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Abstract: The hydrogenation of carbon monoxide (CO) offers a promising avenue for reducing air
pollution and promoting a cleaner environment. Moreover, by using suitable catalysts, CO can be
transformed into valuable hydrocarbons. In this study, we elucidate the mechanistic aspects of the
catalytic conversion of CO to hydrocarbons on the surface of manganese-doped graphene oxide
(Mn-doped GO), where the GO surface includes one OH group next to one Mn adatom. To gain
insight into this process, we have employed calculations based on the density functional theory (DFT)
to explore both the thermodynamic properties and reaction energy barriers. The Mn adatoms were
found to significantly activate the catalyst surface by providing stronger adsorption geometries. Our
study concentrated on two mechanisms for CO hydrogenation, resulting in either CH4 production
via the reaction sequence CO → HCO → CH2O → CH2OH → CH2 → CH3 → CH4 or CH3OH
formation through the CO → HCO → CH2O → CH2OH → CH3OH pathway. The results reveal
that both products are likely to be formed on the Mn-doped GO surface on both thermodynamic
grounds and considering the reaction energy barriers. Furthermore, the activation energies associated
with each stage of the synthesis show that the conversion reactions of CH2 + OH → CH3 + O and
CH2O + OH → CH2OH + O with energy barriers of 0.36 and 3.86 eV are the fastest and slowest
reactions, respectively. The results also indicate that the reactions: CH2OH + OH → CH2 + O + H2O
and CH2OH + OH → CH3OH + O are the most exothermic and endothermic reactions with reaction
energies of −0.18 and 1.21 eV, respectively, in the catalytic pathways.

Keywords: carbon monoxide hydrogenation; CH4; catalyst; Mn-doped graphene oxide; DFT

1. Introduction

Urban environments represent intricate networks of ever-expanding infrastructure that
pose potential health risks to a significant portion of their inhabitants [1–5]. Air pollution is
a leading contributor to health problems in modern urban life [6]. In urban environments,
air pollutants originate from various natural and anthropogenic sources, primarily owing
to the incomplete combustion of fossil fuels, particularly in transportation [7]. Carbon
monoxide (CO) is a notable yet often imperceptible air pollutant [8,9].

Fischer–Tropsch synthesis (FTS) and the oxidation of CO are two different approaches
for the conversion of CO into useful or more benign products. Fischer–Tropsch synthesis is
a widely used but complex process that converts syngas (a mixture of CO and hydrogen)
into a wide spectrum of hydrocarbons and oxygenates [10–21]. This process involves the
hydrogenation of adsorbed CO, leading to the formation of CHxO species and subsequent
C–O bond cleavage, followed by the removal of adsorbed oxygen species [22–27]. The
FTS process offers several advantages, including adaptability to diverse feedstocks for the
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production of liquid fuels and chemicals. It is particularly valuable in several industries,
and is capable of generating high-quality diesel and jet fuels that meet strict environmental
standards. FTS can also utilize renewable sources like biomass, contributing to a more
sustainable and circular economy. However, this process has drawbacks, notably the signif-
icant energy required for syngas production, which results in high operational costs and
negative environmental impacts. Moreover, FTS demands substantial financial investment,
making it economically feasible only for large-scale operations and creating barriers for
smaller enterprises [28–30].

In contrast, the oxidation of carbon monoxide (CO) offers a straightforward and ef-
ficient method for converting CO into non-toxic carbon dioxide (CO2) [28–30]. Despite
its safety and simplicity, this reaction has limitations, including the lack of useful byprod-
ucts and the need for expensive catalysts. Additionally, CO oxidation produces a major
greenhouse gas, and our research is therefore focused on CO hydrogenation within the FTS
framework, aiming to convert CO into more valuable substances [28–30].

The FTS process proceeds at the active sites on metal catalyst surfaces. Several alterna-
tive catalysts have been examined for their potential to catalyze CO hydrogenation [31–34].
Mn-modified graphene has been predicted to be a promising catalyst for CO oxidation,
whereas in an investigation of the binding abilities of transition metals (TMs) to graphene
nanoflakes (GNFs), Mn-GNF was found to have a relatively high adsorption energy for
CO. Another study found that Mn-embedded di-vacancy graphene is an efficient catalyst
for CO oxidation at low temperature [35,36].

Graphene oxide (GO) is a unique material that can be viewed as a single monolayer [37].
It is a heterogeneous, inexpensive, and environmentally friendly carbo-catalyst [38]. Under
specific oxidizing conditions, carbon atoms maintain the integrity of the 2D layered struc-
ture with oxygen-containing functional groups attached to both sides of the carbon plane
and edges [39]. Graphene oxide demonstrates significantly higher chemical activity than
graphene [40–42]. Lahaye et al. conducted DFT studies to illuminate the structure of GO,
shedding light on the arrangement of hydroxyls and oxygens on GO layers. Their findings
revealed a moderate wrinkling of the carbon skeleton in GO with 1,2 ethers, predominantly
due to locally induced sp3 hybridization, while maintaining a hexagonal structure akin to
graphene [43].

