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Abstract: Semiconductors crystal facet engineering has become an important strategy for 

properly tuning and optimizing both the physicochemical properties and the reactivity of 

photocatalysts. In this review, a concise survey of recent results obtained in the field of 

specific surface-oriented anatase TiO2 crystals preparation is presented. The attention is 

mainly focused on the fluorine-mediated hydrothermal and/or solvothermal processes 

employed for the synthesis and the assembly of anatase micro/nanostructures with 

dominant {001} facets. Their peculiar photocatalytic properties and potential applications 

are also presented, with a particular focus on photocatalysis-based environmental clean up 

and solar energy conversion applications. Finally, the most promising results obtained in 

the engineering of TiO2 anatase crystal facets obtained by employing alternative, possibly 

more environmentally friendly methods are critically compared.  
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1. Introduction and Background 

Surface chemistry plays a crucial role in the equilibrium morphology of inorganic single crystals 

and thereby is also critical in the synthesis of highly surface reactive materials [1–6]. Anatase TiO2, 

compared to the other two main TiO2 crystal polymorphs, i.e., rutile and brookite, was proved to be 

more active, especially when TiO2 is employed as catalyst and photocatalyst [1,7,8]. In particular, 

concerning the exposed facets, the most abundant {101} facets of anatase were found to be not so 
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reactive, their surface containing few defects after annealing in ultra high vacuum (UHV). 

Consequently, {101} facets of anatase TiO2 are more difficult to undergo reduction in comparison with 

the widely investigated {110} facets of rutile TiO2 [1,8]. On the contrary, the anatase {001} facet is 

known to reconstruct under UHV conditions [9], which is usually an indication of low stability and 

high reactivity of the clean surface. In both {101} and {001} anatase oxygen vacancies are thought to 

lie beneath the surface [10,11]. Furthermore, minority {001} facets, having a high density of surface 

undercoordinated Ti atoms, exhibit higher reactivity for the dissociative adsorption of reactant 

molecules, such as water, methanol and formic acid, compared to the {101} facets [12–17]. 

The origin of this high reactivity seems to be twofold: the high density of surface undercoordinated 

Ti atoms and, probably more importantly, the very strained configuration of the surface atoms. In 

particular, there are very large Ti–O–Ti bond angles at the surface, indicating destabilized and very 

reactive 2p states on surface oxygen atoms. Therefore, high photocatalytic efficiency is expected for 

anatase particles with large percentage of {001} facets [18], though present information about their 

photocatalytic activity is still scarce and sometimes controversial. 

For this purpose, efforts were made to control the crystal shape by employing a general approach, 

consisting in growing TiO2 crystals in the presence of species that bind with different adsorption 

energies to the different crystalline facets. The adsorbed species may change the relative stability of 

the different facets, or the growth rate in the different directions, thus altering the equilibrium shapes 

of anatase TiO2, resulting in a shape that, ideally, is uniquely determined by the nature and 

concentration of the adsorbates [19–23]. In this regard, preliminary theoretical work played an 

essential role in defining the expected optimal working conditions (including temperature and water 

partial pressure) to selectively obtain anatase TiO2 crystals with specific surface facets [15]. 

Figure 1. (a) An anatase tetragonal {101} bipyramid, with side lengths labeled as A and B, 

defining the B/A degree of truncation; (b) Plot of the optimized B/A ratio for anatase 

nanocrystals with various surface chemistries and a side length A = 2 to 100 nm. Adapted 

with permission from ref. [22]. Copyright 2005 American Chemical Society. 

 

Generally, based on the Wulff construction, according to which surface energy minimization drives 

to the optimal composition of the crystal surface, a slightly truncated tetragonal bipyramid, exposing 

eight isosceles trapezoidal {101} facets as well as two top squared {001} facets, as depicted in Figure 1a, 
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was shown to be the most thermodynamically stable shape of anatase crystallites [8,24], also in 

agreement with natural minerals. The percentage of {101} facets is predicted to be as high as 94% and, 

although the surface energy of {100} facets (0.53 J m−2) was calculated to be between those of the 

{001} (0.90 J m−2) and {101} (0.44 J m−2) facets [25], surprisingly no {100} surfaces appear in the 

equilibrium shape of anatase. The typical B/A degree of truncation, defined as the ratio of the 

‘truncation’ facet (B) side with respect to the bipyramid (A) side, is around 0.3–0.4 over a wide range 

of conditions, giving less than 10% of exposed {001} facets. 

The above described equilibrium shape for TiO2 anatase usually refers to calculations obtained 

under relatively ‘extreme’ conditions, such as in vacuo at absolute zero temperature, which are clearly 

different from practical synthesis conditions. Therefore, Barnard et al. [22] tried to establish, from 

first-principles calculations, a shape-dependent thermodynamic model for a TiO2 (anatase or rutile) 

nanoparticle based on the Gibbs free energy, taking into account the contributions of both particle bulk 

and surface. In particular, the deviation from Wulff construction obtained by considering surface 

tension effects under acidic or alkaline conditions was revised and the optimized B/A ratios under 

different surface conditions of anatase nanocrystals were thus provided (see Figure 1b). 

As shown in Figure 2, the surface termination by hydrogen (acidic conditions) results in little 

change in the shapes of both anatase and rutile polymorphs relative to vacuum. However, in  

water-terminated surfaces and hydrogen-poor surfaces, in particular in oxygenated surfaces, both 

anatase and rutile polymorphs are apparently elongated. As a result, the new {100} facets appear as 

‘‘belt’’ in the central part of anatase particles. These predictions are very important to experimentally 

achieve the morphology fine tuning by controlling surface chemistry. 

Figure 2. Morphology predicted for anatase (top) with (a) hydrogenated surfaces; (b) 

hydrogen-rich surface adsorbates; (c) hydrated surfaces; (d) hydrogen-poor adsorbates and 

(e) oxygenated surfaces, and rutile (bottom) with (f) hydrogenated surfaces; (g) hydrogen-rich 

surface adsorbates; (h) hydrated surfaces; (i) hydrogen-poor adsorbates and (j) oxygenated 

surfaces. Adapted with permission from ref. [22]. Copyright 2005 American Chemical Society. 

ACIDIC  . . . . . . . . NEUTRAL . . . . . . . .  BASIC 

{100}

 

Starting from this work, which clearly evidenced how surface chemistry can strongly affect the 

final shapes of anatase TiO2 crystals, the attention was recently focused on the role of adsorbed 

inorganic anions in the shape control and crystal growth of anatase TiO2. Aiming at finding a proper 

chemical agent, able to stabilize the preferential growth of reactive but thermodynamically  

high-energy {001} facets, the contributions of preliminary theoretical work played an essential role. 
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First of all, the predicted degree of truncation (Figure 1b) clearly demonstrates that the {001} facets 

are the most stable oxygenated crystal facets of anatase TiO2, while the {101} facets are mainly 

obtained under clean and hydrogenated conditions [1,12,22]. 

However, both H- and O-terminated anatase surfaces present high surface energy (γ), which 

restricts the formation of large anatase single crystals. High γ values are mainly attributed to the high 

H–H (436.0 kJ mol−1) and O–O (498.4 kJ mol−1) D0 bonding energies [26]. Therefore, using a low-D0 

element with strong bonding to Ti might provide an effective mean to stabilize the faceted surfaces. 

Interestingly, F is such an element, as D0(F–F) = 158.8 kJ mol−1 [26] and D0(F–Ti) = 569.0 kJ mol−1 [27]. 

