
Citation: Leveneur, S.; Tolvanen, P.;

Russo, V. Catalytic Epoxidation

Reaction. Catalysts 2024, 14, 285.

https://doi.org/10.3390/catal14050285

Received: 5 April 2024

Accepted: 19 April 2024

Published: 23 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Editorial

Catalytic Epoxidation Reaction
Sébastien Leveneur 1 , Pasi Tolvanen 2 and Vincenzo Russo 2,3,*

1 INSA Rouen, UNIROUEN, Normandie Université, LSPC, UR4704, 76000 Rouen, France;
sebastien.leveneur@insa-rouen.fr

2 Laboratory of Industrial Chemistry and Reaction Engineering, Åbo Akademi, 20500 Åbo/Turku, Finland;
pasi.tolvanen@abo.fi

3 Department of Chemical Science, University of Naples Federico II, 80126 Naples, Italy
* Correspondence: v.russo@unina.it

1. Introduction

The epoxidation of unsaturated groups is a well-known process. There are different
oxidizing agents (molecular oxygen, hydrogen peroxide, and percarboxylic acids), different
phases (homogeneous vapor or liquid phase or liquid–liquid, gas–liquid–liquid, etc.), and
essentially different substrates (from small gas molecules to triglycerides) (Contributions 1
and 2). Several studies have shown that producing epoxide compounds can present some
risk because it is an exothermic process. Hence, one should design a suitable catalyst in an
adequate reactor to work under safe operating conditions.

In this Special Issue, “Catalytic Epoxidation Reaction”, we wish to showcase the
diversity of this research area and focus on the research efforts in catalyst and process
intensification. The topics include but are not limited to the following:

• The epoxidation of gaseous molecules;
• The epoxidation of molecules in multiphase;
• The epoxidation of triglycerides;
• Enzymatic catalysis;
• Catalyst preparation and characterization
• The benefits of process intensification for epoxidation reaction;
• Kinetic modeling.

Within the present Special Issue, eleven papers were collected, including nine research
articles and two reviews. Both reviews comprehensively focus on all of the essential aspects
needed for catalysis and process development (Contributions 1 and 2).

The research papers could be framed within different macro areas whose distribution
is reported in Figure 1.
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As revealed, the distribution is well balanced along three different macro areas, namely
the epoxidation of (i) terpenes, (ii) vegetable oils, and (iii) olefins.

Moreover, 67% of the published papers were in the field of catalysis (i.e., the synthesis,
characterization, and testing of heterogeneous catalysts), and the rest were in the field of
chemical kinetics.

In the following sections, the main contributions of the SI will be reviewed and
summarized, highlighting the point of novelty per each macro area.

2. Epoxidation of Vegetable Oils

Two articles on the epoxidation of vegetable oils were published within the present
Special Issue. Meng et al. (Contribution 3) published an in-depth kinetic model for the
epoxidation of cottonseed oil using perpropionic acid over Amberlite IR-120. The authors
investigated a wide range of operation conditions, finding general rate expressions that
were useful to interpret the data (see example reported in Figure 2A). The data had a good
fit in every case, and the kinetic parameters were reliable.
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Catalá et al. (Contribution 4) epoxidized grapeseed oil in supercritical CO2 using the
Prileschajew method, demonstrating the advantages of working with supercritical carbon
dioxide compared to conventional methods. The authors conducted a thorough kinetic
investigation using simple modeling approaches, confirming the information reported in
the literature regarding the reaction order (Figure 2B).

3. Epoxidation of Terpenes

Two published research papers focused on the epoxidation of terpenes. Fomenko et al.
(Contribution 5) catalytically epoxidized 3-carene and limonene towards α-pinene epoxide,
an important intermediate for fragrances, using hydrogen peroxide as an active oxidant
with a new catalytic system. The authors proposed several synthetic strategies to increase
the selectivity of the epoxide compounds by investigating the effects of solvent and reaction
conditions. The catalytic system was utilized to produce a diepoxide by using limonene as
a starting reagent (see Figure 3A). Gomes et al. (Contribution 6) used modified zeolites to
epoxidize limonene and methyl oleate and identified active and selective materials for the
tested reactions, i.e., Mo-TUD-type BEA zeolites (see Figure 3B).
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4. Epoxidation of Olefins

Five published papers focused on the epoxidation of olefins. De Boed et al. (Contribu-
tion 7) proposed using gold-based catalysts for propene epoxidation, focusing on the effect
of support on the reaction selectivity (see Figure 4A). The authors detected that the support
had a strong influence on product selectivity in certain instances.
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Figure 4. (A) Selectivity during the oxidation of propene at 200 ◦C in the presence of hydrogen over
supported gold catalysts (Contribution 7). (B) Catalytic activity on Ag(56)-Na(1)/SrCO3 and Ag(75)-
Na(1)/SrCO3 (Contribution 8). (C) Optimum reaction conditions for cyclohexene epoxidation using
10% Ni@CSs composites (Contribution 9). (D) trans-caryophyllene yield using different catalysts
(Contribution 10).

Sugiyama et al. (Contribution 8) studied the same reaction using silver plasmon
excitation technology with modified silver catalysts. The approach was indeed novel, and
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while there were high olefin conversion rates, the selectivity towards propene oxide was
not as pronounced (see Figure 4B).

Cyclohexene epoxidation was investigated by Alhumaimess (Contribution 9) by em-
ploying Ni-based heterogeneous catalysts. The study investigated the main reaction con-
ditions’ impact on the conversion and selectivity of the reaction, and it was found that
Ni@CSs is a very active and selective catalyst (see Figure 4C).

Ivanchikova et al. prepared mesoporous zirconium silicates using two different
methods: evaporation-induced self-assembly and the solventless organometallic precursor
dry impregnation of commercial SiO2. The catalysts demonstrated good activity and
selectivity towards trans-caryophyllene epoxidation (see Figure 4D).

Finally, Freindorf and Kraka (Contribution 11) studied allylic alcohol Sharpless epox-
idation via a quantum mechanical analysis, helping the scientific audience understand
how molecules react and interact with the catalyst (see Figure 5). Their findings enable
significant advancements in the computational-driven exploration of catalytic systems by
integrating URVA with LMA, offering a powerful mechanistic approach for optimization.
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5. Conclusions

This Special Issue can be considered successful as it demonstrates how epoxides of
different nature can be obtained. The high quality of the collected papers, together with the
highly interdisciplinary approach used, allowed for relevant papers to be produced in the
sector, which will surely be references for future research.
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