The literature has shown that metal-doped graphene and graphene oxide surfaces
also have high catalytic activity toward CO hydrogenation. In the field of carbon monoxide
(CO) methanation, nickel (Ni) and iron (Fe) catalysts have commonly been applied due to
their catalytic efficiency in enabling the hydrogenation process. The emergence of graphene
oxide (GO) as a catalyst or catalyst-support material thus signifies a significant shift, which
is attributed to its outstanding physicochemical characteristics. The expansive surface
area of GO enhances the dispersion of metal adatoms, thereby improving the catalytic
interface [44]. Its strong thermal and chemical durability is beneficial for reactions that
require high-temperature conditions [44]. When employed as a supporting framework, GO
has the potential to affect catalytic activity, selectivity, and durability, possibly leading to
synergistic effects when combined with transition metals such as Ni or Fe [45]. Although
Ni-based catalysts are attractive as they are cost-effective and abundant, they are, however,
vulnerable to sintering and subsequent reduction in activity at elevated temperatures [46].
In contrast, Fe-based catalysts, particularly bimetallic compositions with Ni, can overcome
these challenges, providing improved catalytic stability and efficiency [47]. Gui et al. [48]
used density functional theory (DFT) calculations to study the adsorption and gas-sensing
properties of CH4, C2H2, and CO on Mn-graphene. They found that among the three
typical doping sites of Mn on graphene, Mn doping in a bridge site was more stable
than in the other two sites (top and hollow sites), which was then chosen for further gas
adsorption studies. Their results revealed that CH4 adsorbs close to the Mn atom through
its H atom, whereas C2H2 and CO adsorption occurs directly above Mn through their
C atoms. They also found that Mn-graphene is insensitive to CH4 gas, but could be an
optimal gas-sensing material for C2H2 and CO detection. Wei et al. [49] studied the CO
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hydrogenation performance of iron oxide/rGO catalysts and provided an efficient strategy
for the rational design of carbon-supported iron-based CO hydrogenation catalysts. Their
results showed that the use of GO is a favorable and efficient method for enhancing the
CO hydrogenation performance of iron-based catalysts, where the reactants were reported
to be inexpensive and of low toxicity. The added organics selectively adsorbed on the
iron precursor or GO can modify the metal–support interaction, which further affects
the physicochemical properties and, thus, the CO hydrogenation performance. Mn can
enhance the adsorption capacity of CO by increasing the surface charge density of Fe,
which makes it easier for CO molecules to bind to the catalyst surface. This could improve
the activity towards FTS because more CO molecules can react with hydrogen to form
hydrocarbons. Mn can also promote the formation of iron carbide by facilitating the
dissociation of CO and diffusion of carbon atoms into the iron lattice. Iron carbide is
the main active phase for FTS, as it can catalyze the chain propagation reaction, which is
the key step in the production of long-chain hydrocarbons [50]. Mn is better than other
transition metals for three reasons: (i) Mn can enhance the adsorption capacity of CO and
promote the formation of iron carbide, which are the active species for FTS [50,51], (ii) Mn
can suppress CH4 formation and facilitate the carbon chain growth, which can increase the
selectivity of C5+ long-chain hydrocarbons and the olefin to paraffin ratio [50–52], and (iii)
Mn can increase the CO conversion and the selectivity of light olefins, which are valuable
petrochemical feedstocks [53]. Zafari et al. [54] reported light olefin selectivity over Co–Mn
bimetallic catalysts supported on graphene and reduced graphene oxide. These studies
have contributed to our understanding of catalyst behavior in CO hydrogenation.

Based on these insights, GO-based catalysts have demonstrated potential for gas
adsorption and catalyzed reactions, and Mn doping can improve the catalytic perfor-
mance. Therefore, in this DFT study, Mn-doped GO was chosen as the catalyst for CO
hydrogenation through FTS.