By using first-principle calculations Yang et al. [28] systematically explored the effects induced by 

12 adsorbate non-metallic atoms X (X = H, B, C, N, O, F, Si, P, S, Cl, Br, I) on the surface energy of 

anatase {101} and {001} facets. The calculated γ values for the different adsorbates are illustrated in 

Figure 3. 

Figure 3. (a) Calculated energies of the {001} and {101} surfaces surrounded by X atoms; 

(b) Plots of the optimized B/A value and percentage of {001} facets for anatase single 

crystals with various adsorbate atoms X. Reprinted with permission from ref. [28]. 

Copyright 2008 Nature Publishing Group. 

 

Two main conclusions can be drawn from Figure 3. First of all, among the investigated  

nonmetal-terminated surfaces and clean surfaces, F-terminated anatase surfaces show the lowest γ for 

both {001} and {101} facets (see Figure 3a). Secondly, anatase {001} surfaces are preferentially 

fluorinated and therefore energetically stabilized with respect to {101} ones. This is clearly shown in 

Figure 3b, where the highest degree of truncation is expected for the F-terminated surfaces, so that, in 

turn, the F-terminated surfaces of anatase TiO2 should be dominated by {001} facets, with a maximum 

predicted percentage surprisingly above 90%.  

This theoretical prediction was experimentally verified for the first time by the same research  

group [28], who successfully prepared well-defined anatase single crystals with 47% highly reactive 
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{001} facets by using a TiF4 aqueous solution as anatase single crystals’ precursor and hydrofluoric 

acid as crystallographic controlling agent (capping agent), under hydrothermal conditions. These 

experimental results solidly confirmed the key role of surface fluorine in stabilizing {001} facets and 

triggered the subsequent intensive research interest in the preparation, modification and photocatalytic 

application of anatase TiO2 with high percentage of {001} facets. As to the stabilization mechanism, 

this can be explained by the balance of O–O/O–F repulsion and Ti–O/Ti–F attraction, which could 

stabilize Ti and O atoms on the surface. Some possible morphologies and surface atomic structures of 

anatase TiO2 crystals [29] were already confirmed experimentally, while others are expected to be 

realized in the future. 

We present here a concise survey of the recent results obtained in the field of specific surface 

oriented anatase TiO2. The preparation methods will be outlined first, in which the presence of specific 

capping agents containing fluorine is essentially invoked for stabilizing high energy {001} facets. In 

particular, we will focus on hydrothermal and/or solvothermal processes employed for the synthesis 

and the assembly of anatase micro/nanostructures with dominant {001} facets. Their peculiar 

photocatalytic properties and potential applications will then be presented, with a particular focus on 

photocatalysis-based environmental clean up and solar energy conversion. Finally, the most promising 

results obtained in the engineering of TiO2 anatase crystal facets obtained by employing alternative, 

possibly more environmentally friendly methods will be critically compared. These latter include 

modified solvothermal or high temperature gas phase reactions developed with the aim of reducing or 

avoiding the use of HF, which, though showing unique and fascinating properties as capping agent in 

controlling the anatase crystal morphology, still remains undesirable for a large scale production, 

being highly corrosive and toxic in both liquid or vapor form.  

2. F-Mediated TiO2 Crystals Engineering  

2.1. Anatase TiO2 with Large Percentage of {001} Facets 

Among the methods to grow crystals, the hydrothermal technique is largely used to specifically 

obtain TiO2 with exposed {001} facets. In this context, Yang et al. [28] brilliantly succeeded in the 

synthesis of anatase TiO2 crystals with 47% of {001} facets under hydrothermal conditions, employing 

HF as capping agent. They also prepared high-quality anatase TiO2 single-crystal nanosheets (SCNSs) 

with 64% {001} facets, employing 2-propanol as a synergistic capping agent and reaction medium, 

together with HF [30]. Theoretical calculations and experimental evidence clarified the key role of  

2-propanol, which acts as a protecting agent, by heterolytically dissociating under acidic conditions to 

form alkoxy groups ((CH3)2CHO−), which bind to coordinatively unsaturated Ti4+ cations on {001} 

and {101} facets. Selective adsorption is favored on {001} facets with higher density of 5-fold 

coordinated Ti, with a consequently retarded growth of anatase TiO2 single crystals along the {001} 

direction. Typical SEM images of the as-synthesized TiO2 single crystalline nanosheets are shown in 

Figure 4. 
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Figure 4. Typical SEM images of anatase TiO2 nanosheets synthesized with 2-propanol as 

a synergistic capping agent. Reprinted with permission from ref. [30]. Copyright 2009 

American Chemical Society. 

 

The photocatalytic activity of the so obtained TiO2 SCNSs materials was checked by determining 

the amount of hydroxyl radicals •OH formed under irradiation [31], employing terephthalic acid as 

fluorescence probe. This latter reacts with •OH radicals in basic solution, yielding 2-hydroxy 

terephthalic acid, which can be detected through its typical fluorescence emission with a maximum at 

426 nm [32]. With respect to benchmark P25 TiO2 from Degussa (Evonik), SCNSs clean surfaces 

generated a more than 5 times higher concentration of  •OH radicals per unit surface area. 

In order to compare the photocatalytic activity of well-defined anatase single crystal particles with 

that of commercial TiO2 photocatalytic powders, the crystalline size should be at least of  

sub-micrometric scale, so as to have a surface area comparable to that of commercial powders. Han et al. 

succeeded in this goal: an improved percentage of {001} facets was obtained by using tetrabutyl 

titanate, Ti(OBu)4, as a precursor and a 47% hydrofluoric acid solution as a capping agent [33–35]. 

The enhancement of photocatalytic activity was attributed to both a high percentage (89%) of {001} 

facets and a relatively small crystal size (side length ca. 40 nm, thickness ca. 6 nm) of anatase TiO2. 

A modified one-pot hydrothermal route was recently employed to prepare ultra-thin (ca. 1.6 nm 

thick) anatase TiO2 nanosheets with dominant {001} facets [36], containing only 2 layers of crystal 

units along the {001} crystallographic direction and exhibiting relatively high efficiency in H2 

evolution under UV-vis light irradiation, after 1 wt.% loading with Pt, a result to be related also to the 

high crystallinity of the material. 

Recently, Wang et al. [37] synthesized anatase TiO2 films with oriented ca. 130 nm in size {001} 

facets, from pretreated Ti foils. The formation of a layered structure including Ti foil–TiOx(rutile)-

TiO2(anatase)-TiO2 with oriented {001} facets was suggested. Hydrofluoric acid employed during the 

synthesis can both help the dissolution of the Ti foil into a soluble titanium complex for the growth of 

TiO2 crystals and act as morphology controlling agent. 

Concerning the preparation of anatase TiO2 films, Liu and Aydil successfully grew oriented films 

with highly reactive {001} facets (70–80%) on transparent conductive fluorine-doped tin dioxide 

(FTO) substrate [38]. The adopted hydrothermal method was essentially based on the stabilization 

effects of {001} facets in the presence of HF, which was generated in situ through hydrolysis of TiF4. 

Robust and homogeneously oriented TiO2 films, with high photoactivity in the degradation of methyl 

orange test compound were obtained by this way. Uniform and compact single crystal anatase TiO2 
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array films with a large percentage of {001} facets were recently synthesized on FTO glass employing 

a similar hydrothermal route [39]. In particular, the effect of various synthesis parameters (e.g., time, 

temperature, solvent acidity and addition of ammonium hexafluorotitanate) on the morphology of the 

films was critically discussed, in order to get well-grown TiO2 films exposing tetragonal {001} 

oriented nanosheets. 

