.2Fe0.8O3.  
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Figure 4 shows maximum power density of the Ni/YSZ and LSCF-Ni/YSZ anode fuel cells 
recorded during the long-term stability test in CH4. Maximum power density decreased with respect to 
time for both fuel cells. The rate of decrease in maximum power density is much slower for the  
LSCF-Ni/YSZ anode than the Ni/YSZ anode fuel cell. The addition of LSCF coating on the Ni/YSZ 
anode increased the operation life of the direct CH4 fuel cell to 475 h. Maximum power density profile 
of the LSCF-Ni/YSZ anode exhibits fluctuation with respect to time. This fluctuation could be 
attributed to repetitive accumulation and oxidation of carbon deposits, in which oxidation of carbon 
deposits was catalyzed by LSCF perovskite. 

Figure 4. Maximum power density of the Ni/YSZ and LSCF-Ni/YSZ anode fuel cell 
during long-term stability test at 750 °C in He/CH4 (100 sccm, 25 vol% CH4). 

 

Figure 5 compares V–I curves and Nyquist plots of impedance spectra of the Ni/YSZ and  
LSCF-Ni/YSZ anode fuel cells during the long-term stability test in CH4. A relatively rapid decrease 
was observed in voltage and current density of the Ni/YSZ anode fuel cell over 38 h of operation in 
CH4. Maximum power density decreased to 22% of its initial value after 38 h. The slopes of the V–I 
curves at low current densities were decreased after 9 h of operation in CH4, matching with the lower 
polarization resistances in the corresponding impedance spectra. The decrease in polarization 
resistance can be explained by deposition of moderate levels of carbon on the anode, which may 
connect isolated metal particles and convert them to active sites for electrochemical reactions [42].  
A gradual decrease in open circuit voltage (OCV) from theoretical OCV was observed after 2 h.  
A significant decrease in OCV (from 0.8 to 0.6 V) was accompanied by a decrease in current density, 
indicating initiation of a crack in the fuel cell after about 13 h. Oxygen leakage into the anode chamber 
from the crack would cause a decrease in OCV and a significant increase in ohmic resistance of the 
fuel cell, shown in the corresponding impedance spectra in Figure 5a. The cell cracking increased 
ohmic resistance by weakening contacts between electrodes and current collectors and interrupting the 
current collection pathway [39]. Further exposure to CH4 fuel resulted in cell fracture and termination 
of current generation at t0 + 41 h. 

Deviation of OCVs from theoretical values, shown in V-I curves of Figure 5b is associated with the 
leak in the LSCF-Ni/YSZ fuel cell. The OCV gradually decreased from 0.88 to 0.78 V over 440 h due 
to extension of leakage. The first sign of crack initiation in the LSCF-Ni/YSZ anode appeared by an 
OCV decrease from 0.78 to 0.4 V after 440 h of exposure to CH4 fuel, compared to 15 h of the Ni/YSZ 
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anode. Current density gradually decreased to 33% of its initial value over 475 h of operation in CH4. 
Impedance spectra of the LSCF-Ni/YSZ fuel cell recorded at OCV during the long-term stability test 
did not show a significant increase or decrease, which is indicative of a stable anode that did not 
undergo severe carbon deposition and structural changes. Noises in impedance spectra that  
appeared after 440 h operation are likely due to partial detachment of the current collectors from the 
electrode surfaces. 

Figure 5. V–I curves and Nyquist plots of impedance spectra for the (a) Ni/YSZ anode, and  
(b) LSCF-Ni/YSZ anode fuel cells recorded during the long-term stability test at 750 °C in 
He/CH4 (100 sccm, 25 vol% CH4). t0 is the time at which He/H2 was switched to He/CH4. 