2. Results and Discussion
2.1. GO Surface

The hexagonal graphene cell was constructed by a 5 × 5 × 1 extension of the prim-
itive cell of graphene containing 50 carbon atoms with dimensions of 12.339 × 12.339 Å,
Figure 1A. A vacuum of almost 25 Å was added on top of the slab to avoid interactions
between slab images in the Z direction of the cell. We have utilized a 5 × 5 graphene
supercell in our density functional theory (DFT) calculations. This selection was guided
by a delicate equilibrium between the need for a substantial model that could effectively
mitigate issues related to edge effects and interactions occurring amidst periodic images,
and the potentially prohibitive computational cost. A supercell with these dimensions is
sufficient to elucidate the fundamental characteristics of the catalytic surface and investi-
gate the adsorption phenomena and catalytic reactions without undue distortions induced
by artificial confinements typically encountered in smaller simulation cells. In addition, the
5 × 5 supercell has been reported before in the literature, thus ensuring that our findings can
be compared directly with previous works. The selection of a specific quantity of graphene
primitive cells contained within this larger cell was made with careful consideration of the
need to create sufficient potential adsorption sites to study the different catalytic processes.

One OH group was added onto the graphene surface to model a GO surface, and we
systematically explored various positions on the GO surface to determine the most suitable
location for the Mn atom. Multiple optimization calculations were conducted to attain a
stable GO surface in the presence of Mn. We have considered various positions for the
manganese on the catalyst surface, i.e., atop, bridging, or within honeycomb sites. We
found that the Mn located at the honeycomb site was the only stable position for the Mn
atom, with the OH adsorbed on top of the carbon surface atom next to the Mn atom via its
O atom, as depicted in Figure 1B.
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Figure 1. Top views of the hexagonal cell of (A) graphene, and (B) Mn-doped GO monolayers. Car-
bon, oxygen, hydrogen, and manganese atoms are shown in gray, red, white, and purple, respec-
tively. 

In Figure 2, we observe distinct charge transfer when a hydroxide species is adsorbed 
on the graphene surface, indicating significant intermolecular interaction. Such interac-
tions are precursors for chemical bond formation, leading to a substantial reconfiguration 
of the electronic structure of the surface, that could affect the surface reactivity. 

 
Figure 2. (A) side, and (B) top views of charge density differences caused by the adsorption of OH 
on GO. The blue and yellow iso-surfaces indicate charge depletion and accumulation, with the iso-
surface value set to ±0.01. Carbon, oxygen, and hydrogen atoms are shown in gray, red, and white, 
respectively. 

2.2. Thermodynamic Analysis 
2.2.1. Adsorption Energies 

We investigated the formation of CH4 and CH3OH, both of which are the products of 
the FTS reaction (Table 1). We first calculated the adsorption energy (𝐸 ) and the nearest 
distances between the surface atoms and the atoms of the adsorbate molecules.  

Table 1. Reaction pathways for the synthesis of methane (CH4) and methanol (CH3OH) on Mn-
doped GO surface. 

Methane Pathway Methanol Pathway 
CO + OH → HCO + O CO + OH → HCO + O 

HCO + OH → CH2O + O HCO + OH → CH2O + O 
CH2O + OH → CH2OH + O CH2O + OH → CH2OH + O 

CH2OH + OH → CH2 + O + H2O CH2OH + OH → CH3OH + O 

Figure 1. Top views of the hexagonal cell of (A) graphene, and (B) Mn-doped GO monolayers. Carbon,
oxygen, hydrogen, and manganese atoms are shown in gray, red, white, and purple, respectively.

In Figure 2, we observe distinct charge transfer when a hydroxide species is adsorbed
on the graphene surface, indicating significant intermolecular interaction. Such interactions
are precursors for chemical bond formation, leading to a substantial reconfiguration of the
electronic structure of the surface, that could affect the surface reactivity.
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2.2. Thermodynamic Analysis
2.2.1. Adsorption Energies

We investigated the formation of CH4 and CH3OH, both of which are the products of
the FTS reaction (Table 1). We first calculated the adsorption energy (Eads) and the nearest
distances between the surface atoms and the atoms of the adsorbate molecules.

Table 1. Reaction pathways for the synthesis of methane (CH4) and methanol (CH3OH) on Mn-doped
GO surface.