Liu et al. reported that the percentage of {001} facets can be tuned from 18 to 72% by simply 

decreasing the concentration of Ti(SO4)2 from 100 to 10 mM in the presence of HF [40]. These new 

TiO2 nanoparticles exhibited significantly greater photocatalytic activity in both •OH radicals 

generation and water splitting. 

At the same time, Zhang et al. employed the ionic liquid 1-butyl-3-methyl imidazolium 

tetrafluoroborate as reaction solvent, in order to create a fluorine-rich TiO2 crystal surface. With the 

assistance of microwave radiation, the hydrothermal process was substantially reduced from more than 

10 h to 90 min, while the percentage of {001} facets could be kept as high as ca. 80% in well defined 

micron-sized crystals. The so obtained materials exhibited higher reactivity in the photodegradation of 

4-chlorophenol with respect to selected anatase TiO2 without dominant {001} facets [41]. Using a 

similar microwave-assisted energy saving process, biocompatible anatase TiO2 single-crystals with 

27–50% of chemically reactive {001} facets were fabricated in another ionic liquid, i.e., 1-methyl-

imidazolium tetrafluoroborate (see Figure 5).  

Figure 5. Scheme of formation mechanism of {001} facets exposed TiO2 by microwave 

irradiation. (a) Typical XRD pattern; (b) Low-magnification FESEM image, and side view 

FESEM image of TiO2 samples prepared with (c) 30 mL of 0.04 M TiF4 and (d) 0.5 mL of 

ionic liquid at 210 °C for 90 min. Reprinted with permission from ref. [42]. Copyright 

2010 American Chemical Society. 

 

The as-synthesized products were shown to be nontoxic by studying the survival rate of Zebrafish 

larvae, which, possessing a high degree of homology to the human genome, can offer an economically 

feasible platform for a non invasive real-time evaluation of photocatalysts’ toxicity [42]. Moreover, the 

so obtained materials exhibited an excellent photocatalytic efficiency increase for both the oxidation of 
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NO in air and the degradation of organic compounds, such as 4-chlorophenol, in aqueous solution 

under UV light with increasing the percentage of {001} facets from 0% to 50%. 

Ma et al. synthesized uniform anatase TiO2 crystals with multitwinned {001} facets through a 

hydrothermal process, using disodium ethylenediamine tetraacetate (EDTA) and fluorine produced 

from TiF4 precursor, as morphology controlling agents [43]. Both fluorine and EDTA played an 

important role in stabilizing {001} facets. EDTA4− was hypothesized to be in the stable 

[TiO(EDTA)]2− form in the reaction medium at pH ca. 7.0. EDTA4− preferentially adsorbed on {001} 

facets, rather than on {101} facets, due to the higher density of under-coordinated Ti atoms. A quite 

unique multi-twinned morphology was so obtained. 

The substantial role of fluorine in stabilizing {001} facets in various aqueous TiO2 synthesis routes 

was thus extensively demonstrated employing different sources, such as 1-butyl-3-methyl imidazolium 

tetrafluoroborate [41], ammonium bifluoride (NH4HF2) [44], ammonium fluoride [45] and titanium 

tetrafluoride [43], the most frequently employed source being hydrofluoric acid [28], without any 

evidence suggesting dependence of the {001} facets percentage on the fluorine source. 

2.2. Doped Anatase TiO2 with Large Percentage of {001} Facets 

Concerning the TiO2 precursors, soluble TiF4, Ti(SO4)2 and Ti(OBu)4 were commonly used to 

prepare anatase with {001} facets. All precursors can apparently be used for tailoring both the 

percentage of {001} facets and the particles size, soluble precursors thus appearing not discriminating 

in growing the desired pure anatase crystals. However, some very recently employed insoluble 

precursors, such as Ti [46,47], TiN [48], TiS2 [49] and TiB2 [50] crystalline powders, seem to ensure 

unique properties consequent to TiO2 doping, including visible light absorption and oxygen 

deficiencies formation.  

Doping, in particular with non-metal elements [51], is an important strategy for modifying the 

electronic band structure and the response to light of TiO2-based photocatalytic materials. The current 

bottleneck in introducing visible light activity by doping is that well-faceted anatase TiO2 crystals, 

obtained in fluorine-rich ambient, usually have very high crystallinity, making the inclusion of dopant 

species into the structural framework difficult or nearly impossible by mild post-treatments. On the 

other hand, the addition of dopant precursors in the reaction medium may inevitably influence the 

nucleation and growth of anatase TiO2 crystals, so that no TiO2 sheets with desirable properties could 

be synthesized. 

Liu et al. reported a new hydrothermal route to incorporate nitrogen dopants into anatase crystals 

with ca. 60% {001} facets. As shown in Figure 6, the so prepared photocatalyts showed a visible 

absorption edge in the 400-570 nm range and also superior hydrogen evolution rate under visible light 

irradiation with respect to both the corresponding undoped anatase TiO2 sheets and nitrogen doped 

anatase without dominant {001} facets [48]. The main key strategy in this route is the use of a 

crystalline compound, titanium nitride (TiN), as both titanium precursor and nitrogen doping source. 

Nitrogen self-doped TiO2 nanosheets with ca. 67% exposed {001} facets, synthesized by 

solvothermal treatment of TiN in a HNO3–HF ethanol solution, ensured visible-light photocatalytic H2 

production much higher (by a factor of 4:1) than nitrogen doped TiO2 microcrystallites with ca. 60% 

exposed {001} facets, due to the larger surface area of the former compared to the latter material. In 
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this case ethanol acted as a capping agent, hindering the growth of the anatase titania single crystals 

because of its specific binding with the titania surface via the Ti–O–C bond [52]. 

Similarly, sulfur-doped anatase TiO2 single crystal sheets with ca. 41% exposed {001} facets, 

obtained by hydrothermal treatment of TiS2 and HF, showed increased visible light absorption in the 

400–550 nm range with respect to pure anatase TiO2 sheets. Moreover, some visible-light 

photocatalytic activity in •OH radicals generation and organic dyes photodecomposition was obtained 

with these S-doped TiO2 sheets [49], but this activity was lower than that obtained by employing 

nitrogen-doped TiO2 materials with 60% {001} facets [48]. The amount of fluorine species detected on 

S–TiO2 and N–TiO2 nanosheets was at ca. 5.6 and ca. 9.1%, suggesting that more extensive  

surface-terminated Ti–F bonds in anatase TiO2 play a significant role in tuning the percentage of 

{001} facets, presumably by lowering their surface energy. 

Figure 6. UV-visible absorption spectra of (a) pure anatase TiO2 sheets and (b) nitrogen 

doped anatase TiO2 sheets; the insets in the upper right and lower left corners are the plot 

of the transformed Kubelka-Munk function vs. the energy of light and the optical 

photograph of nitrogen doped anatase TiO2 sheets, respectively. Reprinted with permission 

from ref. [48]. Copyright 2009 American Chemical Society. 

 

Novel carbon-doped TiO2 sheets with ca. 58% {001} facets, prepared by hydrothermal treatment of 

TiC in a HNO3-HF aqueous solution, exhibited a photocatalytic activity in methylene blue degradation 

under visible light irradiation much higher than that obtained with carbon-doped TiO2 nanoparticles, 

presumably due to the presence of exposed {001} facets [53]. Moreover, C–TiO2 nanosheets retained 

their catalytic activity even after five subsequent runs and were easily separated from the slurry by 

natural settlement at the end of the photocatalytic reaction. 