 

Fracture of fuel cells by deposition and diffusion of high levels of carbon into the bulk of the Ni has 
long been recognized as a key problem of direct methane fuel cells with Ni-based anodes [39,44–46]. 
Examination of the scanning electron microscopy (SEM) image and EDX mapping of the fractured 
Ni/YSZ anode in Figure 6 revealed that the amount of carbon deposit varied from a C/Ni weight ratio 
of 0.1 at 5 mm from the center Figure 6a to 0.4 near the center Figure 6b and 0.2 at the center  
Figure 6c, where the inlet CH4 fuel was directed toward the anode. Figure 6b also shows that the 
majority of deposited carbon is located on the Ni surface. Previous studies on types of carbon produced 
on anodes during exposure to hydrocarbon fuels at temperature range of 625–900 °C showed that 
carbon was deposited in graphitic and disordered form [37,47–49]. Graphitic carbon has been 
suggested to be responsible for anode degradation by dissolution into the bulk of the Ni/YSZ cermet 
resulting in volume expansion and breakage of the Ni-Ni network [37,50]. 
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Figure 6. The Ni/YSZ anode fuel cell image and scanning electron microscopy (SEM) 
micrograph/ EDX mapping of the (a) Ni/YSZ surface; (b) coke that is deposited on the 
Ni/YSZ surface; and (c) coked spot on the Ni/YSZ surface after stability test in CH4. 

 

The most obvious effect of LSCF is to delay cracking of the fuel cell from 38 h to 475 h where 
significant drops in OCV occurred. The SEM image and EDX mapping of the cracked LSCF-Ni/YSZ 
anode in Figure 7 revealed that deposited carbon was sparse on the Ni particle surface with a  
C/Ni weight ratio of 0.1, whereas deposited carbon was not observed on LSCF. The absence of carbon 
deposits on LSCF could be explained by the scheme of the LSCF-Ni/YSZ anode cross-section in 
Figure 8. This scheme shows that LSCF, a mixed conductor, catalyzes electrocatalytic oxidation of 
carbon or CH4 with O2− anions transported from YSZ and releases electrons produced during reaction 
to the Ni connected particles. Distribution of LSCF in the LSCF-Ni/YSZ anode and its effect on fuel 
cell stability and performance will be further studied.  

The ability of LSCF to oxidize carbon should slow down degradation of the Ni/YSZ anode. 
Oxidation of the deposited carbon from CH4 by LSCF has been viewed as a self de-coking process by 
Huang et al. [51,52] who suggested that the lattice oxygen of LSCF was responsible for the oxidation. 
Oxidation by LSCF would produce oxygen vacancies in the LSCF lattice, which may be filled with 
O2− anions coming from YSZ in the anode. These oxygen extraction (i.e., LSCF reduction) and 
refilling (i.e., LSCF re-oxidation) processes are kinetic controlled and could lead to oscillation of 
electric current and CO/CO2 product formation [51]. The formation rate of CO/CO2 oxidation products 
strongly depends on oxidation activity of the perovskite catalyst. Oxidation activity of perovskites  
has been related to their reducibility. Highly reducible perovskites such as LaCoO3 have been shown to 
be more active than less reducible perovskites such as LaCrO3 [13,53]. LaCoO3 has been found to be 
one of the most stable structures among the Co-based perovskites in reducing environments [54].  
LaCoO3 also showed high propensity toward re-oxidization of its reduced forms back to its initial 
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structure [55]. Incorporation of strontium into LaCoO3 could enhance its reducibility, leading to high 
oxidation activity [56–58]. Partial substitution of La3+ with Sr2+, a lower oxidation state cation, would 
convert Co3+ to Co4+ and produce oxygen vacancies at low O2 partial pressure. This partial substitution 
could decrease the perovskite stability in a reducing environment [59], but increase the oxygen 
transport capability and oxidation catalytic activity. Oxidation catalytic activities of the most active 
perovskites, La1−xSrxBO3 (B: Mn, Co, Fe; 0 < x < 0.4), toward CH4 oxidation are comparable to that of 
Pt/Al2O3 catalyst [60]. It has also been found that LSCF was able to exhibit high catalytic activity 
toward CH4 coupling reaction; however, it can exhibit electrocatalytic activity only for complete 
oxidation of CH4 [61]. 

Figure 7. Image of the LSCF-Ni/YSZ anode on the cut-off piece of the metal tube reactor 
after stability test in CH4, and SEM micrograph/ EDX mapping of the (a) Ni/YSZ surface; 
(b) cracked region on the Ni/YSZ surface; and (c) LSCF surface. The location of carbon is 
highlighted with red circles. 

