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Abstract: Carbon monoxide (CO) oxidation is one of the more widely researched 

mechanisms given its pertinence across many industrial platforms. Because of this, ample 

information exists as to the detailed reaction steps in its mechanism. While detailed kinetic 

mechanisms are more accurate and can be written as a function of catalytic material on the 

surface, global mechanisms are more widely used because of their computational 

efficiency advantage. This paper merges the theory behind detailed kinetics into a global 

kinetic model for the singular CO oxidation reaction while formulating expressions that 

adapt to catalyst properties on the surface such as dispersion and precious metal loading. 

Results illustrate that the model is able to predict the light-off and extinction temperatures 

during a hysteresis experiment as a function of different inlet CO concentrations and 

precious metal dispersion. 

Keywords: adaptive; kinetics; oxidation; detailed; global; carbon monoxide 

 

OPEN ACCESS



Catalysts 2013, 3              

 

 

518

Nomenclature:  

Variable Description Units 
a Constant in pre-exponential mol m−2 K−1 s−1 
A Adsorption pre-exponential atm−1 

APt Area of platinum site m2 site−1 
b Constant - 
c Solid specific heat or constant in pre-exponential J kg−1 K−1 or J mol−1 
cp Constant pressure specific heat J kg−1 K−1 
C  Molar species concentration  mol m−3 
d Channel diameter or constant m or J mol−1 
D Gas diffusivity m2 s−1 
E Activation energy J mol−1 
Ga Geometric surface area per unit volume m2 m−3 
Gca Catalytic surface area per unit volume m2 m−3 
Gzm Mass transfer Graetz number - 
Gzt Thermal Graetz number - 
h Planck’s constant (6.626069 × 10−34) J s 
h  Molar specific enthalpy J mol−1 
hc Heat transfer coefficient W m−2 K−1 
∆H Heat of adsorption  J mol−1 
∆H+ Change in enthalpy in transition state theory J mol−1 

k Reaction kinetics pre-exponential mol m−2 s−1 
kB Boltzmann’s constant (1.3806488 × 10−23) J K−1 
K Adsorption equilibrium atm−1 
ma Mass of molecule kg 
NA Avogadro’s number (6.02214179 × 1023) mol−1 
Nu Nusselt number - 
p Pressure atm 
Pr Prandtl number - 

ambq  Ambient heat transfer to or from monolith W m−3 
r Forward or reverse reaction rate varies 
R  Molar gaseous reaction rate mol m−2 s−1 

Re Reynolds number - 
Ru Universal gas constant J mol−1 K−1 
S Sticking coefficient - 
S° Initial sticking coefficient - 
∆S+ Change in entropy in transition state theory J mol−1 K−1 
Sc Schmidt number - 
Sh Sherwood number - 
t Time s 
T Temperature K 
u Velocity m s−1 
W Molecular weight g mol−1 
x Channel (axial) distance m 



Catalysts 2013, 3              

 

 

519

Greek Variables:  

Variable Description Units 

α 
Thermal diffusion or constant in desorption activation 
energy 

m2 s−1 or - 

χ Heat of adsorption variable J mol−1 
δ Dispersion - 
ε Void fraction - 
κ Mass transfer coefficient m s−1 
λ Thermal conductivity W m−1 K−1 
Γ Surface site density sites m−2 
μ Dynamic viscosity N s m−2 
θ Surface coverage fraction - 
ν Kinematic viscosity or frequency of collisions m2 s−1 or s−1 
ρ Density kg m−3 
ω Catalyst weight normalization factor - 
ξ Heat of adsorption variable J mol−1 K−1 

Subscripts and Superscripts: 

Variable Description Units 
j Species index number - 
m Monolith - 
s Surface species - 

1. Introduction  

Catalysts are important in every industry: chemical, petrochemical, oil-refining, pharmaceutical, 

organic synthesis, fuel-energetic industries, environment protection, and biocatalysis to name just a 

few. The chemical reactions on the surface of a catalyst are a function of the inlet chemical species, 

temperature conditions, metal formulation, washcoat material dispersion/size, and its age causing an 

immeasurable number of kinetic possibilities. In order to obtain the chemical species conversion rates, 

researchers spend a significant amount of experimental time and expense. Often, the use of models 

helps reduce the amount of experiments needed. In specific, models can help predict costs, material 

placement, effectiveness, and ageing among other items. Accurate and predictive models are needed as 

catalysts are being asked to perform longer at higher levels of effectiveness. With respect to modeling 

the reactions occurring on the surface, there are two pathways a researcher can take: detailed or 

global kinetics. 

Detailed kinetic mechanisms allow the researcher to write the reactions as a function of the catalyst 

metal on the surface and permit different catalyst formulations. However, they are limited from a 

feasibility standpoint. One concern is that they still require calibration to experimental data because the 

measurement of all intermediate species on the surface is not feasible without significant experimental 

capabilities. Even if this happens, industrial revision of the surface metals and the ageing of the device 

may alter the kinetic constants. Moreover, in the literature there may not be a consensus as to all of the 

detailed steps needed for the model. For example, researchers have postulated around twenty different 
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mechanistic steps for the relatively simple reaction of carbon monoxide (CO) with oxygen (O2) [1–25]. 

In comparison, global kinetics provides a macroscopic viewpoint of the reaction; CO and O2 enter the 

catalyst and carbon dioxide (CO2) leaves. This allows use of a simpler experimental setup when 

generating data for calibration of reaction rate expressions.  