As for co-doped materials, nitrogen- and sulfur-doped TiO2 sheets with 54% {001} facets were 

prepared by a simple mixing-calcination method using the hydrothermally prepared TiO2 nanosheets 

powder as a precursor and thiourea as dopant source. These materials showed higher activity for  

4-chlorophenol degradation under visible light compared to both the undoped TiO2 nanosheet and N–S 

TiO2 nanoparticles. Furthermore, the enhanced generation of hydroxyl radicals by the so obtained  

non-metal ion doped titania with exposed {001} reactive facets under visible irradiation was also 

confirmed by photoluminescence measurements using terephthalic acid as probe molecule [54]. 
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Finally, the one-pot synthesis of highly crystalline anatase TiO2 sheets with dominant {001} facets 

and oxygen vacancies (Figure 7) was also obtained without any post-treatment under extreme 

conditions [50]. The formation of oxygen-deficient anatase TiO2 sheets was attributed to the 

synergistic action of the directly added HF and of the H2 produced from acidic hydrolysis of the TiB2 

powder precursor. In particular, {001} facets were stabilized by surface Ti–F bonds while oxygen 

vacancies were generated by H2 reduction of surface Ti4+ species. Oxygen-deficient TiO2 sheets 

loaded with Pt nanoparticles showed substantially enhanced photoactivity in hydrogen evolution in 

comparison to oxygen deficiencies-free TiO2 sheets. Greatly strengthened interaction between loaded 

Pt and the TiO2 matrix results from an electron-transfer process on the reconstructed TiO2 surface 

structure with both oxygen deficiencies and fluorine. 

Figure 7. (A) Optical photograph; typical (B) SEM and (C) TEM images; (D) SAED 

patterns and (E) high-resolution TEM image of oxygen deficient anatase TiO2 sheets. The 

high-resolution TEM image was recorded in the rectangular area in (C). Reprinted with 

permission from ref. [50]. Copyright 2009 American Chemical Society. 

 

2.3. Ordered Supra-Assemblies from {001} Facet-Rich Anatase TiO2 

Specifically faceted crystal units of anatase TiO2 can also be considered as building blocks for 

constructing more complex structures with unique fine-tuned surface and electronic properties. The 

assembly mechanism of complex structures formation usually involves either the use of templates, or 

Ostwald ripening (i.e., the growth of larger crystals from smaller size ones having a higher solubility 

than the larger ones), Kirkendall type diffusion (usually referring to comparative diffusive migration 

among different atomic species in metals and alloys under heating conditions), oriented attachment 

(combination of crystallites through their suitable surface planes), space-predefined growth, and 

probably also their combination [55]. 

Many efforts have recently been paid in order to obtain titania hollow assemblies, which are 

desirable efficient photocatalysts due to their unique physicochemical properties, including low 

density, high surface area, good surface permeability and greater light harvesting capacity [56–60]. In 
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particular, the F-mediated preparation of hollow titania assemblies is attractive due to its  

cost-effectiveness and flexibility in controlling the resulting structures. 

The basic steps of titania hollow microspheres synthesis and structural manipulation employing 

fluoride-mediated self transformation (FMST) [56–58] are schematically illustrated in Figure 8. 

Firstly, a rapid nucleation of metastable TiO2 nanoclusters occurs in the reaction solution due to high 

initial supersaturation (step 1). Secondly, these incipient nanoclusters spontaneously organize into 

amorphous spherical aggregates in order to minimize the total Gibbs free energy (step 2). Thirdly, as 

supersaturation drops with time, heterogeneous nucleation of a crystalline thin shell occurs around the 

amorphous solid microparticles, forming an amorphous core inside a crystalline shell structure (step 3). 

Finally, preferential dissolution of the amorphous core takes place along with concurrent deposition of 

a porous crystalline shell to produce hollow microspheres without significant alteration of the bulk 

particle morphology (step 4). 

Figure 8. Schematic illustration of the formation of hollow TiO2 microspheres by  

fluoride-mediated self-transformation method.  

Ti(SO4)2
+

NH4F

STEP 1 STEP 2 STEP 3 STEP 4Ti(SO4)2
+

NH4F

STEP 1STEP 1 STEP 2STEP 2 STEP 3STEP 3 STEP 4

 

Fluoride species can dramatically affect such crystallization process, ensuring the formation of a 

hollow interior. In fact, in the absence of fluoride amorphous solid TiO2 microspheres evolve only into 

the crystalline counterpart without a hollow formation [56,57], whereas hollow spheres readily form 

after fluoride addition into the synthesis mixture. 

Yu et al. successfully fabricated fluorinated TiO2 porous hollow microspheres (PHMs) in high yield 

according to the FMST strategy [44,56–58,61], following a simple hydrothermal treatment of TiOSO4 

or Ti(SO4)2 aqueous solutions containing fluoride source species (e.g., NH4F, NH4HF2, CF3COOH). 

Typically, the hollow anatase TiO2 microspheres are composed of a porous shell of closely packed 

nanoparticles with a rough exterior [57]. The time-dependent evolution processes confirm that fluoride 

addition is crucial for the transformation of amorphous solid TiO2 into the crystalline hollow 

counterparts along with the redistribution of titania species from the core to the shell (step 4) [56,58]. 

Interestingly, in the presence of fluoride, amorphous TiO2 solid microspheres were demonstrated to 

readily evolve into crystalline anatase TiO2 hollow microspheres with prolonging the hydrothermal 

reaction time [56]. Moreover the textural properties, including the cavity size, shell thickness and 

particle size, can be easily tuned by changing the experimental parameters such as the reactants, i.e., 

titania precursors and fluoride sources, the fluorine to titanium molar ratio, the hydrothermal 

temperature and duration. 

Concerning the mass flow involved in the step 4 of Figure 8, the inward versus outward  

hollow-formation process can be controlled by the solvent composition [62]. In pure water, typical 

outward-type process of hollow spheres formation was usually observed with a gradual and 

progressive decrease in the shell thickness [56–58]. In contrast, in a mixed ethanol–water solvent, an 

inward-type process occurred via a sphere-in-shell intermediate [62]. Ethanol addition may tune the 

diffusion and adsorption of active fluoride ions, affecting the selective dissolution of the interior space, 
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and being responsible for the formation of different hollow microspheres. As shown in Figure 9, the 

synthesis of building blocks with exposed ca. 20% {001} facets and their self-assembly into 

hierarchical microspheres were thus achieved [62]. 

The formation of such microspheres from metastable building nanoblocks is an amazing 

phenomenon. The hierarchically porous microspheres can be easily decorated with guest species in 

order to achieve the desired functionality. Alternatively, sacrificial templates can be introduced for the 

directed assembly of anatase-truncated octahedral bypiramids (TOBs) with exposed {001} facets into 

hollow tubes [63] or into spheres [64]. 

Moreover, hierarchically porous TiO2 films consisting of flower-like TiO2 microspheres with 

exposed ca. 30% {001} facets were successfully grown on conductive Ti foil [65]. Notably, because of 

the high reactivity of {001} facets, these fluoride-stabilized {001} facets were selectively etched by 

HF with prolonging reaction time [65] or increasing HF concentration [66], thus clearly indicating the 

dual role of fluoride in controlling anatase crystal growth, more specifically in preserving or 

destroying the growth of {001} faceted surfaces. 

Figure 9. SEM images of the fluoride-mediated TiO2 samples: (a) Overall view of TiO2 

microspheres; (b) Image of a few microspheres showing their unique structure consisting 

of primary TiO2 nanoparticles; (c) A single microsphere showing its hollow nature; (d) A 

portion of the microsphere shell composed of nanosized polyhedra with exposed {001} facets. 