 

Figure 8. Schematic of the LSCF-Ni/YSZ anode cross-section with LSCF mixed 
conductor, Ni electronic conductor and YSZ ionic conductor phases. 
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Comparison of XRD patterns of LSCF perovskite before and after the long-term stability test in 
Figure 9a,b showed that both X-ray diffractometer (XRD) patterns of LSCF matched well with the 
characteristic peaks of LSCF perovskite phase [62]. It is unclear whether LSCF had decomposed to 
separate phases and then re-oxidized with O2− anions coming from the cathode side during the stability 
test or whether it was re-oxidized by exposure to ambient environment. Figure 9b also shows Ni, NiO 
and YSZ crystalline phases from the LSCF-Ni/YSZ anode along with a number of minor peaks that 
could not be matched with any known phases. 

Figure 9. X-ray diffractometer (XRD) patterns of the (a) synthesized LSCF powder after 
calcination; and (b) LSCF-Ni/YSZ anode after stability test in CH4. 

 

Crystallite size of LSCF and YSZ was increased after the long-term stability test from 16 to 25 nm 
and from 38 to 46 nm, respectively, as determined by the Scherrer equation. Increase in crystallite size 
of LSCF on the Ni/YSZ anode due to sintering of perovskite crystallites suggests possible occurrence 
of a decomposition/re-oxidation process for LSCF. Co- and Fe-based perovskites can be decomposed 
to separate metal and metal oxide phases in reducing atmospheres [55,63,64]. Re-oxidation of separate 
metal/metal oxide phases has been observed to reproduce perovskites with large crystallite size [65]. 
Sintering of particles would decrease catalytic activity by lowering the number of surface sites. 
Sintering was inhibited by re-oxidation of reduced perovskites at low oxidation rates with very dilute 
oxygen flow [66,67]. 

The stability of perovskites including LSCF, especially retaining initial catalytic/electrocatalytic 
activity and electronic-ionic conductivity, during long-term operation in CH4 has to be considered for 
the use of these materials as a part of the SOFC anode. Further development will require optimization 
of electrocatalytic oxidation activity and sintering resistance through fine-tuning perovskite 
compositions (i.e., adjusting the amounts of dopants to A and B metal cations) and/or searching for 
proper operating conditions. Studies on stability of LSCF in reducing environments of CH4 and CO2 
showed that presence of O2 in the feed gas allowed LSCF to maintain its perovskite structure with the 
desired electronic-ionic conductivity [68,69]. Perovskites were found to demonstrate reversible redox 
behavior at temperatures below the sintering temperature of their decomposed phases [13,55,65]. Thus, 
periodic addition of low concentration of air into CH4 fuel as well as a systematic study of operating 
temperature could be the options to further stabilize the perovskite on the anode. 
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3. Experimental Section  

3.1. Synthesis of LSCF Perovskite 

La0.6Sr0.4Co0.2Fe0.8O3 perovskite was prepared by the Pechini method [14–16] as shown in  
Figure 10. Metal nitrates of La, Sr, Co and Fe (La(NO3)3·6H2O, Sr(NO3)2, Co(NO3)2·6H2O and 
Fe(NO3)3·9H2O; Alfa Aesar, Ward Hill, MA, USA) with molar ratio of 3:2:1:4 were dissolved in 
deionized water at room temperature. Citric acid (BDH) with C/M ratio (i.e., molar percentage of citric acid 
to all metal cations) of 1.5 and ethylene glycol (Sigma-Aldrich, St. Louis, MO, USA) were added to the 
aqueous solution under heating and stirring to bind metal cations and form a brownish gel. The 
produced gel was calcined at 700 °C for 2 h with heating rate of 5 °C/min. The synthesized LSCF 
powder was characterized using X-ray diffractometer (XRD, PW1710 Philips, PANalytical, 
Westborough, MA, USA) with Cu-Kα radiation at 35 mA and 40 kV with step size of 0.02° and 
scanning rate of 1 sec per step. LSCF paste was prepared by mixing the LSCF powder with V-006A 
vehicle (Heraeus, West Conshohocken, PA, USA). 

Figure 10. Flow chart of the Pechini method for synthesis of LSCF perovskite. 