Methane Pathway Methanol Pathway

CO + OH → HCO + O CO + OH → HCO + O

HCO + OH → CH2O + O HCO + OH → CH2O + O

CH2O + OH → CH2OH + O CH2O + OH → CH2OH + O

CH2OH + OH → CH2 + O + H2O CH2OH + OH → CH3OH + O

CH2 + OH → CH3 + O -

CH3 + OH → CH4 + O -
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In the Fischer–Tropsch reaction, both CH4 and CH3OH products undergo similar
reactions but lead to distinct outcomes, and CO, acting as the reactant, gives rise to both
products. Hence, the molecules were positioned in close proximity to the metal catalyst (Mn)
on the surface. This strategic placement is essential for facilitating the relevant reactions
that lead to the formation of CH4 and CH3OH. In this study, we propose a reaction pathway
where hydrogen from the hydroxyl group of the GO transfers to the intermediates and
the remaining oxygen from the hydroxyl group adsorbs on the carbon surface atoms as
an epoxy group, as seen in other experimental and theoretical studies [55–57]. We employ
a model proposed for the conversion of carbon monoxide to methane and methanol on a
Mn-doped GO surface to simulate the likely route of carbon monoxide reduction, as shown
in Table 1, where we have focused on the fundamental CO + OH → HCO + O reaction [55].
For both methane and methanol formation, we suggest a comparable scheme where the
initial, second, and third stages of hydrogenation are identical to minimize the number
of reactions to reach the products (Table 1). Our proposed mechanism does not include
the CO hydrogenation to COH reaction, due to the instability of COH on Mn-doped GO.
Moreover, we have not considered the CO dissociation reaction, as we aimed to minimize
the pathway by solely focusing on the hydrogenation of CO without disrupting its bond,
in alignment with previous studies on GO catalysts [54,55].

We calculated the adsorption energies of the intermediate structures on the Mn-doped
GO surface in the presence of a hydroxide that provides hydrogen to initiate the carbon
monoxide hydrogenation. We calculated the formation energies of both graphene surfaces
with hydroxide and manganese catalysts as well as graphene surfaces with only manganese
metal. The formation energies for the graphene surface with hydroxide and manganese
catalysts and for the graphene surfaces with only manganese metal catalysts are −3.125 eV
and −1.378 eV, respectively, indicating that the presence of hydroxides stabilizes the Mn-
doped graphene surface.

For each molecule on the catalytic surface, we sought to determine the most stable
geometric structure and the best mode of adsorption by placing the molecules at various
sites and in different configurations on the surface. Figure 3 shows the various interactions
between the adsorbed molecules and the Mn-doped GO surface. Because the CO molecule
does not adsorb on the pure GO surface, no reaction can take place on the catalytic surfaces
of GO in the absence of Mn, in agreement with previous experimental and computational
studies [1].

In Table 2, we report the adsorption energies related to the molecular species in the
initial steps of the Fischer–Tropsch reaction for both methane and methanol.

Table 2. Adsorption energies and bond lengths of intermediates on the Mn-doped GO surface. The
results of other studies were added for comparison [48,58–62].

Bond Length
(Gr and Mol) (Å)

Bond Length
(Mn and Mol) (Å) Eads (eV) Eads (eV)

(Other Studies)

(Gr−O) 3.78
(Gr−C) 2.88 CO (Mn−O) 1.92

(Mn−C) 1.97 −1.35 −1.95 [48] Mn-doped graphene
−1.16 [58] Phosphorene

(Gr−O) 3.62
(Gr−C) 3.24 HCO (Mn−O) 1.99

(Mn−C) 1.79 −3.27 −2.96 [59] Cu–Co (111) and (211)
−3.63 [60] fccMo2C (100)

(Gr−O) 3.26 CH2O (Mn−O) 1.78 −2.04 −2.52 [60] fccMo2C (100)
−2.23 [61] ZnO nano-cage

(Gr−O) 3.38
(Gr−C) 3.17 CH2OH (Mn−O) 2.07

(Mn−C) 1.94 −3.61 −3.09 [60] fcc-Mo2C (100)

(Gr−C) 3.30 CH2 (Mn−C) 1.70 −5.58 −5.54 [62] Cu-based alloys

(Gr−C) 3.42 CH3 (Mn−C) 1.79 −3.48 −3.26 [59] Cu-Co (111) and (211)
−3.55 [60] fcc-Mo2C (100)
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GO surface. The gray, white, red, and purple balls represent carbon, hydrogen, oxygen, and man-
ganese atoms, respectively.

The reactions were performed on the primary surface of the Mn-doped GO adatom
catalyst. The molecules of interest were positioned on the surface slab to observe their
interactions with the hydroxide groups in proximity to the catalyst. Through a series of
optimizations of the molecules at different locations across the slab, it was established that
the most favorable position for the molecules was the manganese metal catalyst.

Through a comparison of the adsorption energies, molecular separations from the
graphene surface, and interactions with the Mn catalyst, we evaluated the impact of the
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hydroxide group on the GO surface. The Mn catalyst significantly activated the surface,
resulting in larger adsorption energies and further separation between molecules and
the graphene surface. Moreover, the larger adsorption energies and longer distances
show that the addition of hydroxide groups to the GO surfaces considerably improved
the processes. Our results highlight the critical functions of the hydroxide group and
manganese catalyst in promoting molecular adsorption and reactions on the GO surface.
However, further investigation into the underlying mechanisms is necessary to improve
the reaction conditions for use in practical systems.

Among the molecules studied, CH2 releases the largest adsorption energy (−5.80 eV),
indicating its stability on the catalyst surface and likely participation in hydrocarbon
production. Its adsorption energy compares well with the reference value of −5.54 eV [62]
observed on Cu-based alloys.