Furthermore, calibration of a detailed mechanism can take longer than a global mechanism because 

of the increased number of parameters and experimental tests necessary in order to ensure physically 

based values. Another issue is that catalysts typically consist of a number of different metals on the 

surface that may require the detailed mechanism to change and additional reactions to account for 

subsequent interactions (e.g., enhancement of CO oxidation with hydrogen present [7,19,26]). This 

will necessitate further experimental tests while also increasing the numerical stiffness of the resultant 

reaction mechanism. Moreover, the influence of catalyst size, shape, and amount make it nearly 

impossible to determine one set of kinetic constants for one reaction. As a result, creating adaptive global 

kinetics, that include facets of the detailed mechanism while factoring in metal properties (e.g., dispersion), 

have the potential to be more predictive without significantly increasing the computational burden. 

With respect to the literature, there are relatively few global mechanism efforts that attempt to 

develop a more analytical set of kinetics that can be applied to different catalyst formulations [27]. 

Therefore, the goal of this effort is to create a global kinetic mechanism for CO oxidation that predicts 

the light-off and light-down temperatures as a function of platinum metal dispersion on the surface. 

This is done in the absence of other species, like H2, in order to simplify the effort and focus on the 

fundamentals instead of creating a simulation that acts as a multiple parameter curve-fit. Of 

importance, CO oxidation is the first step in exhaust aftertreatment devices for internal combustion 

engines [4], and it is a critical reaction in the production of hydrogen for fuel cell applications [28,29]. 

Hence, the results generated will be of interest to researchers in both these fields. Moreover, since 

sintering increases particle size (dispersion decreases) reducing catalyst effectiveness as it ages [30], 

this model provides a starting point for a more predictive simulation tool suitable for automotive 

engineers who prefer the global kinetics route over the detailed approach [31]. Furthermore, this effort 

endeavors to bridge the gap that exists between Mechanical and Chemical Engineers by demonstrating 

how surface interactions can be incorporated into a global mechanism. Finally, since the model 

variables are re-calculated before the simulation begins and the global reaction rate expression is the 

same, no significant increase in computational load occurs. The automotive industry standard  

one-dimensional monolithic catalyst model utilized by a wide number of researchers provides the basis 

of the modeling efforts. 

2. Catalyst Model 

A previous publication by the first author describes the history of the monolithic one-dimensional 

(1-D) catalyst model employed in this paper [31]. For this model, two phases capture the bulk and 

surface (washcoat/substrate) components in the channel. The bulk gas species equation is written as: 

 ,
j j a

s j j

C G
u C C

x





 

  (1)  
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The left hand side of this equation accounts for the advection of species through the channel and the 

right hand side describes the mass transfer of species from the bulk gas to the surface under the 

laminar conditions in the channel. 

The bulk gas energy equation is written as a function of temperature: 

 c a
p m

h GT
c u T T

x





 
  (2)  

The left hand side of this equation accounts for the propagation of energy through the channel and 

the right hand side describes the heat transfer between the gas and the surface.  

In these equations, calculation of the diffusion and heat transfer coefficients include entrance effects 

[32,33]: 

Sh j j
j

D

d
   and 

Nu
ch

d


  (3)  

For these expressions, Heck came to the conclusion that Nusselt and Sherwood numbers should 

correspond to constant heat flux conditions up until light-off and then correspond to the constant wall 

temperature condition afterwards [34,35]. This is because up until light-off, the region is kinetically 

controlled; hence, the heat flux is relatively low and approximately constant [32]. Since the 

experiments modeled later in this paper consist of both light-off and extinction data in order to explore 

the hysteresis effects of CO oxidation, the constant heat flux conditions will be employed during  

light-off as developed by Groppi et al. [32]:  

0.5386
1000 6.7275

Nu 3.095 8.933 exp
Gz Gz


            

Sh  (4)  

with the constant wall temperature conditions employed during the extinction experiments 

0.5174
1000 42.49

Nu 2.977 6.854 exp
Gz Gz


            

Sh  (5)  

where Gz in the above equation represents the respective mass transfer (Sh→Gzm) and thermal Graetz 

(Nu→Gzt) numbers that are written as a function of distance from the inlet: 

ReSc
Gz j

m

d

x
  and 

Re Pr
Gz t

d

x
  (6)  

with 

Re
ud


 , Sc j
jD




 , and Pr



  (7)  

As commonly accepted, the Chilton-Colburn analogy equates heat and mass transfer for the laminar 
flow conditions [36,37]. 

Simulation of chemistry on the surface of the catalyst happens via a combined treatment of gas 
concentrations within the washcoat: 

 ,
,1 1

s j j a ca j
j s j

dC G G R
C C

dt


 

  
   (8)  



Catalysts 2013, 3              

 

 

522

This equation is written as an Ordinary Differential Equation and solved until steady state so the 

user does not have to incorporate an algebraic-differential solver for the non-linear equations. The first 

term on the right hand side describes species mass transfer between the bulk gas and surface and the 

second term indicates the reaction rates of the gases on the surface. The difference in the mass transfer 

source term between this equation and the bulk gas equation relates to the relative volume difference 

between the bulk and surface as indicated by the void fraction (ε). 

Completing the 1-D model requires the inclusion of the monolith energy equation for the combined 

washcoat and substrate (e.g., one numerical node) in the direction normal to the flow: 

 
2

2
11 1

NM
m m c a ca

m m m m j j amb
j

T T h G G
c T T R h q

t x
 

  

 
    

       (9)  

The left hand side of this equation represents the storage of energy in this combined structure; 

whereas, the right hand side terms describe conduction, heat transfer between the gas and the surface, 

energy generated through catalytic reactions, and heat transfer to the ambient, respectively [38]. Since 

the experiments simulated from the literature in this paper do not include ambient information, the 

model assumes adiabaticity as commonly accepted and this term is equal to zero.  

