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Abstract: The manipulation of trap states plays a crucial role in the development of efficient photocat-
alysts. An ultrathin-shelled Zn-AgIn5S8/ZnS quantum dots (QDs) photocatalyst was synthesized via
in situ growth using a low-temperature hydrothermal method. The optical properties of the samples
coated with ZnS shell were studied vis UV-vis absorption and fluorescence spectra. The ultrathin ZnS
shell plays an important role in the Zn-AgIn5S8/ZnS core–shell heterostructure photocatalytic water
splitting system, which could reduce surface defects, prolong the carrier lifetime and improve the
photo-generated electron–hole pair separation effectively, resulting in the improved photocatalytic
efficiency and enhanced stability of the catalyst. The results provide an effective guideline for shell
thickness design in future constructions of the core–shell heterostructure photocatalyst.

Keywords: I-III-VI QDs; trap states; photocatalysis; hydrogen production

1. Introduction

Utilizing solar energy for photocatalytic water splitting to produce hydrogen is consid-
ered the most ideal way to alleviate energy shortages and prevent ecological damage [1–4].
Due to their excellent biocompatibility, good optical properties and high biochemical stabil-
ity, multiple I-III-VI nanocrystals or quantum dots (QDs) have been extensively studied in
biosensing, light-emitting diodes, solar cells and photocatalytic hydrogen production for
nearly a decade [5–13]. The Ag-In-S system, as a typical representative, was further studied
in changing the optical properties by regulating the reaction conditions. At present, a large
number of studies are devoted to changing the reactant, reaction temperature and reaction
time to study changes in optical properties and their corresponding applications [14–17].
Among the applications, photocatalysis attracts a lot of attention due to the advantages of
its environmentally friendly, wide range of visible light response and small size to facilitate
the diffusion of carriers to the surface [17–19].

In photocatalytic applications, the improvement of the Ag-In-S-based QDs themselves
mainly involves the regulation of the proportion of various elements to reduce the bandgap
in order to improve visible light absorption [20–22]. Torimoto et al. reported the formation
of a structurally controllable (AgIn)xZn2(1−x)S2 solid solution by controlling the ratio of
ZnS to AgInS2, and they systematically studied the relationship between the bandgap,
photocatalytic performance and sample size [23]. At the same time, a large number of
studies are devoted to recombining with other semiconductors to construct heterojunctions
to promote photogenerated carrier separation and transmission, so these heterojunctions
are usually necessary [24–28]. For example, Zhang et al. embedded Zn-Ag-In-S (ZAIS)
QDs into 2D NiFe layered double hydroxide nanosheets through simple hydrothermal
treatment to form a 0D/2D composite heterojunction system for photo-assisted electrocatal-
ysis. Under light irradiation, for them, the optimized NiFe ZAIS showed a significantly
reduced overpotential of 129 mV and 242 mV at current densities of 10 and 50 mA cm−2,
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22 and 33 mV lower than that of dark electrocatalysis, respectively. Through the proof
of transient photovoltage spectroscopy, we have a clear and basic understanding of the
dynamics of the charge extraction time and the amount in 0D/2D heterojunction, which
has been proven to play a key role in photo-assisted electrocatalysis [29]. On the other hand,
although the wide band gap ZnS is an excellent shell material, wrapped I-III-VI QDs to
build a core–shell structure can reduce surface defects and improve luminous efficiency, and
they are widely used in light-emitting diodes, biological imaging and other fields [30,31].
Sun-synthesized pure blue InP/ZnS quantum dots have an emission wavelength of 468 nm
and a quantum yield of 45%. Furthermore, zinc oleate and S-TOP are used as precursors to
epitaxially grow the second ZnS shell. The residual zinc stearate reacts with S-TOP to form
a ZnS shell, which increases the thickness and stability of QDs. Moreover, as the residual
precursor to zinc stearate is removed, the current density increases from 13 mA cm−2 to
121 mA cm−2 at 8 V for the hole-only device. External quantum efficiency increased from
0.6% of InP/ZnS quantum dot light-emitting diodes (QLEDs) to 1.7% of InP/ZnS/ZnS
QLEDs [32]. However, in the photocatalytic reaction, the type-I band arrangement in
this core–shell structure hinders the transfer of photogenerated electrons to the surface
of the catalyst [33,34]. In view of this problem, if the structure of the shell material can
be reasonably controlled to achieve efficient trap passivation without blocking the charge
transfer [35], the unique structure of the interface would make the lifetime of photogen-
erated carriers significantly increase, they would become thinner, and they would have a
short carrier transport distance, resulting in the fast separation of carriers in the interface.
Meanwhile, the wide band gap ZnS shell coating also helps improve the stability of the
catalyst. However, there is little research on the photocatalytic hydrogen production of
ZAIS QDs covering ZnS, and an in-depth understanding of the photocatalyst design and
preparation system is lacking.