Reprinted with permission from ref. [62]. Copyright 2010 American Chemical Society. 

 

Recently Fang et al. also reported a new solvothermal process, in the presence of both isobutyl 

alcohol and HF, giving rise to three dimensional hierarchical structures (Figure 10) of  

single-crystalline anatase TiO2 nanosheets dominated by well-faceted {001} facets [67]. This unique 

structure was attributed to isobutyl alcohol acting as the reaction medium, which might influence the 

growth behavior of anatase TiO2 nanosheet units, and their mutual interactions as well. 
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Figure 10. SEM images of the flowerlike TiO2 nanosheets with different magnifications 

(scale bars in a–d are 1 mm, 1 mm, 0.5 mm and 100 nm, respectively). Reprinted from ref. 

[67] with permission of Wiley. 

 

2.4. Alternative F-Free Synthesis of {001} Facet-Dominated Anatase TiO2 

By considering the high toxicity of HF, the capping agent most often used in the above mentioned 

F-mediated syntheses, one may question if anatase crystals with a high percentage of {001} facets can 

grow through a fluorine-free wet-chemistry route. The answer is yes, even though few examples of 

fluorine-free synthesis have been reported up to now. 

A shape-controlled synthesis of anatase TiO2 with {001} high-reactive facets was achieved by 

employing both oleic acid (OA) and oleylamine (OM) as capping agents in the presence of water 

vapor [68]. The key feature of this approach consists in the use of water vapor as hydrolysis agent to 

accelerate the reaction and the use of two distinct capping surfactants having different binding 

strengths to control the growth of the TiO2 nanoparticles. In particular, OM was demonstrated to 

selectively adsorb on {101} facets, OA on {001} facets. Therefore, by increasing the amount of OA, 

anatase TiO2 with {001} facets could be preserved. 

Dai et al. introduced a facile synthesis of anatase TiO2 nanocrystals with exposed, chemically 

active {001} facets. The nanocrystals were prepared by digesting electrospun nanofibers consisting of 

amorphous TiO2 and poly(vinylpyrrolidone) with an aqueous acetic acid solution (pH = 1.6), followed 

by hydrothermal treatment at 150 °C for 20 h. The as-obtained nanocrystals exhibited a truncated 

tetragonal bipyramidal shape with 9.6% of the surface being enclosed by {001} facets [69]. The use of 

electrospinning was critical to the success of this synthesis as it allows the generation of very small 

particles of amorphous TiO2 to facilitate hydrothermal crystallization, an Ostwald ripening process. 

The morphology of the nanocrystals had a strong dependence on the pH value of the solution used for 

the hydrothermal treatment. In particular, low pH values tend to eliminate the {001} facets by forming 

sharp corners, while relatively high pH values favor the formation of a rod-like morphology through 

an oriented attachment mechanism. 

Well-dispersed full anatase TiO2 nanoplatelets with 20–40 nm size and a rather reduced fraction of 

the stable {101} plane (18%) were prepared via a controlled hydrolysis of TiCl4 in ethylene  
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glycol [70]. According to the suggested mechanism, water molecules, obtained from the partial 

thermal decomposition of glycol species, can coordinate Ti4+ cations with the consequent formation of 

titanium oxy/hydroxychloride complexes, which polymerize/condense yielding the TiO2 materials. 

Recently, a very interesting carbonate ions-assisted hydrothermal synthesis of anatase TiO2 

nanoparticles with a remarkable amount (60%) of high-energy {001} exposed facets was reported 

employing K-titanate nanowires (KTNWs) as precursor [71]. Carbonate ions produced by the 

decomposition of urea in a basic environment can effectively lower the surface energy of {001} facets, 

the percent amount of which can be tuned by changing the amount of (NH4)2CO3. The photocatalytic 

efficiency in methylene blue (MB) degradation under UV irradiation increased by increasing the 

percentage of {001} facets of the so-obtained materials. 

Concerning the preparation of ordered supra-assemblies, Chen et al. synthesized hierarchical-structured 

microspheres by the self-organization of anatase TiO2 nanosheets dominated by {001} facets through a 

simple nonaqueous solvothermal method, using titanium(IV) isopropoxide as precursor [72]. In 

particular, diethylenetriamine in isopropyl alcohol was proved to act as a morphology-controlling 

agent alternative to fluorine species in stabilizing high energy {001} faces in the solvothermal system 

(Figure 11). Apart from the nearly 100% {001} facets obtained, small thickness (3 nm) and a high 

specific surface area (170 m2 g−1) made this material unique for lithium ion battery applications, 

because of its lithium ion intercalation ability and cycling performance. 

Figure 11. FESEM images of anatase TiO2 nanosheets hierarchical spheres. Reprinted 

with permission from ref. [72]. Copyright 2010 American Chemical Society. 

 

However, a central question can be raised concerning the crystallinity degree of the photocatalysts 

obtained in the absence of fluorine species. In fact, the TiO2 materials consisting of dominant {001} 

sheets prepared through F-free syntheses are generally poorly crystalline and a calcination treatment, 

even at high temperature and with possible undesired morphology change and/or phase transition, is 

needed in order to improve their crystallinity. 

At the same time, heavy coating of the TiO2 surface by the surfactants employed as alternative 

capping agent may preclude a direct comparison of the photocatalytic activity of crystals with different 

shapes/morphologies [68]. Thus, poor crystallinity and competitive surface adsorption of capping 

agent are the main limiting points still confirming fluorine, mainly in the HF form, as the best 

chemical agent to control the morphology of anatase TiO2 crystals.  

a) b) 
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In fact, the mediating role of F− ions in the dissolution and re-crystallization processes of metastable 

TiO2 intermediates results in the facilitation of crystal growth and crystallization, accounting for the 

greater crystal size and higher crystallinity degree. The strong complexing ability of active F− ions and 

the etching effect of HF molecules promote the dissolution of metastable TiO2. In addition, the 

recrystallization process is modified by fluoride complexation, affecting the reaction dynamics and 

linking modes during hydrolysis and condensation reactions. The size and degree of crystallinity of 

titania photocatalysts are important factors affecting the photocatalytic processes. For instance, the 

higher crystallinity degree and the smaller number of bulk defects that act as trapping sites and 

recombination centers of photogenerated charge carrier facilitate the bulk diffusion of photogenerated 

charge carrier to the catalyst surface where photocatalytic reactions occur [73]. 

Interestingly, the thermal stability of anatase crystals against phase transition and crystal growth are 

also affected by surface fluorination. Usually, the phase transformation from anatase to rutile is 

significantly inhibited and the phase transformation temperature is increased [32,74–76]. For example, 

Lv et al. recently reported that fluorinated TiO2 nanosheets showed a remarkable thermal stability 

against phase transition up to 1100 °C [77]. Two facts were proposed to account for the superior 

thermal stability of fluorinated anatase crystals. One is related to the protection effect of adsorbed 

fluorine, which inhibits surface nucleation of rutile grains due to the spatial steric hindrance and less 

available interfacial contacts as nucleation sites [32,74]. The other is related to the higher degree of 

crystallinity and the smaller number of surface defects, which do not favor the surface nucleation of 

the second phase [77]. 

Figure 12. Anatase TiO2 crystals dominated by {001} facets formed by a gas phase 

process. Reprinted with permission from ref. [78]. Copyright 2009 American Chemical Society. 