In terms of stability for CH3OH synthesis, HCO, with an adsorption energy of
−3.27 eV, is between CH2 and CH2OH, possibly functioning as an essential intermediary.
CH3 might provide a less significant contribution to the process because of its relatively
smaller adsorption energy (−3.48 eV). CH2OH, while having a smaller adsorption energy
(−3.61 eV) compared to CH2 and CH2OH in CH3OH formation, is still relatively stable at
the surface, suggesting its potential involvement in hydrocarbon generation. CH2O, with
the smallest adsorption energy (−2.04 eV) among the considered molecules, may therefore
only participate to a limited degree in the reaction. CO, having the smallest adsorption
energy (−1.35 eV) among all molecules, is the least stable and plays a less significant role
in the reaction on this catalyst surface. These results collectively offer valuable insights into
the stability and reactivity of various molecules on the Mn-doped GO surface, which could
prove instrumental in catalyst design and optimization for FTS.

The adsorption of CO in the CO + OH → HCO + O reaction is a pivotal step in FTS
and greatly influences its outcomes. DFT calculations have been employed to scrutinize the
adsorption energy of CO on diverse catalytic surfaces. Notably, the computed adsorption
energy of CO on Mn-doped GO is −1.35 eV, indicating its potential as a reactant in various
syntheses. Other materials such as Mn-doped graphene (−1.95 eV) [48] and phosphorene
(−1.16 eV) [58] exhibit similar adsorption energies for CO as to Mn-doped GO, signifying
their potential as catalysts for CO adsorption in FTS. It is crucial to recognize that the
choice of catalyst significantly affects the chemical reaction rate and product selection in
FTS. Therefore, in-depth research is imperative to unravel the underlying mechanisms
governing CO adsorption on different catalysts, facilitating the development of efficient
catalysts suitable for industrial-scale FTS.

In the CH2O + OH → CH2OH + O reaction, CH2O generates the largest adsorption
energy (−2.04 eV) among the molecules under consideration on the Mn-doped GO surface,
binding a little more strongly to the Mn-doped GO than, for example, to the fcc-Mo2C (100)
surface at −1.86 eV [60], but less so than on the ZnO nano-cage surface at −2.23 eV [61].
This indicates its relative stability at the surface and suggests that it might be less likely to
take part in reactions compared to molecules like CH2 or CH2OH.

The subsequent phase of our research focused on analyzing the products of reactions
involving epoxy as a by-product. In our investigation, we discerned distinct variations in
the characteristics of GO and epoxy, Mn, and the initial surface adsorption energy with
OH during the synthesis. These discrepancies serve as crucial indicators, delineating the
transformation from the initial stages to the final products in each reaction, providing
valuable insights into the synthesis dynamics. The favorable adsorption of molecules
on the surface decreased, facilitating their mobility, and enabling the formation of the
desired product. Another crucial observation was the change in the distance between
the molecules and the Mn atom during this process. After hydrogenation, all of the
reaction products exhibited a surface with epoxy, and we identified differences between
this modified slab and the original one. These results underscored the activation of the
slab and its transformation into an improved surface for catalytic reactions. Similar to the
hydroxyl groups, the epoxy groups on Mn-doped graphene oxide surfaces play a crucial
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role in regulating the adsorption and reaction energy in CO hydrogenation. These groups
alter the electronic structure of the catalyst, thereby affecting the adsorption of reactants.
In agreement with other studies, epoxy groups acting as active sites can lower activation
energies, stabilize chemical intermediates, and improve charge transfer, thereby impacting
the reaction energy barriers and thermodynamics of the reaction. Their presence promotes
catalytic efficiency, ultimately affecting the selectivity towards methane and methanol
production [63–66].

2.2.2. Reaction Energies

Table 3 presents the calculated reaction energies of the investigated reactions. Due to
the low reaction energy (0.05 eV), the interaction of CO with OH to produce HCO and O
is relatively easy to achieve. The conversion of CO to HCO, a precursor to longer-chain
hydrocarbons, is initiated through this reaction, whereas the reaction between HCO and
OH, resulting in CH2O and O with a reaction energy of 0.41 eV, is more endothermic.

Table 3. The calculated reaction energies on the Mn-doped GO surface.