3. Reaction Kinetics 

The authors chose to reduce the complexity of this initial effort by simulating only the carbon 

monoxide (CO) oxidation reaction over platinum/alumina: 

2 2

1
CO O CO

2
   (10) 

Choice of this reaction allows the authors to calibrate the global reaction expression to available 

literature experimental data of varying dispersion, particle diameter, and metal weight with similar 

BET surface area values. The authors have investigated the history of CO oxidation and determined 

that most researchers believe that the reaction occurs via the following detailed kinetic steps: 

-

CO Pt Pt CO
a

a

r

r
   (11a) 

-

2O 2Pt 2Pt O
b

b

r

r
   (11b) 

2Pt O Pt CO 2Pt CO
cr

      (11c) 

CO adsorption is the first step of the mechanism because of the low initial sticking coefficient of 

oxygen on platinum as compared to CO [39]. The second step in this mechanism is the dissociative 

adsorption of oxygen [18,40]. Most researchers believe that the final step is that of adsorbed CO 

interacting with adsorbed atomic oxygen via a Langmuir-Hinshelwood (L-H) mechanism. This appears 

to be the most widely assumed prospect, but mechanisms developed using only these conversion 

reactions do not necessarily predict the most accurate results [8,9,13,14]. The final step would be 

desorption of CO2 from platinum that most assume happens instantaneously; hence, Equation (11c) 
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lumps this step into the final detailed reaction. There is still no true consensus as to the Rate-Determining 

Step (RDS). A number of researchers indicate that both Equation (11b) and Equation (11c) can be the 

RDS [17,19,41]. It is quite possible that at lower CO concentrations, Equation (11c) is the RDS and at 

higher CO concentrations, Equation (11b) becomes the RDS. This paper will utilize the RDS equal to 

Equation (11c) because it has been shown by Wojciechowski and Asprey to accurately fit experimental 

data [20]. This results in the following global reaction equation: 

 
 

CO

2 2

2 2

1 2 1/2
CO CO O CO O

CO 21 2 1 2
CO CO O O

exp

1

u m

E
R Tk K K p p

R
K p K p


 

 
 (12) 

where the adsorption equilibrium constants are equal to: 

 CO

CO CO exp
u m

H
a a R TK r r A 

    (13) 

 O2

2 2O O exp
u m

H

b b R TK r r A


    (14) 

This is the same global mechanism calculated by Hori and Schmidt in 1975 using molecular oxygen 

adsorption [5] and Goodman et al. in 1982 for atomic oxygen [12].  

Table 1. Literature values of CO oxidation model. 

Parameter (unit) Values 

kCO (atm s−1) 
1.443 × 1016; 8.628 × 1015 [20] 

6.27 × 109; 2.04 × 1010 [42] 

kCO/Ru (mol K m−3 s−1) 
1.759 × 1020; 1.051 × 102  
7.651 × 1013; 2.486 × 1014 

ECO (kJ mol−1) 
146.2; 144.4 [20] 

63.9; 63.9 [42] 

ACO (atm−1) 
6.832 × 101; 5.306 × 10−1 [20] 
1.145 × 100; 1.087 × 100 [42] 

COH (kJ mol−1) 
−7.495; −37.13 [20] 
−18.4; −18.4 [42] 

2OA  (atm−1) 
1.991 × 10−6; 1.053 × 10−11 [20] 
5.286 × 10−6; 8.810 × 10−8 [42] 

2OH  (kJ mol−1) 
−82.99; −153.4 [20] 

9.3; 9.3 [42] 

At this stage, it is possible to calibrate the pre-exponentials, activation energies, and adsorption 

heats as is often done by researchers. However, as Wojciechowski and Asprey illustrate [20], there can 

be two different sets of parameters that match the data captured as indicated in Table 1. One issue with 

kinetics is that it requires collection of a large amount of experimental data in order to eliminate all 

potential local minimums during parameter optimization. Moreover, since chemical kinetics are  

non-linear, it is possible to find a set of parameters that matches the data well but may be non-

physically based. Hence, the approach the authors take is to explore from first principles the 

components of the global rate expression in order to minimize the number of variables to calibrate.  
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3.1. Adsorption Equilibrium Constants  

Calculation of the pre-exponential factors for adsorption in Equations (13) and (14) come from 

kinetic gas theory [43–47]: 

 

0

1 2
2

a

a B m

S
A

m k T
  (15) 

where ma is the mass of the molecule given by (W/NA), NA is Avogadro’s number, W is the molecular 

weight of the species, kB is Boltzmann’s constant, and S0 is the sticking coefficient for zero coverage of 

the species adsorbed. The desorption pre-exponential factor is written as: 

COaA     (16) 

using a rate constant or frequency (ν in units of s−1) determined from theory or experimental studies 

and the site density of the surface (Γ in sites per m2). Writing the overall expressions for Arrhenius 

based adsorption and desorption kinetics via Equation (11a) results in: 

 a u mE R T
a ar A e  and 

 a u mE R T
a ar A e 

   (17) 

Using Equations (13) and (14) allows for representation of the global rate expressions by combining 

the results of Equations (15), (16), and (17) into the following example for CO: 

 
 

0
CO CO

CO 1 2

CO

exp

2

u ma

a a u m

S H R Tr
K

r m R T 

   
  (18) 

where the adsorption heats equal CO a aH E E    and 2O b bH E E   . 

Using the site density ( Pt1 A  ) and Boltzmann constant ( B u Ak R N ) including the area of a 

Pt site (APt = 8×10−20 m2/site [48]) results in expressions as a function of partial pressures: 

 

0
Pt CO CO

CO 1 2

CO CO

exp
2

A

u mu m

N A S H
K

R TW R T 
 

  
 

 (19) 

 
2 2

2

2 2

0
Pt O O

O 1 2

O O

exp
2

A

u mu m

N A S H
K

R TW R T 

 
  

 
 (20) 

Ideally, one should obtain values for all of these parameters over the same catalyst; however, the 

literature review that follows demonstrates this is not possible. Therefore, this paper will assume a few 

values even though the catalysts where this information comes from may not be the same. 