For the construction of narrow-bandgap photocatalysts, the control of defects or trap
states plays a crucial role, which may act as the recombination center of charge carriers,
resulting in a decrease in photocatalytic activity [36,37]. However, there are also lots
of work that have reported that the trap states can increase the opportunity of charge
separation that can result in the enhancement of activity [38,39]. These conflicting results,
together with the difficulty of the mechanism’s study, make it an ongoing hot topic in the
photocatalysis field. As a wide-bandgap and stable semiconductor, ZnS has been employed
to construct core–shell nanostructures for surface passivation and defect reduction [40,41].
In order to avoid the decomposition of CdS quantum dots and passivate their surface
state, an important strategy of Jin et al. is to grow the “shell” of another semiconductor
material to produce core–shell structure quantum dots and physically isolate the active
“core” quantum dots from the surrounding environment. Based on density functional
theory calculations, ultrafast charge separation rates were ascribed to the formation of
an intermediate Au2S layer at the semiconductor–metal interface, which can successfully
offset the energy confinement introduced via the ZnS shell [42]. This strategy obtained
great success in optical applications, such as biological imaging and light-emitting diodes,
for which only high-efficiency radiative recombination is required [43,44]. On the contrary,
extra consideration is needed for the photovoltaic and photocatalytic processes that require
charge separation and collection. It has been reported that shell thickness plays a crucial
role in the compromise of defect passivation and the hindering of charge separation via
the wide-bandgap ZnS shell [45]. However, activity enhancement is still limited in these
core–shell structured photocatalysts, and much work is needed for a better demonstration
of the related mechanism.

In this paper, ZAIS/ZnS QDs were synthesized using a simple hydrothermal method
at a low temperature, focusing on the effect of a ZnS coating. After the ZnS coating, the
light absorption remained basically unchanged, while the photoluminescence (PL) intensity
largely increased with a small blue shift of the emission peak. The influence of the ZnS
thickness on the photocatalytic activity of the samples and the related mechanism were
investigated. It was found that the optimized ZnS shell ratio was only 1.25%. This thin
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ZnS shell achieved a decrease in surface defects in the ZAIS/ZnS core–shell structure, but
it did not hinder the surface charge separation or improve the photocatalytic efficiency
of the key. The average fluorescence lifetime was prolonged, which was mainly due to
the decrease in the surface trap state. More importantly, a detailed analysis indicates that
ZAIS/ZnS-1.25% actually did not fully passivate the surface defects, which left a certain
amount of the fast-decay component, which contributes to an enhanced charge separation
and plays a crucial role in high photocatalytic activity. Our work provides new evidence of
the core–shell structure design of photocatalysts, suggesting not only that the shell should
be thin enough to avoid hindering the charge transfer but also that rapid decay trap states
should not be completely eliminated to facilitate charge separation.