 

 

A further challenge is whether or not anatase crystals with a high percentage of {001} facets can be 

grown in the absence of both fluorine and other capping agents. Up to now, only Amano et al. succeed 

in preparing ca. 40% {001} faceted, 50–250 nm sized decahedral single crystalline anatase through 
gas-phase reaction of TiCl4 with O2 at 1300 °C [78] (see Figure 12). Uniform and rapid heating at such 

a high temperature would enable homogeneous nucleation and subsequent growth to well faceted 

crystals with few defects. The low concentration of TiCl4 and the narrow heating zone would prevent 

the formation of large particles and polycrystalline aggregates with grain boundaries. The  
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as-synthesized materials exhibit extremely high photocatalytic activity in H2 evolution from aqueous 

methanol solution and significant oxidative decomposition of organic compounds, such as acetic acid 

and methanol in aqueous solution. The relative lack of crystal defects and particle boundaries might be 

the origin of these superior properties. 

3. Specific Properties and Applications of {001} Facet-Dominated Anatase TiO2 

An overview on the most fascinating applications that anatase TiO2 crystals mainly exposing {001} 

reactive facets can find in the photocatalysis-based environmental cleanup and solar energy conversion 

research field will be provided in this section. In fact, besides in organic synthesis [79,80], 

heterogeneous photocatalysis may find extensive application [23,81] not only in the field of 

environmental chemistry and pollution control, e.g., in the abatement of both aqueous and gas phase 

pollutants, but also in the conversion of solar into chemical energy, by thermodynamically up-hill 

reactions producing fuels, such as hydrogen production from water [82,83] and CO2 photoreduction 

yielding methane and methanol [84]. 

Photocatalytic processes occurring upon TiO2 band gap excitation by light absorption leading to the 

formation of electron-hole pairs are still greatly restricted by the fast electron-hole pairs recombination 

and narrow light-response range of titania-based photocatalysts [85,86]. The unique and finely tuned 

surface and electronic properties of anatase TiO2 crystals with dominant {001} high-energy facets are 

expected to affect both charge separation and photogenerated electron-hole pairs transfer, with a 

significant improvement of the overall yield of surface-mediated photocatalytic reactions involved in 

solar energy conversion and detoxification processes. 

3.1. Dissociative Adsorption 

The surface interaction between water and TiO2 greatly affects photocatalytic processes. An overall 

review on the theoretical studies on this specific interaction can be found in ref. [87]. Chemically 

dissociated water molecules were shown to be energetically favored on {001} facets, whereas water 

molecules are expected to physically adsorb on {101} surfaces [13,18,88], though partial dissociation 

within the first layer of water on anatase surface was recently observed by Walle et al. by  

surface-sensitive photoelectron spectroscopy [89]. Anyway, by considering that dissociated water may 

facilitate the transfer of photogenerated carriers and the formation of reactive radicals, {001} facets are 

expected to be much more effective for photo-redox reactions than {101} facets. As already mentioned 

in Section 2.1., this fact was firstly evidenced by Yang et al. for TiO2 materials obtained by F-

mediated synthesis [30]. The concentration of •OH radicals, normalized per unit surface area, 

generated from TiO2 single crystal nanosheets (SCNSs) clean surfaces was found to be more than 5 

times higher than that of the benchmarking material P25 Degussa (containing only 5% of {001} 

facets). Thus, TiO2 SCNSs with fluorine-free surfaces show superior photocatalytic activity in forming 
•OH radicals, which clearly demonstrates that the high density of unsaturated (five-fold coordinated) 

Ti as well as the unique electronic structure of the {001} facets do substantially enhance the 

photoreactivity of anatase TiO2 SCNS. 

At the same time Amano et al. confirmed that decahedral single-crystalline anatase particles with 

exposed {001} facets obtained by fluorine-free gas-phase processes showed a higher photocatalytic H2 
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evolution ability with respect to commercial Degussa P25 TiO2 powder [78]. An enhanced  

photo-reduction activity in water-splitting was reported for anatase TiO2 micro/nanosheets with 

exposed {001} facets prepared from various titania precursors in the presence of HF under 

hydrothermal conditions [40,48–50,90]. 

In addition, the photo-oxidation ability with respect to the production of hydroxyl radicals and the 

decomposition of organic pollutants was enhanced to some extent by the presence of {001} facets by 

employing the previously cited materials [33,41,42,44,46,91]. Although the detailed geometrical and 

electronic structures of the majority of pollutant molecules adsorbed on {001} facets are not fully 

known, in general, the high-energy {001} facets are recognized to be more effective for dissociative 

adsorption of reactant molecules than the thermodynamically more stable {101} facets [14,92,93]. The 

dissociative adsorption of reactant molecules on the {001} facets appears to reduce their activation 

energy and affect the reaction mechanism at molecular level in the aforementioned photocatalytic 

processes. Moreover, chemically dissociated molecules can react more efficiently with short-living 
•OH radicals photogenerated on the TiO2 surface, which can be rapidly converted to catalytically 

inactive surface hydroxyls. 

3.2. Photocatalytic Selectivity 

The development of TiO2 photocatalysts with high selectivity with respect to specific 

transformation and/or degradation of organics is very important for photocatalysis applications in the 

field of both organic synthesis and environmental depollution. The opportunity to tune the selectivity 

of anatase crystals by modifying the surface properties of TiO2, e.g., the percentage of exposed {001} 

facets, to produce morphologically controlled photocatalytic materials such as those described in this 

review has been extensively investigated in the last few years. For example, Li et al. reported that the 

selectivity for the photocatalytic conversion of toluene to benzaldehyde can be enhanced by increasing 

the specific surface area of exposed {001} facets [94]. Moreover, anatase microcrystals with {001} 

facets, obtained in the presence of a fluorine to titanium molar ratio equal to 6, were found to exhibit 

the highest •OH generation rate even if the photoactivity for the decolorization of Rhodamine B was 

the lowest among the investigated samples [44]. 

Hollow TiO2 microspheres (HTS), prepared by a fluoride mediated self-transformation method and 

composed of anatase polyhedra with ca. 20% exposed {001} facets, exhibit tunable photocatalytic 

selectivity in decomposing azo dyes in water [62]. In particular, as-synthesized HTS, containing about 

0.5 at.% of surface fluorine, showed preferential decomposition of methyl orange (MO) in comparison 

to methylene blue (MB) under UV light irradiation, as shown in Figure 13a. Interestingly, a reversed 

selected decomposition order was obtained after a major replacement of the surface fluoride species by 

hydroxyl groups through NaOH washing (see Figure 13b). The removal of surface fluorine by 

calcination at 600 °C also produced anatase TiO2 samples favoring MB rather than MO 

photodegradation, as evidenced in Figure 13c. The apparent rate constants of MB bleaching follow the 

order: Ti–OH terminated {001} facets > clean {001} facets > Ti–F terminates {001} facets. The so 

obtained tunable photocatalytic selectivity should be mainly related to the adsorption selectivity of 

HTS: MO adsorption was still low after HTS surface modification by either NaOH washing or 

calcination, while MB adsorption was significantly enhanced on both HTS samples. 
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Figure 13. Comparison of photocatalytic decomposition of methyl orange (MO) and 

methylene blue (MB) by hollow TiO2 microspheres (HTS) before and after surface 

modification: (a) As-prepared fluorinated HTS; HTS modified (b) by NaOH washing and 

(c) by calcination at 600 °C. Adapted with permission from ref. [62]. Copyright 2010 

American Chemical Society. 

a)  b)  c) 

 

The reversed selectivity is thus related to the changed surface atomic structure imposed by the 

presence of surface terminating Ti–F bonds, as confirmed by recent Raman investigations [40]. Thus, 

adsorption and photocatalytic selectivity toward e.g., azo dyes is greatly affected by the surface 

chemistry besides the surface structure, i.e., the percentage of exposed {001} facets. In line with this, 

Ohtani et al. pointed out that the acid strength of hydroxyls on {001} facets is lower than that on 

{101} facets, based on zeta potential measurements [95]. This difference in the surface charge greatly 

affects the adsorption properties and the photocatalytic decomposition of organic dyes such as MO [91]. 