3.2. Sticking Coefficients  

Sticking coefficients can be a function of surface temperature, the angle of the bond with the gas, 

and the current coverage of the surface. From kinetic gas theory, the model is interested only in the 

initial surface coverage at the starting point of experiments or modeling. Later in this paper, the 

authors will apply the kinetic model to a Pt/γ-Al2O3 surface; however, most surface coverage values in 

the literature are found using a single crystalline structure in order to understand the interactions on the 
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surface. In such cases, the authors postulate that one should use data from the most applicable surface. 

As discussed later, since some calibration of the kinetics will have to occur (as always), this embeds 

variations according to surface crystal structure within the resulting values. Face Centered Cubic 

crystalline materials such as Pt have three main vectors (100), (110) and (111), with imperfect or 

stepped plains predominately represented by Pt111 and Pt110 vectors. Pt111 is a logical choice for 

physical parameter estimation as it is one of the two dominating crystal plans present in small particle 

size Pt catalysts [49,50] and will provide the baseline values. This paper will provide data for catalysts 

when found and may be used if no other option exists.  

Figure 1. Sticking coefficient of O2 over Pt111 using data from [11,40,51–55]. 

 

With respect to oxygen surface coverage, Elg et al. mentions that the temperature dependence of the 

initial sticking coefficient during dissociative adsorption on Pt111 is exponential in nature [40] that 

Campbell et al. wrote as an Arrhenius expression [52]: 

 ,O2

2 2

0
O O exp S

u m

E

R TS S   (21) 

Using available literature data in Figure 1, the authors fit the following parameters to the data for 

Pt111 using Campbell et al.’s expression for modeling: 2OS  = 1.260 × 10−2 and 2,OSE = −3.980 kJ/mol. 

For the sticking coefficient of CO, Campbell et al. finds that it is angular and temperature 

independent with a value of 0.84 for Pt111 [56]. Yeo et al. finds an initial sticking coefficient of 0.80 

over Pt111 that decreases with CO coverage in monolayers (ML) while mentioning that the initial 

reactive sticking probability for CO is 0.7 during CO oxidation experiments [51]. Schubert et al. [57] 

mention that standard values for the sticking coefficient of CO range between 0.5 and 0.8. Shigeishi 

and King determine an initial probability of 0.67 over Pt111 [58]. Based on this literature survey, the 

authors employ a constant initial sticking coefficient of 0.8 for CO as it provides a reasonable 

approximation of the Pt111 values found. 
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3.3. Heats of Adsorption  

With respect to the activation energy of the forward and reverse adsorption steps, Campbell et al. 

indicate that a relatively small value is required for CO to transfer into the chemisorbed state [59]: 

2.5aE   kJ/mol (22) 

and this value is used for the model.  

Table 2. Literature desorption activation energies (E−a) for carbon monoxide. 

Value Catalyst 

118–183 [51] Pt111 
120–171 (O-predosed) [60] Pt110 

138–178 [60] Pt110 
146.1 (modulated beam) [56,59] Pt111 

115.1–139 (TDS) [56] Pt111 
147.8 [61] Pt110 

125.6–129.8 (isosteric calculation) [61] Pt110 
100–138.2 [62] Pt111 

117.2 (zero coverage) [63] Pt111 
136.5 [64] Pt100-(5×20) 

171.7–230.3 [65] Polycrystalline Pt 
135 (at saturation) [58] Pt111 

Table 3. Literature desorption activation energies (E−b) for oxygen. 

Parameter Value Catalyst 

E−b 141.6–157.8 [44] Pt/γ-Al2O3 
0

bE  200 [43] Pt/γ-Al2O3 

α1 0.115 [43] Pt/γ-Al2O3 
E−b 175.8–213.5 [52] Pt111 
E−b 117.2–213.5 [66]  Pt111 
E−b 153–332 [67] Pt110 
E−b 199–335 [60] Pt110 
E−b 125–339 [51] Pt111 
E−b 167 [68] polycrystalline Pt 
E−b 171.7–205.2 [69] Pt(S)–9(111) × (111)

E−b 154.9 [70] Pt111 
E−b 187.2–290.1 [39] Pt100 
E−b 161.6–216 [64] Pt100−(5 × 20)

E−b 280.5 [65] polycrystalline Pt 

For oxygen, since it undergoes dissociation as it bonds atomically via Equation (11b), it must 

overcome a relatively small energy barrier. Olsson et al. used the low dispersion data from Holmgren 

et al. over a Pt/Ce catalyst with a value of 21 kJ/mol in their modeling efforts for a gamma-alumina 

catalyst [71]. For high dispersion, this value equals 0.91 kJ/mol [71]. Gland finds that the dissociative 

activation energy of oxygen is equal to 29.3 kJ/mol at low oxygen coverage for Pt111 [11]. Parker et al. 
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mention that while no determinations of the activation energy for dissociative adsorption of O2 have 

been made for > 0.25 ML, the barrier heat can be estimated to be greater than 37.7 kJ/mol from the 

work of Derry and Ross [66]. They estimate that it should be greater than 79.5 kJ/mol at 0.42 ML, with 

Derry and Ross illustrating that one should use a value greater than or equal to 67.0 kJ/mol at 0.5 ML 

of atomic oxygen coverage. Based on the previous discussion regarding differing platinum surfaces, 

the authors utilize the findings of Gland in this paper for Eb. 

When summarizing available literature data for desorption activation energies for carbon monoxide 

(E−a) and oxygen (E−b) in Table 2 and Table 3, respectively, the results suggest a large range of 

available values. This range exists because both of these parameters change as a function of the surface 

coverage of adsorbed species [40,43,66,72–75]. For example, Olsson et al. models the activation 

energy for oxygen desorption in a linear manner with atomic oxygen coverage as: 

 0
1 Pt O1b bE E       (23) 

where Pt O  is the fractional coverage of the surface by atomic oxygen and α1 is a constant. This 

changing activation energy as a function of surface coverage reveals an issue with the global kinetic 

modeling approach. In such a model, the current state of coverage of the surface is unknown; hence, 

these activation energies cannot include this option in the model as the reaction proceeds or the inlet 

concentrations change.  