 

3.2. Fuel Cell Fabrication 

Anode supported fuel cells were prepared by co-tape casting of anode support, anode interlayer and 
electrolyte slips, and screen-printing of cathode interlayer and cathode current collector layer. The slips 
of NiO/8YSZ (8 mol% Y2O3 stabilized ZrO2, Tosoh, Tokyo, Japan) 65:35 wt% anode support, 
NiO/8YSZ 63:37 wt% anode interlayer, and 8YSZ electrolyte were produced by dispersing metal 
oxide powders in ethanol solvent, introducing binder and dispersant, and ball milling the resulted 
mixture for 24 h. The anode support slip also contained microcrystalline cellulose pore former (10 
wt% PH-301, FMC BioPolymer, Philadelphia, PA, USA). The co-casted tapes were dried in ambient 
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air for 48 h and the dried tapes were cut into 23 mm diameter discs, followed by firing at 1400 °C. 
LSM (La0.8Sr0.2MnO3)/8YSZ 70:30 wt% (CL86-8706B Heraeus, West Conshohocken, PA, USA) 
cathode interlayer and LSM (CL86-8706 Heraeus, West Conshohocken, PA, USA) cathode current 
collector layer were screen-printed on the electrolyte surface with cathode area of 1.95 cm2 and 
sintered at 1250 and 1100 °C, respectively. The thickness of layers for fabricated fuel cells, determined 
from cross-sectional SEM micrograph (result not shown), was 1600 µm for anode support, 30 µm for 
anode interlayer, 25 µm for electrolyte, 40 µm for cathode interlayer, and 20 µm for cathode current 
collector layer. The LSCF promoted Ni/YSZ anode fuel cell was prepared by reducing Ni/YSZ anode 
fuel cell in He/H2 (100 sccm, 50 vol% H2) at 750 °C for 16 h. Screen-printing was selected as a 
convenient technique to coat LSCF on the surface of anode support. Two 40 µm thick strips of LSCF 
with areas of 0.75 cm2 were screen-printed on the Ni/YSZ surface leaving an uncoated Ni/YSZ surface 
in between, followed by firing at 1050 °C for 1 h. This fuel cell is labeled as LSCF-Ni/YSZ anode fuel 
cell versus unmodified fuel cell which is labeled as Ni/YSZ anode fuel cell.  

3.3. Fuel Cell Testing and Characterization 

An anode supported fuel cell was placed and sealed on a metal tube serving as the anode chamber 
and anode current collector as illustrated in Figure 11. A silver strip cathode current collector was 
attached to the cathode surface. A thin layer of silver paste (C8728 Heraeus, West Conshohocken, PA, 
USA) was applied between the electrodes and current collectors to improve current collection. The fuel 
cell was heated to 750 °C and reduced in a flow of He/H2 (100 sccm, 50 vol% H2). The flow was then 
switched to He/CH4 (100 sccm, 25 vol% CH4) for the long-term stability test at 750 °C. The Ni/YSZ 
and LSCF-Ni/YSZ anode fuel cells were operating under low current densities of 25–50 mA/cm2 
throughout the long-term stability test. Voltage-current curves and impedance spectra were recorded at 
different time intervals with a potentiostat and a frequency response analyzer (1470E and 1400 
Solartron CellTest System, Solartron Analytical, Oak Ridge, TN, USA). Composition and 
microstructure of the tested fuel cells were analyzed using scanning electron microscopy (SEM,  
TM-3000 Hitachi, Tokyo, Japan) and energy-dispersive X-ray (EDX, Bruker, Ewing, NJ, USA). The 
LSCF-Ni/YSZ anode was characterized with XRD crystallography after the stability test in CH4. 

Figure 11. Solid oxide fuel cell (SOFC) testing apparatus. 
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4. Conclusions 

The effect of LSCF perovskite coating on the durability of the conventional Ni/YSZ anode was 
studied by performing the long-term stability test of the Ni/YSZ and LSCF-Ni/YSZ anode in direct 
CH4 utilization. Severe carbon deposition resulted in degradation and fracture of the Ni/YSZ anode 
after 38 h of exposure to CH4. The LSCF-Ni/YSZ anode on the other hand exhibited high stability 
leading to long-term operation of 475 h in CH4. Compositional and microstructural analysis of the fuel 
cell anodes after the test indicated lower carbon deposition on the LSCF-Ni/YSZ anode compared to 
that of Ni/YSZ. LSCF retained its perovskite structure after the long-term stability test in CH4. The 
results of this study suggest that LSCF is a promising promoter catalyst for stable direct CH4 fuel  
cell anodes. 
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