Reactions Thermal Properties Ereaction (eV)

CO + OH → HCO + O ENDO 0.05

HCO + OH → CH2O + O ENDO 0.41

CH2O + OH → CH2OH + O ENDO 0.29

CH2OH + OH → CH2 + O + H2O EXO −0.18

CH2 + OH → CH3 + O ENDO 0.33

CH3 + OH → CH4 + O ENDO 0.71

CH2OH + OH → CH3OH + O ENDO 1.21

The reaction of CH2O with OH, forming CH2OH and O, has an intermediate reaction
energy of 0.29 eV, indicating somewhat lower favorability than the CO + OH reaction.
The reaction of CH2OH with OH to form CH2, O, and H2O is exothermic with a reaction
energy of −0.18 eV, and this is a crucial step as it leads to the formation of H2O and other
hydrocarbons. CH2 reacting with OH to form CH3 and O has a reaction energy of 0.33 eV,
suggesting reduced favorability. However, it is not highly endothermic and could therefore
contribute to longer-chain hydrocarbon formation. The reaction of CH3 with OH to form
CH4 and O has the highest reaction energy among those discussed, at 0.71 eV, making it
the least favorable. Nonetheless, it is a crucial reaction as it leads to methane formation.

Finally, the reaction of CH2OH with OH to form CH3OH and O has a relatively high
endothermic reaction energy of 1.21 eV, although this reaction is significant for methanol
formation. Thus, the most favorable reaction is CH2OH with OH, forming CH2, O, and
H2O, while the least favorable is CH2OH with OH, forming CH3OH and O. The energies
of the other reactions vary between these extreme values but are largely achievable.

2.3. Reaction Energy Barrier Analysis
2.3.1. Activation Energies

During a chemical reaction, the participating molecules absorb thermal energy from
their surroundings. This added energy boosts their movement, increasing the frequency
and intensity of collisions while also encouraging atomic and bond vibrations within the
molecules. This thermal agitation makes it more likely for chemical bonds to break. When
a reactant molecule absorbs sufficient energy to reach the transition state, the reaction
can proceed. Comparing activation energies for various key atmospheric reactions offers
insight into the relative significance of each reaction under different conditions (see Table 4).
The initial, transition and final states of the studied reactions are presented in Figure 4. In
the first step, reaction CO + OH → HCO + O has a notably high activation energy of 2.48 eV
which suggests a requirement for higher temperatures, whereas the following reaction,
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HCO + OH → CH2O + O, featuring a low activation energy of 0.48 eV, indicates greater
efficiency at lower temperatures.

Table 4. Calculated activation energies (Eactivation) for all reactions on the Mn-doped GO surface. The
results of other studies were added for comparison [61,67–71].

Reactions Eactivation (eV) Eativation (eV)
(Other Studies)

CO + OH → HCO + O 2.48 2.35 [67]
HCO + OH → CH2O + O 0.48 0.41 [68], 0.67 [69]

CH2O + OH → CH2OH + O 3.86 3.73 [70]
CH2OH + OH → CH2 + O + H2O 0.80 0.84 [71]

CH2 + OH → CH3 + O 0.36 0.42 [61]
CH3 + OH → CH4 + O 1.35 1.20 [61]

CH2OH + OH → CH3OH + O 1.66 1.43 [61]
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The reaction CH2O + OH → CH2OH + O needs to overcome an activation energy of
3.86 eV, making it feasible only at higher temperatures. On the other hand, the reaction
CH2OH + OH → CH2 + O + H2O benefits from a low activation energy of 0.80 eV, signifying
higher efficiency at lower temperatures. The reaction CH2 + OH → CH3 + O has an acti-
vation energy of only 0.36 eV, but the activation energy of reaction CH3 + OH → CH4 + O
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is higher again at 1.35 eV. Finally, reaction CH2OH + OH → CH3OH + O requires an
activation energy of 1.66 eV to be overcome, making it again more likely to occur at
higher temperatures.

Table 4 compares the activation energies of a number of chemicals catalyzed by
different metals. The middle column shows the activation energy of the reaction catalyzed
by manganese (Mn), a metal that efficiently converts carbon monoxide (CO) to methane
(CH4) and methanol (CH3OH) in Fischer–Tropsch synthesis. The last column provides the
activation energies for various metal-catalyzed reactions indicating that manganese has
catalytic properties comparable to other metals in the traditional FTS [61].

In order to identify the rate equation of the reaction, the number of reaction steps,
and the rate-determining step (RDS), we need to understand and control reaction rates.
The RDS can be determined within a set of reactions by assessing their respective en-
ergy profiles. Within the context of our methane and methanol production reactions,
CH2O + OH → CH2OH + O with its activation energy of 3.86 eV is the rate-determining
step for these two reactions.

2.3.2. Reaction Profiles

The graph for methane production shows that the processes are mostly exothermic.
The most exothermic steps are the reactions of CH2O + OH → CH2OH + O and CO + OH
→ HCO + O, as shown in the diagram of methanol and methane formation (Figure 5). The
energy difference between the initial and final states suggests that the formation of these
two products leads to significant energy release. However, this stage of the reaction path is
the slowest, as is clear from the activation energies in Table 4. After this step, the graph of
the first path shows that the energies remain largely the same, illustrating that the reaction
is moving quite rapidly in the direction of the product.
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Figure 5. Reaction profile illustrating how the energies change in the pathway resulting in CH4 and
CH3OH production.