For CO, the authors employ a lumped approach including both the activation energies for 

adsorption and desorption. In particular, the literature via Table 2 illustrates that the total adsorption 

heat of this species changes as a function of surface coverage that varies with temperature [72–74]. As 

a result, the authors model CO adsorption with a temperature dependence: 

CO a a mH E E T       (24) 

where χ and ξ are calibrated constants. Having χ negative accounts for the desorption heats with the 

overall value of ∆HCO decreasing (less negative) as a function of temperature. This is because the 

molecules become more active on the surface and will have an increasing tendency for desorption.  

While the heat of desorption of oxygen (E−b) changes with the surface coverage of oxygen, in this 

effort it is assumed constant and calibrated because of the large value range indicated in Table 3. This 

assumption stems from the experimental results modeled later. In particular, the oxygen partial 

pressure is significantly higher as compared to the CO partial pressure (10% O2 inlet versus 0.1% CO). 

In the kinetically limited region, CO will cover a relatively small part of surface due to its low gas 

phase concentration despite the higher affinity of CO to platinum. In the mass transfer limited region, 

this CO will react with surrounding oxygen and leave the surface. However, the surface coverage of 

oxygen will not change significantly, as only a small amount of CO is available to react relative to the 

large concentration of oxygen present. Furthermore, given the relatively low concentrations of CO, the 

surface inhibiting effect of CO is negligible [76]. Moreover, while some oxygen can desorb, the 

relative rate of desorption is low until about 800 K [40,77]. Since the experiments modeled were 

accomplished with temperatures lower than 600 K, this should not be an issue. Any small decrease in 

surface coverage due to desorption will be offset by an increase in coverage area on the newly created 

free sites due to the reaction.  
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The authors assume that the adsorption heats are additionally independent of particle size and 

dispersion. Uner and Uner found in their investigation of initial and integral heats of adsorption that O2 

and CO adsorption processes are not structure sensitive [78]. When consolidating the reaction 

activation energies measured on these catalysts with the heat of adsorption, they attribute a minor 

decrease in effective activation energy with increasing particle size to a variation of pre-exponential 

factors of the elementary reaction steps of the CO oxidation reaction.  

3.4. Desorption Rate Constants  

The desorption rate constant describes the frequency of the species desorbing from the surface. The 
literature illustrates a wide range of values for oxygen (

2O ) for this experimentally determined value 

as indicated in Table 4. Zhdanov and Kasemo state that one can conclude that the activated complex 

for adsorption of oxygen, and accordingly for desorption, has rotational and translational degrees of 

freedom [75]. Hence, this means that this value should be much higher than 1013 s−1. Based on this 

information, the authors follow the efforts of Olsson et al. in modeling a Pt/Al2O3 catalyst [43] by 

using their indicated value of 1015 s−1. 

Table 4. Desorption rate frequencies used or determined in the literature for dissociative oxygen. 

Value Catalyst Units 

1 × 1013 [68] Pt111 s−1 
1 × 1015 [75] Pt111 s−1 

2.4 × 10−2 
3 × 1013 [52] 

Pt111 cm2 s−1/s−1 

2.6 × 10−1 [66] Pt111 NA 
1.5 × 10−5 [67] Pt110 ML s−1 
1 × 1013 [11] Pt111 s−1 

Table 5. Desorption rate frequencies in the literature for CO. 

Value Catalyst Units 

1.25 × 1015 [56,59] Pt111 s−1 
6.0 × 1014 [61] Pt110 s−1 
1 × 1013 [62] Pt111 s−1 
1 × 1015 [63] Pt111 s−1 

7.5 × 1012 [64] Pt100 − (5 × 20) s−1 

For carbon monoxide ( CO ), Campbell et al. mention that the value of the pre-exponential factor 

derived from modulated beam results is larger than usually expected for first order desorption (~ 1013); 

other papers find values on the order of 1015 s−1 or even higher [56] with an indication of values found 

provided in Table 5. Schubert et al. [57] use standard values of 1013 to 1016 s−1 in their effort. Fair and 

Madix [61] mention that this factor contains the ratio of the single particle partition functions, which 

are dependent on contributions from electronic translational, rotational and vibrational degrees of 

freedom. Assuming a value of one for the transmission coefficient, they calculate a value of 9 × 1017 s−1 

that they consider as the upper limit. Yeo et al. [51] assumes a value of 1015 s−1 based on the efforts of 
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Ertl et al. [63]. Because of this survey, this work employs a value of 1015 s−1 since two researchers use 

this value and it is in the middle range of the limits found. 

3.5. Rate Determining Step  

Transition state theory relates the rate constant of the Rate Determining Step (RDS) to the 

equilibrium constant for the transition state that is a function of the Gibbs energy of the transition state. 

Using the relationship between entropy, enthalpy and Gibbs energy, the reaction rate constant is:  

CO
CO exp exp expB m

u m u u m

E k T S H
k

R T h R R T

       
       
     

 (25) 

where h is Planck’s constant and the enthalpy and entropy terms come from the transition state free 

energy. This expression provides a theoretically based form of the more commonly used Arrhenius 

equation. In this evaluation, the value for the change in enthalpy, H  , is known as the activation 

energy (ECO) for the particular reaction under study. As a result, writing the kCO component using the 

transition state theory expression in Equation (25) finds: 

CO expB m

u

k T S
k

h R

 
  

 
 (26) 

In this expression, theory indicates that the entropy component is a measure of the degree of order 

of the intermediate surface reactants. Investigating catalytic properties on the surface, particle size will 

affect entropy as it changes the nature and bond strength of the components on the surface. In 

particular, as the particle diameter increases (dispersion decreases), the entropy of the system should 

decrease as it becomes a less “chaotic” surface leading to a smaller kCO. In other words, larger particles 

will have larger crystalline faces and fewer instances of defect sites resulting in more organized surface 

adsorption (e.g., lower entropy). However, as particle diameter decreases, the entropy of the system 

could possibly increase due to a less uniform surface and more surface defects reducing the 

organization of the adsorbed species. Furthermore, smaller particle sizes may result in surface stresses 

due to steric hindrance increasing the surface entropy leading to an increase in kCO [79,80]. While 

possible, this is only a small dependency and not an overriding factor. Finally, with decreasing 

dispersion, the frequency of the reaction should decrease (smaller kCO) since there are fewer sites 

where Pt CO and Pt O are next to each other.  