It is worth recalling in this respect that surface fluorination was shown to remarkably affect the 

adsorption of reactants on TiO2 and consequently also the production of active species, the surface 

charge separation and transfer, and the kinetics and mechanism of surface photocatalytic reactions. 

Starting from the early hypothesis that an •OH radical-mediated mechanism should be responsible for 

the increased rate of phenol photocatalytic oxidation upon TiO2 fluorination [96,97], extensive 

subsequent studies [98–100] evidenced that the rate of photocatalytic oxidation reactions may either 

increase or decrease upon TiO2 fluorination, depending on the prevailing oxidation mechanism. 

Indeed, when photocatalytic oxidation mainly occurs by direct interaction of the substrate with the 

holes photoproduced in the semiconductor valence band, as in the case of formic acid [100] and 

dichloroacetate [98], that are strongly bound to the TiO2 surface, a rate decrease was observed upon 

TiO2 surface fluorination, as a consequence of the hindered adsorption of these substrates on the 

fluorinated surface and hindered direct hole transfer [101]. On the other hand, surface TiO2 

fluorination improves the photocatalytic degradation of a number of simple organic compounds, such a 

phenol [96,97], benzoic acid [100], cyanide [102], and also a variety of organic dyes [98,100,103] in 

the aqueous media. This positive effect on the photocatalytic degradation was directly associated with 

a •OH radical-mediated mechanism, as demonstrated through spin trapping EPR experiments [99]. 

Surface fluorination also has a shielding effect on the photoinduced surface reactions leading to •OH 

radical decomposition and may favor their desorption and reaction in the liquid phase [99,100].  

Surface TiO2 fluorination not only modifies adsorption, but may also significantly affect the 

adsorption sites and modes. As elegantly demonstrated by Zhao and coworkers [104], Rhodamine B 
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(RhB) preferentially anchors on pure TiO2 through the carboxylic group, while its attachment switches 

to the cationic moiety (-NEt2 group) on the fluorinated TiO2 surface. Consequently, RhB de-alkylation 

precedes the destruction of the chromophore structure on fluorinated TiO2 under visible light 

irradiation, whereas the direct cleavage of the RhB chromophore structure occurs on naked TiO2.  

Finally, surface fluorination affects not only hole transfer, but also electron transfer from the 

semiconductor surface, due to the strong electronegativity of fluorine, resulting in a tight holding of 

trapped electrons [105] and reduced electron transfer to acceptors from fluorinated TiO2 [98,100]. Also 

the recombination rate with trapped holes becomes lower [105], with an indirect beneficial effect on 

photoactivity of the stronger electron storage capacity on the fluorinated TiO2 surface. 

3.3. Selective Charge Separation 

By considering that each family of anatase TiO2 facets is characterized by a unique surface 

electronic structure, a consequent selective migration of photogenerated electrons and positive holes to 

the specific exposed crystal facets may be expected. Therefore, an ideal spatial separation of red-ox 

sites on the anatase particles, with a consequent reduction of electron-hole pairs recombination rate 

and a parallel photocatalytic efficiency enhancement, may occur [106,107]. This is another crucial 

aspect concerning potential positive effects induced in photocatalysis by specific TiO2 crystal engineering. 

The first efforts to verify this expectation and to precisely determine the reduction and oxidation 

sites on TiO2 crystals were made by Matsumura and co-workers [106], who investigated the selective 

deposition of Pt and PbO2 on specific crystal faces of rutile and anatase TiO2 particles. In the case of 

anatase TiO2 materials Pt particles from Pt4+ photo-reduction are mainly deposited on {101} facets, 

while PbO2 particles from Pb2+ photo-oxidation are mostly found on the {001} facets. These results 

clearly indicate that the co-presence of specific crystal facets can positively contribute to the 

separation of photogenerated electrons and holes, as schematically shown in Figure 14 for anatase 

TiO2 based materials. 

However, the possible influence of the counter ions of the probing agents used to reveal the 

reduction/oxidation facets is not always taken into account. In fact, ionic species such as Cl− from 

H2PtCl6 and NO3
− from Pb(NO3)2 may preferentially adsorb on some facets, which can subsequently 

result in selective deposition of metal particles on other facets. This possibility was already 

demonstrated for ZnO crystals [108]. 

Apart from the preferential oxidation or reduction ability shown by specific TiO2 crystal facets, the 

band gap of crystal facets or crystal slabs would change due to the difference in surface atomic 

arrangements. This phenomenon can correspondingly change the redox power of the photoproduced 

charged species (electrons and holes). The UV-visible absorption spectrum of anatase TiO2 crystals 

with 72% {101} facets would show a blue shift compared to that with 72% {001} facets, indicating 

that {101} facets have a larger band gap than {001} facets [40]. Further electronic structure analysis 

suggests that {101} has the same valence band maximum as {001}, but show a slightly higher 

conduction band minimum than {001} facets [109], as shown in Figure 15. This electronic band 

difference, together with a difference in atomic coordination, would certainly affect the photocatalytic 

reactivity. In particular, an optimal percent mixture of different anatase facets might have positive 

effects in electron-hole pair separation, as in mixed anatase-rutile systems [110]. Therefore, aiming at 
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designing TiO2-based materials with optimal photocatalytic efficiency, the photocatalytic activity order 

and band energies location of different anatase TiO2 crystals facets should be carefully evaluated.  

Figure 14. Schematic images of spatial separation of redox sites on anatase TiO2 particles 

with specific exposed crystal faces: decahedral particle with (a) a larger surface area of 

oxidation sites and smaller surface area of reduction sites and (b) a smaller surface area of 

oxidation sites and larger surface area of reduction sites. Reprinted with permission from 

ref. [107]. Copyright 2009 American Chemical Society. 

a)  b) 

 

Figure 15. Schematic resolved band structures of {001} and {101} anatase crystal facets. 

Adapted from ref. [109] with permission of Wiley. 

 

According to very recent density functional theory (DFT) calculations, different positions of the 

conduction band edge of anatase TiO2 crystallographic surfaces can strongly affect the electron 

transfer rates of a dye-semiconductor interface. In particular, different adsorption configurations of 

formic acid, chosen as anchoring group of a model perylene dye, on different anatase TiO2 facets were 

systematically calculated [111]. Although the most abundant {101} facet was recognized as one of the 

best surfaces for electron injection, the high energy {001} surface is a promising competitor for 

efficient electron injection in dye sensitized solar cells (DSSCs). Moreover, stronger adsorption of 

carboxylic acids on the {101} plane with respect to the {001} plane can potentially provide a higher 

density of adsorbed dye molecules and consequently superior density of injected electrons and 

photocurrent response. This work clearly suggested that further experimental and theoretical studies 

about the relative band positions of TiO2 specific facets are still needed. 
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In order to elucidate the potential effect of reactive {001} facets on the selective migration and/or 

separation of photogenerated electrons and holes at TiO2 surface, Maitani et al. [112] performed 

fluorescence quenching investigations on the photoexcited charge transfer from fluorophores,  

9-substituted anthracene derivatives (An_X; X = H and COOH) and tetracene, to TiO2 nanoparticles as 

a function of the relative fraction of {001} facets. Stern-Volmer plots of fluorescence quenching 

clearly showed a 10-fold enhancement in the quenching rate constant in presence of TiO2 

nanoparticles containing 69% of {001} facets with respect to those containing a lower relative amount 

of the same facets (30%). Thus, anatase TiO2 {001} facets appear to positively contribute to an 

efficient photoexcited charge transfer process for DSSCs application. 