2. Results and Discussion

To further examine the characteristics of the prepared materials, transmission electron
microscope (TEM) and X-ray diffraction (XRD) tests were conducted. Figure 1a shows the
XRD spectra of ZAIS QDs and ZAIS/ZnS-X (X = 1.25%, 5.00% and 7.50%) with a core–shell
structure. All XRD peaks in Zn-AgIn5S8 QDs were attributed to cubic crystal phase AgIn5S8
(JCPDS No.25-1329) with three main diffraction peaks at 27.3◦, 46.5◦ and 55◦, corresponding
to cubic crystal phase AgIn5S8 (311), (440) and (533) facets. Due to the small particle size of
the QDs, all the diffraction peaks were relatively wide, and the peak intensity was weak.
After the coating of the ZnS shell, the diffraction peak intensity was enhanced, and the
crystallinity of the sample was increased, indicating the successful introduction of Zn in
the sample [46]. However, no significant movement of the three major diffraction peaks
was observed due to the low content of ZnS, and they were similar to the diffraction peak
of cubic AgIn5S8. In Figure 1b, the TEM image illustrates ZAIS/ZnS-1.25% QDs with
a uniform distribution and particle sizes ranging from 2 to 5 nm. Moreover, to further
elucidate the understanding of ZAIS/ZnS-1.25% QDs, a high-resolution transmission
electron microscope (HRTEM) analysis was conducted. Notably, the lattice strip marked
with the red circle at 0.32 nm corresponds to the (311) crystal plane of the ZAIS core, while
the ZnS shell outside the red circle and within the white circle demonstrates an amorphous
lattice structure, as shown in Figure 1c. As depicted in Figure 1d, the HRTEM images
exhibit the lattice strip of ZAIS QDs at 0.32 nm.