Moreover, catalyst weight will influence the overall reaction rate as it can increase (or decrease) the 

number of reacting sites. Hence, from a modeling standpoint, the authors express the pre-exponential 

factor as: 

 CO expmk aT b   (27) 

where a and b are constants that require calibration and δ is the dispersion of the metal on the surface. 

This model includes the catalyst weight normalized by the washcoat weight in order to provide a factor 

of reaction: 
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Pt content

Amount applied washcoat
   (28) 

where the authors assume a linear dependency on this factor for this effort in order to simulate an 

increasing reaction with more platinum given a constant washcoat amount. 

Since particle diameter and dispersion are interrelated, including either parameter as a variable 

effectively captures the other through inference with most researchers presenting dispersion as a 

distinction between different catalytic loadings [81–83]. If the length of the catalyst is kept constant 

and the amount of material uniform, dispersion will determine the size of the metal atom on the surface 

along with the proximity of two metal atoms or sites of adsorption. In addition, the metal particle size 

may also decide the chemical bond strength between the adsorbate and the adsorbent. For example, 

Briot et al. demonstrate that changes in particle size influence the heat of adsorption, which is a 

measure of Pt·O bond strength [84]. They suggest that this can affect the reactivity of the absorbed 

oxygen with the reacting species. Hence, as the particle size decreases given the same number of sites, 

the chemical bond strength increases which may further hinder the reaction rate as more energy is 

required to break the bond [80]. Numerous authors support this statement by indicating that the 

oxidation reaction is a strong function of particle size [22,80,85,86]. 

Table 6. Literature activation energies for RDS of reaction (ECO). 

Value (kJ mol−1) Dispersion Catalyst 

55–157 [51] - Pt111 
100.9 (low O coverage) [59] - Pt111 
49.0 (high O coverage) [59] - Pt111 

125 [87] - Pt/α-Al2O3 
172 [87] - Pt/α-Al2O3 
55 [88] 29% Pt/SiO2 

72 [88] 63% Pt/SiO2 
92 [88] 76% Pt/SiO2 
96 [89] 4% Pt/γ-Al2O3 

107 [89] 20% Pt/γ-Al2O3 
115 [89] 29% Pt/γ-Al2O3 
120 [89] 63% Pt/γ-Al2O3 

As a result, dispersion plays a large role in predicting the reaction rate expression and the authors 

chose this parameter as a primary variable of interest for the activation energy. Since as dispersion 

increases, particle diameter decreases this in turn influences the bond strength. This is similar to Yang 

et al. who wrote the reaction rate expression as a function of particle size and related the results to 

dispersion [86]. Hence, when ageing of the catalyst occurs through sintering, the dispersion of the 

catalytic material will change. Note that ageing and sintering can also change the structure of the 

catalyst particles resulting in different values for the sticking coefficients, activation energies, and 

heats of adsorption.  
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Table 7. Constant parameters of adaptive kinetics model. 

Parameter Value Units 

APt 8 × 10−20 m2 site−1 
NA 6.022142 × 1023 molecules mol−1 

WCO 28.01 g mol−1 

2OW
 31.9988 g mol−1 

Ru 8.314472 J mol−1 K−1 
SCO 0.8 - 
Eb 29.3 kJ mol−1 

2O  1 × 1015 s−1 
νCO 1 × 1015 s−1 

In regards to the activation energy, Oran and Uner found a large variation in values over different 

surfaces and dispersion values as indicated in Table 6 [90]. Moreover, theory dictates that since the 

pre-exponential is temperature dependent, the expression for activation energy must also be 

temperature dependent [91]. From the two-parameter Kooij equation including this dispersion 

dependency, the activation energy equals: 

CO u mE c d R T    (29) 

where c and d are constants calibrated to the experimental data. The choice of the growth in activation 

energy as a function of dispersion follows the earlier discussion involving bond strength increasing as 

a function of growing dispersion. Moreover, a linear model was chosen since this is the simplest 

version of this dependency to calibrate. This concludes the model development with Table 7 providing 

the parameters of the model based on the literature study beyond those left for calibration (i.e., a, b, c, 

d, χ and ξ). 

4. Results and Discussion 

Calibration of the parameters utilized CO oxidation literature data from a 2005 paper by Arnby 

et al. [23] where the amount of platinum, dispersion, and particle diameter changed between different 

catalysts as indicated in Table 8. The platinum dispersion and surface area of Arnby et al. were 

calculated from the amount of adsorbed CO, determined by CO chemisorption measurements. The 

nomenclature relating to the percentage Al2O3 (1, 10, and 100%) indicates their preparations methods 

where they deposit platinum only on part of the available support material. The choice of this paper 

over their 2004 paper [22] and others for calibration is because both the platinum to washcoat (ω) and 

BET surface area remains relatively constant between the different catalysts. Therefore, the difference 

in the data should ideally relate directly to the impact of dispersion and correspondingly the  

platinum particle size.  