As the reaction pathway unfolds, we observe gradual increments in the activation
energy. When the levels of activation energy rise, the rate constant exhibits a correspond-
ing decrease, providing insight into the point along the path where the rate is especially
impacted. In this particular reaction, manganese works as a catalyst, effectively reducing
the activation energies. Notably, the existence of this catalyst, as indicated in the absorption
energy table (Table 2), results in a negative absorption energy on graphene oxide. This
signifies that the molecules in each reaction release a significant amount of energy when
they adsorb onto the surface, which facilitates the reactions. By closely examining the
reaction pathways for both products, it is possible to conclude that the significant energy
released corresponds to the activation energy required for each reaction and the heat ab-
sorption along this path. These results confirm the suitability of the catalyst and ultimately
provide an explanation for the reaction’s spontaneous progression, even allowing for the
high activation energies. As such, reactions like CH2O + OH → CH2OH + O, with an
activation energy of 3.86 eV, are still likely to happen, as the absorption energy released
within the reaction environment supplies enough energy to overcome the activation en-
ergy barrier and drive the reaction forward. Supporting evidence lies in the consistent
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progress of the reaction, with slow-downs primarily manifesting during the intermediate
stages and, to a lesser extent, in the final conversion from CH2 to CH4. The reaction does,
however, appear to be slowing down in the pathway diagrams, particularly during the
CH2O + OH → CH2OH + O generation stage, which has a peak energy of 3.86 eV but a
net energy of −3.60 eV and is the rate-determining step. The final conversion of CH2OH to
methanol is an endothermic process, with the methane generation process continuing on.

Next, we performed a thermodynamic analysis of the transition states to locate the
critical step, with a focus on finding steps that displayed exothermic behavior. After an
exhaustive analysis of each step (as shown in Table 5), we found that the first three processes
in the synthesis of both methanol and methane had the same thermodynamic exothermic
properties. Step 3 (TS3 = 1.47 eV) required the most energy input, with activation energy
levels ranking as TS3 > TS1 > TS2.

However, step 4, CH2OH + OH → CH2 + H2O + O, in the methane synthesis process
was endothermic (0.80 eV), and although it was endothermic, CH2 + OH → CH3 + O
had a lower activation energy than all the other steps in both methanol and methane
synthesis. This step also had a lower activation energy than the corresponding steps in
methanol synthesis. We therefore concluded that the pathway to synthesize methane was
thermodynamically more favorable, with CH4 as the preferred product and methanol as
the secondary result.

Table 5. The path resulting in CH4 and CH3OH. Energies are related to the CO in the gas phase plus
the energy of three hydrogen atoms and one hydroxyl on the surface. The symbols in parentheses are
the atoms added along the paths to balance the number of atoms during the reaction profile.

Path Energy (eV)

CO(g) + (3H) + (OH) 0.00
CO + OH + (3H) −1.35

TS1 + (3H) 1.13
HCO + O + (3H) −1.30

HCO + OH + (2H) −1.71
TS2 + (2H) −1.23

CH2O + O + (2H) −1.30
CH2O + OH + (H) −2.39

TS3 + (H) 1.47
CH2OH + O + (H) −2.10

CH2OH + OH (CH4 pathway) −2.77
CH2OH + OH (CH3OH pathway) −2.91

TS4 −1.97
CH2 + O + H2O −2.95

CH2 + OH + (OH) −1.94
TS5 + (OH) −1.58

CH3 + O + (OH) −1.61
CH3 + OH + (O) −1.56

TS6 + (O) −0.21
CH4 + O + (O) −0.85
CH4(g) + (2O) 0.01

TS7 −1.25
CH3OH + O −1.71

CH3OH(g) + (O) −0.42

In the present investigation, a thorough examination was carried out on the synthesis
of methane (CH4) and methanol (CH3OH) via the catalytic pathways illustrated by the
overall reactions CO + 6OH → CH4 + H2O + 6O and CO + 4OH → CH3OH + 4O. These
processes take place on the catalyst surface and are impacted by a number of variables,
including the composition of the catalyst and the reaction conditions. In order to acquire
insight into the fundamental mechanisms steering the generation of methane and methanol,
we have systematically segmented the overall reactions into discrete stages, subsequently
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analyzing the kinetics and thermodynamics of these steps. By investigating these individual
steps, we have successfully elucidated the intricate pathways and mechanisms associated
with the catalytic conversion processes of the conversion of CO to methane and methanol,
including the identification of reaction intermediates, transition states, and rate-determining
steps. In addition, a study of the kinetics and thermodynamics of each individual stage has
allowed us to assess the catalytic efficacy under different conditions, where we found that
the catalyst maintained its integrity unchanged throughout the catalytic cycles.