To investigate the photochemical characteristics of the prepared materials, we con-
ducted UV-vis absorption and PL tests. Figure 2a shows the UV-vis absorption spectra
of ZAIS QDs and ZAIS/ZnS-X (X = 0.25%, 1.25% and 7.50%) core–shell heterojunctions.
The ZAIS absorption range is in the visible region, and the absorption threshold is about
600 nm. It is soluble in water for the deep red, clear, transparent solution. After the coating
of ZnS with a different mass fraction, the absorption range had a small blue shift, and the
sample was dissolved in water, showing orange–red. It was shown that the core–shell
structure is a ZnS shell formed by coating the surface of Zn, and the light absorption is
almost constant [47]. Figure 2b shows the PL spectra of ZAIS QDs and ZAIS/ZnS core–shell
heterojunctions. The luminescence intensity of the ZAIS/ZnS core–shell heterojunction
was increased after the ZnS coating, and the addition of 0.25%, 1.25% and 7.50% ZnS
was 2.17, 2.4 and 1.96 times higher than that of the original QDs. At the same time, the
emission peak shifted from 651 nm to 623 nm (ZAIS/ZnS-0.25% and ZAIS/ZnS-1.25%)
and 632 nm (ZAIS/ZnS-7.50%). The ZnS coating served to passivate the surface defects of
the ZAIS QDs. At lower concentrations of ZnS, this passivation could potentially enhance
the luminescence efficiency, causing a blue shift in the emission peak. However, at higher
concentrations, the passivation effects may saturate or change, leading to a redshift in the
emission peak. Subsequently, we will comprehensively investigate the influence of a ZnS
coating on the photocatalytic activity of ZAIS.
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Based on the above discussion of optical properties, to study the activity of ZAIS/ZnS
core heterostructure photocatalysts, we determined the ZAIS/ZnS core heterojunctions
with different amounts of ZnS (1200 nm ≥ λ ≥ 420 nm) photocatalytic decomposition of
water hydrogen production, in which Pt is a co-catalyst. It can be seen from Figure 3a that
the hydrogen production at the 5 h of the pure ZAIS QDs in visible light is 1.240 mmol g−1,
indicating that the ZAIS QDs themselves have good photocatalytic activity, which is
attributed to the light response range and a suitable bandgap structure. When the ZnS
shell was introduced, the photocatalytic activity of ZAIS/ZnS core–shell heterojunction
was significantly improved, and the photocatalytic activity increased with the increase in
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the ZnS shell thickness. When the mass ratio of the ZnS shell in the core–shell structure
is 1.25%, the hydrogen production reaches 5 h of 4.458 mmol g−1. It is suggested that
the photocatalytic activity of ZAIS/ZnS core–shell heterojunction is improved, obviously,
by covering the ZnS shell, which may be due to the reduction in the core–shell structure,
which can effectively reduce the defect state. Figure 3b shows that, with the increase in the
ZnS loading from 0 to 1.25%, the corresponding hydrogen production rate of the sample is,
from 0.244 mmol g−1 h−1, increased to 0.892 mmol g−1 h−1. When further increasing the
amount of coated ZnS to 2.50%, 5.00% and 7.50%, the sample hydrogen production rate
decreased slowly but was still higher than the pure ZAIS QDs, which may be because an
excessive ZnS coating will hinder the photo-generated electron holes in the catalyst surface
transfer, thereby reducing the photocatalytic efficiency. In addition, upon juxtaposing our
methodology with those of fellow researchers, discernible advantages of our proposed
strategy emerged (Table 1).
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To further study the photocatalytic stability of the samples, cyclic experiments were
carried out on the ZAIS/ZnS-1.25% core–shell heterojunctions. The hydrogen production
conditions were the same as above. It can be seen from the Figure 4 that the hydrogen
production of the ZAIS/ZnS-1.25% photocatalyst was not significantly reduced after 15 h
and three rounds of experiments, indicating that the sample has good stability after the
ZnS coating.
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To assess the electrochemical performance and mechanism of the prepared materials,
we conducted an EIS test. The electrochemical impedance spectra of ZAIS quantum dots
and the ZAIS/ZnS core–shell heterojunction is displayed in Figure 5a. It can be seen
from the figure that the impedance arc radius of the ZAIS/ZnS core-shell heterojunction is
markedly lower than that of pure ZAIS quantum dots, indicating the enhanced separation
efficiency of photogenerated electron–hole pairs due to the ZnS shell coating. Specifically,
with a ZnS coating amount of 7.50%, the arc radius is the smallest, indicating that the
composite has the highest charge separation efficiency, but the photocatalytic activity is
significantly lower than that of ZAIS/ZnS-1.25%. However, it not only indicates that the
design process for photocatalytic hydrogen evolution composite can pursue ultra-high
charge separation efficiency but also demonstrates the implications of additional factors
influencing the photocatalytic hydrogen evolution process.
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To further investigate the effect of ZnS coating on the photo-generated electron–hole
pair recombination in ZAIS/ZnS, we carried out the characterization of TRPL. Figure 5b
shows the fluorescence lifetime spectra of ZAIS QDs and ZAIS/ZnS-X (X = 1.25% and 7.50%)
core–shell heterojunctions. The prepared sample was excited at 481 nm and fitted with
a double exponential curve, I(t) = y0 + A1*exp(−(t − t0)/τ1) + A2*exp(−(t − t0)/τ2), and
the average lifetime was τave = (A1τ1 + A2τ2)/(A1 + A2). Among them, A1 and A2 are the
attenuation relative weights, and τ1 and τ2 are short and long life parameters. In general,
the fluorescence lifetime can reflect different electron–hole recombination pathways and
mechanisms. After photoexcitation, the photo-generated electrons transition from the
conduction band to the surface defect state and the intrinsic defect state. The shorter
fluorescence lifetime is attributed to the surface defect state complex; the long fluorescence
lifetime is attributed to the eigenstate of the complex [48–50]. The specific parameters for
the ZAIS and ZAIS/ZnS core–shell heterojunction fluorescence lifetime is shown in Table 2.
It can be seen from the table that the rapid attenuating component τ1 were similar at
9.95 ns (ZAIS) and 9.90 ns (ZAIS/ZnS-1.25%) and finally increased to 77.59 (ZAIS/ZnS-7.50%),
while the slow attenuation component τ2 increased from 238.75 ns (ZAIS) to 316.12 ns
(ZAIS/ZnS-1.25%) and 602.42 ns (ZAIS/ZnS-7.50%). The average life expectancy increased
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from 156.05 ns to 181.95 ns and 314.41 ns, indicating that photo-generated electrons and
holes were effectively separated. The maximum difference of ZnS is that the surface life of
ZAIS/ZnS-1.25% is similar to that of ZAIS, which indicates that the ultrathin ZnS shell has
not been completely wrapped on its surface. Meanwhile, the surface life of ZAIS/ZnS-7.50%
is significantly prolonged, indicating a significant change in surface properties. Compared
with the photocatalytic performance diagram of Figure 3, the coated ZnS can effectively
suppress the electron–hole nonradiative recombination, but the shell is too thick to bind
electrons when the photo-generated electrons are not easily migrated, so the ZAIS/ZnS
core of the optimized ZnS coating is 1.25%, and it can reduce the defects and enable
photogenerated electrons and holes to effectively transfer.