Matlab Simulink provided the platform for model calibration by first finding singular values of a, d, 

and χ that minimized the least-squares curve-fit (LSQ) value between the experimental and simulated 

temperatures at the 50% CO conversion points over all light-off and extinction tests. The bounds on 

these parameters came from the respective literature in this area; specifically, Table 6 for d and Table 2 

for χ with E−b set equal to 200 kJ/mol based on Table 3. This initial calibration to their hysteresis 
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experiments found that the model was unable to match the thermal response from their data. Since they 

did not include a temperature ramp experiment without chemical reactions, measurement of the 

amount of heat transfer to the ambient and validation of use of monolith properties from the literature 

was not possible (e.g., density, thermal conductivity, and specific heat as 1800 kg m−3, 1.5 W m−1 K−1, 

and 1020 J kg−1 K−1 respectively [92]). As a result, the authors included monolith density (ρm) as 

another constant for calibration. Using the initial three calibrated components and a literature value of 

monolith density, this provided the set of parameters for a final calibration involving all eight 

parameters (a, b, c, d, χ, ξ, ρm, and E−b) that minimized the LSQ value between temperatures at 50% 

CO conversion for both light-off and extinction with the final results given in Table 9. 

Table 8. Washcoat parameters utilized in CO light-off experiments. 

Parameter 
Pt(100%) 
Al2O3 [22] 

Pt (10%) 
Al2O3 [22] 

Pt (1%) 
Al2O3 [22] 

Pt (100%) 
Al2O3 [23] 

Pt (10%) 
Al2O3 [23] 

Pt (1%) 
Al2O3 [23] 

Pt content/mg 0.30 0.39 0.59 0.52 0.52 0.50 
Washcoat/g 0.15 0.20 0.30 0.26 0.26 0.25 

Pt/Washcoat/- 0.00200 0.00195 0.00197 0.00200 0.00200 0.00200 
Dispersion/% 48 41 26 56 44 21 

Mean Pt  
diameter/nm 

2.3 2.7 4.5 2.0 2.6 5.6 

BET/m2/gwsh 151 152 162 160 163 163 

Table 9. Final model variables calibrated to Arnby et al. 2005 experimental data. 

Variable Value Units 
a 5.703×1011 mol m−3 K−1 s−1 
b 3.099 - 
c 43.254 kJ mol−1 
d 83.442 kJ mol−1 
χ −149.185 kJ mol−1 
ξ 4.982×10−2 kJ mol−1 K−1 
ρm 3380.435 kg m−3 
E−b 197.725 kJ mol−1 

Figure 2. Calibrated model results in comparison to Arnby et al. 2005 experimental data. 
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Table 10. Comparison of Root Mean Square Error differences between experimental and 

simulation conversion percentages (light off/extinction). 

Dispersion Figure 2 Dispersion Figure 4 (0.01%) Figure 4 (0.1%) Figure 4 (1%) 

21% 24.1/8.5 26% 47.5/36.4 45.4/20.2 69.7/39.9 
44% 21.3/27.8 41% 42.6/32.2 33.6/31.0 62.8/35.9 
56% 18.1/14.5 48% 33.5/27.0 21.4/31.8 66.7/45.5 

In Figure 2, the model results are presented in comparison to the experimental data. Overall, the 

model deviates by an average of 5.3K between the 50% conversion points for the light-off and 

extinction temperatures. In Table 10, a comparison of the Root Mean Squared Error (RMSE) between 

the simulation and experimental percentages is given. On average, the RMSE indicates a 20% 

difference in conversion. In order to explore the choice of constants for the last four parameters in 

Table 5, a sensitivity analysis similar to Ó Conaire [93] was performed by doubling (or halving) the 

respective value and finding the difference in the 50% light-off and extinction conversion 

temperatures. Taking the absolute values of the differences, halving SCO was found to change the 
temperatures by an average of 6.6 K. When doubling Eb, 

2O , and νCO, the differences were 20.0, 6.6, 

and 1.9 K respectively. With respect to the coefficients of Table 9, all model values fall within the 

respective literature bounds; e.g., at 400K, ∆HCO = −129 kJ/mol (Table 2), E−b = 197 kJ/mol (Table 3), 

and ECO = 96–111 kJ/mol (Table 6). Overall, it can be inferred that the calibrated model provides 

reasonable quantitative values in comparison to the experiments. 

With respect to a qualitative analysis, the model accurately captures the trend of 50% conversion 

temperature with dispersion. However, the higher dispersion values do illustrate a delayed light-off and 

extinction temperature. Part of this difference could be due to the relatively high monolith density 

value found in Table 9 resulting in a reduced thermal response of the monolith. Moreover, some of the 

deviation between the model and experiments (50% conversion temperatures, slope, and RMSE 

values) relates to the choice of a 1-D model that lumps boundary layer phenomenon into the source 

terms and washcoat diffusion into the reaction rates. This embeds assumptions into the kinetic 

parameters reducing the physicality of the model. While it is possible to use more advanced and 

accurate simulation techniques (e.g., 1 + 1-D model by the authors [94]), this added computational 

effort made it unfeasible for calibration across all three hysteresis experiments.  

Further differences between the results are a function of writing only the pre-exponential and 

activation energy as a function of dispersion. Metal particle size can influence other parameters, such 

as the sticking coefficient. This is evident in the difference between the light-off and extinction 

temperatures. The 56% dispersion experiment only differs by a few degrees Kelvin; however, the 44% 

and 26% cases are dissimilar by over 30 K. As a result, there is likely some additional non-linearity in 

the kinetic parameters as a function of dispersion. The results of the sensitivity analysis also 

demonstrate that the parameters held constant during the analysis might play a role. The authors’ 

endeavored to choose the best values based on the literature in order to reduce the required calibration 

effort. These may not be the optimum values and may need to be included in the calibration effort. 