3.4. Recent Controversial Results 

Although general consensus was reached on the enhancement of photocatalytic reactivity by proper 

engineering of crystal facets, there are still controversial opinions regarding the role of {001} facets in 

achieving a superior photoreactivity with respect to {101}-faceted titania photocatalysts [109,113,114]. 

Moreover, still under debate is the optimal ratio of {001} to other exposed facets.  

Very recently, Pan et al. [109] prepared anatase single crystals with a predominance of {001}, 

{101} and {010} facets, as shown in Figure 16. The relative photocatalytic activity of each specific 

facet was thus compared under identical experimental conditions, to establish a reliable photoreactivity 

order of anatase TiO2 facets. Surprisingly, the photocatalytic generation of hydroxyl radicals and 

hydrogen evolution followed the order: {010} > {101} > {001}. However, all three investigated facets 

showed similar reactivity when partially terminated with fluorine. This was attributed to a change in 

the surface structure imposed by the presence of the Ti-F bond. {010} facets were hypothesized to 

possess favorable surface atomic-electronic structures, so that the stronger reducing electrons on the 

conduction band can be transferred via surface 5-fold coordinated Ti atoms as active reaction sites. 

Thus, an efficient consumption of excited electrons in the photo-reduction process can also enhance 

the efficiency of the photo-oxidation process involving photogenerated holes. 

In line with this, a time-consuming nonaqueous seeded growth method was recently described, 

which allows to engineer the percentage of {001} and {101} facets of anatase TiO2 nanocrystals 

through the proper co-surfactant and titanium precursor choice [115]. Also in this case, the 

photocatalytic activities of three selected oxygen-deficient anatase samples after Pt photodeposition 

indicate that the {101} facet is more active with respect to the {001} facet in the production of 

hydrogen from methanol solutions under solar illumination. As shown in Figure 17, higher percentages 

of {101} facets clearly correlate with higher photocatalytic activity for both partially fluorinated and 

NaOH-treated samples. 
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Figure 16. (a) Scheme of anatase TiO2 crystals with different percentages of {101}, {001} 

and {010} facets; (b–d) SEM images of anatase crystals synthesized with different 

hydrofluoric acid aqueous solutions (120, 80 and 40 mM) containing different amounts of 

TiOSO4 precursor (64, 32 and 32 mg) at 180 °C for different times (12, 12 and 2 h). 

Reprinted from ref. [109] with permission of Wiley.  

 

Figure 17. Hydrogen production rate from 1 wt.% Pt loaded samples of ligand exchanged, 

(a) fluorinated and (b) NaOH-treated TiO2 nanocrystals under solar illumination in 1:1 

MeOH/H2O mixtures. Reprinted with permission from ref. [115]. Copyright 2012 

American Chemical Society. 

 

Similar results were obtained by Tachikawa et al. [116,117] who directly evaluated the 

photocatalytic activity of an individual anatase TiO2 single crystal using as-synthesized redox-responsive 

boron dipyrromethane (DN-BODIPY) as the fluorescent probe and found that most fluorescence spots 

were preferentially located on {101} surface of crystals, as shown in Figure 18, even if the surface 

area of the {001} facets was more than two times higher than that of {101} facets. 
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Figure 18. (A) Structure of anatase TiO2 crystal with preferential (001) facets;  

(B) Transmission image of a single TiO2 crystal on the cover glass in Ar-saturated 2.0 μM 

3,4-dinitrophenyl-BODIPY solution under 488 nm laser and UV irradiation. The red and 

blue dots in image (B) indicate the fluorescence bursts located on the {101} and {001} 

surfaces, respectively, observed during 3 min irradiation. Reprinted from ref. [116] with 

permission of Wiley.  

 

This finding may be helpful to interpret some important photocatalytic processes. For example, a 

large surface area of {101} facets was suitable for acetaldehyde decomposition, while anatase TiO2 

samples with dominant {001} facets had excellent ability to remove NO and toluene through 

photocatalytic reactions [94,107]. 

Finally, the effects induced by the replacement of {101} by {010} facets on the photoactivity of 

anatase TiO2 crystal were very recently explored. By comparing the photocatalytic oxidation and 

reduction activity of {101}-{001} and {010}-{001} samples, synthesized by employing (NH4)2TiF6 as 

titanium and fluorine source, the substitution of {101} by {010} facets was found to inhibit the 

photocatalytic activity of the materials. The photoefficiency increase obtained for anatase TiO2 

crystals with {101}-{001} coexisting facets was ascribed to a more efficient separation of 

photogenerated electron-hole pairs, which was supported by time resolved photoluminescence 

spectroscopy evidence [118]. 

4. Conclusions and Outlook 

Based on the here reviewed very recent literature, a high density of surface under-coordinated Ti 

atoms does cause a high surface energy of the crystal facet (e.g., the {001} facet), but does not 

necessarily make the crystal highly reactive in photocatalytic reactions. In fact, a crystal facet with a 

high density of under-coordinated atoms can be photocatalytically advantageous only if a favorable 

electronic structure co-exists. The selective adhesion of specific capping agents (typically, fluoride 

anions) on the {001} surface of anatase TiO2 was confirmed to be crucial for stabilizing these  

high-energy facets. 

Notably, the facets-mediated adsorption behavior and electronic structure is significantly altered by 

the introduction of surface defects and/or surface chemistry (such as surface fluorination), which may 

be the origin of the observed variation in photoreactivity of different samples. In fact, the abundance 

and nature of defects are strictly related to the employed synthesis routes. It is therefore difficult to 

univocally compare the activity of photocatalysts obtained by different synthesis routes. 
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However, the contribution from other coexisting facets and surface variables can not overwhelm the 

essential role of {001} facets in modifying the photoredox reactivity of {101}-faceted titania 

photocatalysts. An expected synergetic effect of adjacent facets in separating photoproduced charge 

carriers cannot be ignored. Importantly, all these variables are interrelated and should not be 

considered individually in explaining the variation in the photocatalytic reaction route by the presence 

of {001} facets. Though the detailed and unambiguous mechanism of the face-selective electron and 

hole separation is still in its infant stage, the selective photocatalysis on anatase TiO2 crystals with 

specific exposed crystal faces opens a pathway to a deeper understanding of various photocatalytic 

processes. At the same time even if a significant progress was achieved in the synthesis and assembly 

of {001}-faceted anatase nanosheets, further efforts are still required to obtain tailored nanomaterials 

suitable for advanced environmental and energy-related applications. 

Furthermore, the assembly of anatase nanosheets into well organized compact film photoanodes 

without scarifying the active {001} facets needs to be investigated in detail. Further studies are also 

needed on the development of more complex structures, especially those with doped and/or modified 

anatase TiO2 micro/nanosheets with high percentage of {001} facets and potential visible light 

photoactivity. Hopefully, the present review will stimulate further investigations on the development and 

thorough characterization of titania and related materials with exposed high energy facets, and advance 

their application for solving the current and future environment- and energy-related challenges. 
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