Table 1. Comparison of hydrogen production of the related photocatalysts.

Catalysts Light Source Reaction Conditions H2 Evolution Rate
(µmol g−1 h−1) Ref.

ZAIS/ZnS λ ≥ 420 nm 0.35 M Na2S + 0.25 M Na2SO3 892.0 This work
ZAIS/RGO λ ≥ 400 nm 0.35 M Na2S + 0.25 M Na2SO3 342.3 [51]

Cu/ZnS/COF λ ≥ 220 nm Formic acid 278.4 [52]
CdS/ZnS core–shell λ ≥ 430 nm 0.35 M Na2S + 0.25 M Na2SO3 55.5 [53]

Cu-Doped ZnS λ ≥ 420 nm 0.35 M Na2S + 0.25 M Na2SO3 283.8 [54]
g-C3N4/ZnS λ ≥ 400 nm Glucose solution 69.8 [55]

ZnS(en)0.5-CdS λ ≥ 400 nm 0.18 M Na2S 559.0 [56]

Table 2. Exponential decay-fitting parameters of TRPL for samples.

ZAIS ZAIS/ZnS-1.25% ZAIS/ZnS-7.50%

A1/% 36.10 43.81 54.87
τ1/ns 9.95 9.90 77.59
A2/% 63.90 56.19 45.13
τ2/ns 238.75 316.12 602.42

τave/ns 156.05 181.95 314.41

According to the previous work of our group and other related literature [51,57],
we drew energy level diagrams for ZAIS and ZnS (Figure 5c). It can be seen that its
energy level structure is a typical type I heterojunction, which is conducive to promoting
charge separation and enhancing photocatalytic activity. Based on the above research,
the photocatalytic mechanism of AIZS/ZnS is shown in Figure 5d. By utilizing the AIZS
core wrapped in an ultra-thin ZnS shell, defects in AIZS that serve as photo-generated
carrier recombination centers are twisted into fast-decay trap states in AIZS/ZnS composite
materials, thereby promoting charge separation and improving photocatalytic hydrogen
evolution efficiency [58,59]. Specifically, on the one hand, photo-generated electrons react
rapidly with H2O to generate hydrogen; on the other hand, photo-generated holes are
quickly captured via the sacrificial agents Na2SO3 and Na2S.

3. Experimental Procedure
3.1. Chemical Reagents

Silver nitrate (AgNO3), zinc acetate (Zn(OAc)2·2H2O), indium nitrate (In(NO3)3·4.5H2O),
thioacetamide (TAA), L-cysteine, sodium hydroxide (NaOH), thiourea (CH4N2S), sodium
sulfite (Na2SO3), sodium sulfide (Na2S) and absolute ethanol were purchased from Sinopharm
Chemical Reagent Co., Ltd., Shanghai, China. All chemicals were analytical-grade and
used without further purification.

3.2. Synthesis of Zn-AgIn5S8 QDs

Pristine Zn-AgIn5S8 QDs were prepared using a simple hydrothermal method accord-
ing to the previous work [27], and the ratio of Ag:In:Zn in the precursor was controlled at
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2:10:5. In a typical synthesis process, 0.34 mmol of AgNO3, 1.7 mmol of In (NO3)3·4.5H2O
and 0.85 mmol of Zn(OAc)2·2H2O were added into 5.5 mL of deionized water and stirred
until dissolved completely to obtain a clear solution. After that, 2 mL of 2.5 M L-cysteine
was added via ultrasonic mixing, and then the pH of the mixed solution was adjusted to
8.5 with a 1 M NaOH solution. Finally, 6.5 mL of a 0.5 M TAA solution was added through
vigorous stirring, and the mixture was transferred to a 50 mL Teflon-lined stainless-steel
autoclave and kept in a 110 ◦C oven for 4 h. The QDs product was precipitated out with
ethanol and washed three times with water and ethanol to obtain the Zn-AgIn5S8 QDs. The
obtained QDs were dispersed in water for further storage and characterization.