However, the first exploration of a derived dispersion model here warranted the choice of the simplest 

version in order to explore its practicality. Finally, since the adaptive kinetics only influence the 
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variables in the reaction rate expression as new values, there is no significant addition to the 

computational burden of the model while increasing its predictive nature with respect to dispersion.  

Figure 3. Wojciechowski and Asprey (WA1 and WA2) [20] and Herskowitz and Kenney 

(HK1 and HK2) [42] model results in comparison to Arnby et al. 2005 experimental data. 
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In order to contrast the derived expressions with models available in the literature, the Arnby et al. 

2005 experiments were simulated using the four different kinetic options via Wojciechowski and 

Asprey [20] and Herskowitz and Kenney [42] for the reaction expression of Equation (12) with the 

coefficients given in Table 1. It is important to note that in order to utilize the pre-exponentials of these 

authors (kCO) in the same units as this paper required division by the universal gas constant (given in 

Table 1) that was then divided by the monolith temperature at the time of computation instead of 

assuming a singular value at all temperatures. Figure 3 illustrates that the Wojciechowski and Asprey 

models are close to the highest dispersion rate results but significantly deviate from the lowest. 

Moreover, the Herskowitz and Kenney results do not accurate capture the experimental conditions. It 

is important to note that these models provide only singular results and cannot depict the influence of 

surface chemistry.  

In order to validate the model, the Arnby et al. experiments of 2004 were simulated using the 

coefficients from Table 9. This 2004 paper utilized three different CO concentration levels; e.g., 

0.01%, 0.1%, 1%. Moreover, the catalysts in the 2004 paper had varying Pt content, washcoat mass, 

and BET surface areas as given in Table 8. Investigating Figure 4, this paper’s model accuracy does 

degrade since it was calibrated to only the 2005 experiments that used 0.1% CO input. In particular, 

the average deviation between all 50% conversion temperatures increases to 19.3K with the 0.01%, 

0.1%, and 1% CO concentration results differing by an average of 14.3K, 10.1K, and 33.5K 

respectively. Moreover, the RMSE values in Table 10 increase significantly showing a difference of 

35, 32, and 55% in conversion percentages. The model does perform best when compared to the 0.1% 

case since this was the concentration over which the model was calibrated. 
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Figure 4. Simulation of Arnby et al. 2004 (a) 0.1%; (b) 1% and (c) 0.01% CO 

concentration experiments using the derived kinetics of Table 9 and one set of parameters 

from Wojciechowski and Asprey. 
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Moreover, in the Arnby et al. 2004 experimental data, they found a deviation in the trend for the 

41% dispersion case as it incurred a decreased conversion rate over the 48% dispersion case. The 

authors theorized that this result may be a function of the relative ratio of Pt to washcoat support which 

is the lowest of all of the 2004 tests. The model as described in Equation (28) does account for this 

factor; however, it was unable to be captured by the simulation. Another concern is that for the high 

CO concentration input (1% CO) the RDS may shift to the oxygen adsorption case via Equation (11b) 

as discussed in Section 3. This would require a different global reaction mechanism for simulation 

purposes; hence, the authors’ model calibrated to a different RDS would definitely not work. Overall, 

the model presented here provides the correct trends with dispersion. As dispersion increases, the 

temperature where light-off and extinction happens, increases. Finally, plotting one Wojciechowski 

and Asprey value (WA1) set in this figure illustrates that it has the same issue with respect to CO 

concentration while performing worse at the lowest CO level than the model in this effort. Hence, 
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while the authors’ model does illustrate a significant difference in conversion percentages, its 

predictability has increased and the methodology for including dispersion in the global rate expression 

has potential. 

While it is indeed possible to recalibrate the model to both the 2004 and 2005 experiments of Arnby 

et al. using Table 9 as the starting parameters, the fact that these experiments include a significant 

hysteresis effect results in the calibration of reactor heat transfer coefficients alongside the kinetic 

expression. A common omission from catalyst reactor papers is a reactor warm-up curve or indication 

that thermal hysteresis was checked during experimentation [2,22–24]. Even with insulated or 

isothermal reactors, there is still a need to have a temperature rise curve that illustrates the time rate of 

change of temperature throughout the length of the reactor. This will allow modelers the ability to 

calibrate the thermal properties (specific heat, density, and thermal conductivity) of the monolith or 

prove that the kinetic results are not a function of hysteresis. Ideally, just knowing the material of the 

monolith is sufficient; however, different reactors will have unique thermal conditions and a simple 

experiment to help modelers eliminate some variability would be significantly helpful. In addition, 

when experiments contain a large gradient in temperature between the reactor and the ambient, there is 

a possibility of external heat transfer. A transient heating test of the reactor with the inlet and outlet gas 

temperatures given as a function of time would help modelers calibrate the associated terms in 

Equation (9). As a result, spending additional time to calibrate the reaction further was deemed 

excessive and time was better spent working on setting up a reactor for follow-up experiments. 

5. Conclusions  

This paper describes an adaptive global kinetics reaction model of CO oxidation over a 

platinum/alumina catalyst. This model was developed based on the first principles surrounding detailed 

kinetic mechanisms. A thorough literature search was accomplished in order to minimize the number 

of constants to calibrate and the results illustrate that the model provides reasonable to good accuracy 

while capturing the correct dependency on dispersion.  

Future work is planned to create a proper Design of Experiments in order to deduce the 

dependencies as a function of catalyst weight and dispersion. This will provide for better dependencies 

along with exploration of the different global CO oxidation reaction expressions. As discussed prior, 

the mechanisms developed using only these conversion reactions do not necessarily predict the most 

accurate results [8,9,13,14], again illustrating some deviation between the model and experiments. 

Hence, additional work that provides a better set of data to calibrate the model will shed insight into 

the adaptive kinetics phenomena. However, this effort illustrates the capability of such a model and 

demonstrates improved results in comparison to other models available in the literature. 
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