3. Computational Details

We have conducted periodic plane-wave DFT [40–42] calculations to examine the
adsorption of CO and its reactivity on the surfaces of GO doped with manganese. All DFT
calculations in our study were spin polarized calculations using the Vienna Ab initio Simu-
lation Package (VASP) [72–74]. VASP provides approximate solutions to the many-body
Schrödinger equation through DFT by solving the Kohn–Sham equations. Ion–electron
interactions are represented by the projector-augmented wave (PAW) method [75,76]. To
calculate the total energy, we have applied the Perdew–Burke–Ernzerhof (PBE) [77] variant
of the generalized gradient approximation (GGA) [77]. The inclusion of the long-range
Van der Waals (vdW) forces improves the energy description of each system [4,78–81]
and we have therefore employed the DFT-D3 the method by Grimme as implemented in
VASP [82]. The energies of the transition states (TS) are calculated using the nudged elastic
band (NEB) [83] and dimer methods [84,85] implemented in VASP to climb up the potential
energy surface from minimum to saddle points [86–88].

The adsorption energy of the adsorbates, Eads, can be calculated as:

Eads = Eslab+mol − Eslab − Emol (1)

where Eslab+mol is the energy of the relaxed surface with a relaxed adsorbed molecule, and
Eslab and Emol are the energies of the surface only and the molecule in vacuum, respectively.

The reaction energy of each reaction, Ereaction, can be calculated as:

Ereaction = Eproduct − Ereactant (2)

where Eproduct and Ereactant are the energies of the products and reactants, respectively.
The activation energy of each reaction, Eactivation, can be calculated as:

Eactivation = Etransition−state − Ereactant (3)

where the Etransition−state and Ereactant are the energies of the transition state and reactants
of each reaction, respectively.

∆ρ = ρAB − ρA − ρB

where ρAB represent the charge densities of the combined graphene-OH system and ρA
and ρB are the charge densities of the pristine graphene and the OH group of the combined
structure, respectively.

During geometry optimization, we sampled the Brillouin zone using a 6 × 6 × 1
special k-points grid, following the Monkhorst–Pack scheme [89,90]. The electron wave
functions were expanded using plane waves with a cutoff energy of 450 eV for the graphene
oxide structures. Geometry optimization ceased once the total energy converged within
10−5 eV, and the force exerted on each ion fell below 0.01 eV/Å. Figure 6 shows that
the energy is converged at a k-points grid and cutoff energy of 6 × 6 × 1 and 450 eV,
respectively.
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4. Conclusions

The hydrogenation method utilizes the GO surface as a source of hydrogen atoms,
enabling the conversion of hydroxyl groups to epoxy groups within the mechanism. The
use of manganese as an intermediate metal catalyst led to a negative absorption energy
on graphene oxide. The molecules participating in the Fischer–Tropsch reactions release
a significant amount of energy upon adsorption onto the surface, which facilitates the
advancement of these reactions. By closely examining the reaction pathways for both prod-
ucts, it is possible to conclude that the significant energy released within the environment of
the reaction corresponds to the activation energy required for each reaction and the heats of
absorption along the pathways. The suitability of the catalyst is confirmed by these results,
which explain the spontaneous progression of the reaction even along the steps with high
activation energies. By comparing the calculated results with data from relevant sources, it
is revealed that the use of GO as a surface material characterized by a larger surface area
and lighter weight significantly increases the effectiveness of the required reactions. The
activation energies of the chemical reactions affect the reaction rates, which means that
faster reactions have lower activation energies.

The calculations further unveiled that the reaction that dictates the reaction rate fea-
tured the highest activation energy, underscoring the instability of this specific component
within the process. Upon calculating the energies of each reaction’s initial and final states,
it was established that the reaction operated in an endothermic state. However, it is worth
mentioning that in this study we have only investigated the reaction and activation energies,
i.e., the thermodynamics and energy barriers, at 0 K using pure DFT.

Overall, the presence of manganese as a catalyst, along with the utilization of GO as
a suitable surface possessing a substantial surface area and hosting hydroxyl and epoxy
groups, proved efficient in expediting the reactions. Manganese, functioning as a valuable
catalyst, facilitated the reactions more readily and effectively, converting carbon monoxide
gas into the more advantageous and less harmful methane and methanol products, which
have significant industrial applications. This mechanism offers potential for further ex-
ploration in practical applications, promising to mitigate environmental pollution and its
associated consequences.
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