3.3. Synthesis of Zn-AgIn5S8/ZnS QDs

Zn-AgIn5S8/ZnS QDs was synthesized via the in situ growth of a core–shell structure.
Specifically, 0.2 g of the Zn-AgIn5S8 sample was dispersed in 20 mL of deionized water
and mixed with a certain amount of 0.1 M Zn(OAc)2·2H2O solution and a corresponding
amount of 0.1 M TAA for 20 min. The mixed solution was transferred to a 50 mL Teflon-lined
stainless-steel autoclave and kept at 110 ◦C in an oven for 4 h. After cooling down to room
temperature, the hydrothermal reaction product was washed three times with water and
anhydrous ethanol to create ZAIS/ZnS QDs like those of the pristine ZAIS QDs. The loading
amount of ZnS was controlled at 0.10%, 0.25%, 1.25%, 2.50%, 5.00% and 7.50%, respectively.

3.4. Characterizations

The powder XRD patterns were recorded using an X-ray diffractometer (D8 AD-
VANCE, Bruker, Berlin, Germany) with Cu-Kα (λ = 1.54056 Å) radiation at a scanning
rate of 5 ◦/min. The morphology and size were tested using Tecnai G2 F30 S-Twin (FEI)
TEM with an accelerating voltage of 300 kV. The PL spectra of these samples were ana-
lyzed on a Cary Eclipse fluorescence spectrophotometer with an excitation wavelength
of 450 nm. UV-vis absorption spectra were recorded on a Cary 8454 spectrophotometer.
Time-resolved PL (TRPL) spectra were recorded using a QuantaMasterTM 40 spectrometer
(Photon Technology International, Inc., Birmingham, NJ, USA) excited at 481 nm. The
electrochemical impedance (EIS) spectra were carried out on a CHI 760E electrochemical
workstation (CH Instruments, Inc., Shanghai, China) with a standard three-electrode cell at
room temperature.

3.5. Photocatalytic Hydrogen Production Experiment

Photocatalytic H2 production was carried out in a Lab-H2 photocatalytic system with
a 300 W xenon lamp and a cutoff filter (1200 nm ≥ λ ≥ 420 nm) as the light source. In a
typical experiment, 50 mg of the photocatalysts was dispersed in 100 mL of 0.25 M Na2SO3
and a 0.35 M Na2S aqueous solution as the sacrificial reagents and stirred continuously
to ensure the uniform irradiation of the catalyst suspension during the whole experiment.
Prior to the photocatalytic reaction, the H2PtCl6·6H2O solution was dripped into the system
to photodeposit 2 wt% of Pt nanoparticles onto the photocatalyst surface as the co-catalyst.
Before irradiation, the system was vacuumed for 20 min to remove dissolved oxygen in the
solution. During the photocatalytic reaction process, a certain amount of the evolved gas
was collected per hour and analyzed with an online gas chromatograph (Tianmei, GC-7900,
TCD detector, Shanghai, China) using argon as the carrier gas.

4. Conclusions

A series of ZAIS/ZnS core–shell heterojunction photocatalysts was synthesized via
in situ growth with a low-temperature hydrothermal treatment. Different amounts of
Zn(OAc)2 were introduced to pre-synthesized ZAIS QDs for the preparation of ZAIS/ZnS
core–shell structures with a controllable ZnS shell using a hydrothermal method at a low
temperature of 110 ◦C. The optical properties, transient fluorescence and electrochemical
impedance of the samples coated with the ZnS shell were studied via XRD, and the
mechanism of photogenerated electron–hole recombination was studied based on the
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crystallinity and purity, UV–vis absorption and fluorescence spectra of the samples. It was
found that the ZnS shell plays an important role in the photocatalytic hydrogen production
activity of the ZAIS/ZnS core–shell structures. The ZnS shell can reduce surface defects and
prolong the carrier lifetime, as well as the electron–hole pair separation efficiency, thereby
enhancing the photocatalytic activity and improving the catalyst stability. However, the
effect of excess ZnS shell thickness on hydrogen production efficiency was found to be 1.25%
of the best mass ratio. More importantly, it was found that this low ZnS coating resulted in a
partial remainder of the fast-decay trap states, which provides an important contribution to
charge separation instead of acting as the recombination center. As trap states manipulation
plays a crucial role in narrow-bandgap photocatalysts, our work here provides an important
guideline for the future construction of core–shell heterojunction photocatalysts with a
high visible light response, efficient charge separation and low charge recombination.
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