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Abstract: The vanadium redox flow battery (VRFB) is a highly favorable tool for storing renewable
energy, and the catalytic activity of electrode materials is crucial for its development. Taurine-
functionalized carbon nanotubes (CNTs) were prepared with the aim of augmenting the redox process
of vanadium ions and enhancing the efficiency of the VRFB. Sulfonated CNTs were synthesized
through a simple modification process in a taurine solution and used as electrocatalysts for redox
reactions involving VO2+/VO2

+ and V2+/V3+. The SO3H-CNTs modified at 60 ◦C for 2 h exhibit
the best electrocatalytic activity, showing higher redox peak current values compared to pristine
carboxylated CNTs (COOH-CNTs). Sulfonic acid groups added to the surface of CNTs increase
active sites for redox reactions and act as carriers for mass transfer and bridges for charge transfer,
accelerating the rate of the electrode reactions. A battery consisting of SO3H-CNTs as catalysts
demonstrates the outstanding charge–discharge performance at a current density of 300 mA·cm−2.
This configuration displays voltage and energy efficiencies of 81.46% and 78.83%, respectively,
representing enhancements of 6.15% and 6.12% compared to that equipped with conventional
graphite felts (75.31%, 72.71%). This study illustrates that taurine-functionalized carbon nanotubes
serve as an efficient and promising catalyst for both the anode and cathode, leading to the improved
performance of the VRFB.

Keywords: carbon nanotubes; vanadium redox flow battery; taurine; positive and negative electrodes;
electrocatalytic activity

1. Introduction

With the increasing consumption of fossil fuels, there is a growing focus on developing
and implementing sustainable energy sources [1,2]. The quest for economically viable
energy storage systems is more crucial than ever [3,4]. The vanadium redox flow battery is
widely regarded as a favorable electrochemical system for storing energy for applications
on an extensive scale and plays a significant role in grid peak shifting and frequency
regulation. It also provides substantial backing for the storage of various renewable energy
sources, including wind and hydropower [5–10]. Flow batteries use aqueous electrolytes
for enhanced safety, setting them apart from alternative energy storage technologies like
lithium-ion batteries [11].

The energy storage center of a VRFB includes a cell stack, an electrolyte, and an
energy management system. The electrodes located within the cell stack are pivotal in
the inter-conversion of electrical and chemical energy, significantly influencing the energy
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efficiency of the battery [12,13]. The materials used for electrodes primarily consist of carbon
felt, graphite felt, and carbon paper, with graphite felt being the most commonly used
material [14]. Graphite felt requires modification before use because it lacks electrochemical
activity and has poor hydrophilicity [15–19]. Electrodes that have been enhanced with
carbon-based catalysts are frequently employed in VRFBs because of their expansive
specific surface area and robust electrical conductivity [20,21]. Carbon-based materials
commonly demonstrate a high resistance to strong acidic electrolytes and can be readily
deposited onto the substrate. Due to the similar carbon composition of graphite felt and
other carbon-based materials, there is potential to reduce the uneven repulsion between
them [22,23]. The integration of carbon-based catalysts, such as carbon nanotubes (CNTs),
into the graphite felt has been demonstrated as an effective modification method [24].

However, pristine CNTs have limitations, such as a lack of active sites and insuffi-
cient hydrophilicity, which restrict their catalytic efficacy [25]. A variety of modification
techniques have been suggested, including surface activation, heteroatom doping, and
compounding with other metals. He et al. [26] conducted an investigation of the treatment
of CNTs with potassium hydroxide (KOH) at elevated temperatures, leading to the pro-
duction of CNTs with multiple imperfections and oxygen-containing functional groups.
The efficiency of a cell utilizing KOH-activated CNTs reached 85.7% at a current density of
30 mA·cm−2, indicating a 4.4% enhancement compared to a control cell consisting of non-
KOH-activated CNTs. Manthiram et al. [27] and Yu et al. [28] synthesized nitrogen-doped
CNTs via chemical vapor deposition. The incorporation of elemental nitrogen modifies the
electron distribution and surface polarity, resulting in an augmentation of surface defect
configuration and catalytical sites of CNTs. The direct immobilization of CNTs on elec-
trodes by chemical vapor deposition is a multifaceted and demanding procedure. Moon
et al. [29] introduced bismuth (Bi) doping onto acidified CNTs as a catalyst. The energy
efficiency of the cell increased to 81.9% using a current density of 80 mA·cm−2. However,
metal catalysts are costly and can easily contaminate the electrolyte. In conclusion, in order
to enhance the performance of electrocatalysis of pristine CNTs, it is necessary to employ
a modification approach that can augment the active sites [30]. This method should be
simple, contamination-free, and involve only a few steps.

In this work, taurine (2-aminoethanesulfonic acid)-functionalized CNTs are employed
as a catalyst to improve VRFB performance. The introduction of sulfonic acid groups onto
CNTs via a simple modification technique involving taurine has been demonstrated to
offer additional active sites for VO2+/VO2

+ and V3+/V2+ redox reactions. The composite
electrodes, made of taurine-functionalized CNT-coated graphite felts, were prepared and
used as the anode and cathode in batteries for charge–discharge tests to assess their impact
on VRFB performance.

2. Results and Discussion
2.1. Electrochemical Properties of Taurine-Functionalized CNTs

Cyclic voltammetry was employed to assess the electrochemical performance of CNTs
for the VO2+/VO2

+ and V3+/V2+ redox reactions. The results depicted in Figure 1a demon-
strate that the anodic and cathodic peak current densities of the VO2+/VO2

+ redox reaction
show an initial rise, followed by a decline as the reaction temperature increases, reaching
its maximum at 60 ◦C. As the temperature rises further, there is a decrease in the peak
current density due to the easy delocalization of carboxyl groups on the CNTs at elevated
temperatures, consequently reducing the number of reaction sites [31]. The results obtained
for the V3+/V2+ redox reaction, depicted in Figure 1b, indicate that the peak current density
attains its highest value at 60 ◦C. Consequently, the optimal treatment temperature was
determined to be 60 ◦C.
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Figure 1. Peak current density at functionalized CNTs: (a) VO2+/VO2+ redox reactions at different 
treatment temperatures, (b) V2+/V3+ redox reactions at different treatment temperatures, (c) 
VO2+/VO2+ at different treatment times, and (d) V2+/V3+ redox reactions at different treatment times. 

The study examined the efficiency of catalysts in facilitating redox reactions involv-
ing VO2+/VO2+ and V2+/V3+ by analyzing the impact of varying mixing durations on the 
performance of the catalysts. Figure 1c displays the maximum current density observed 
at the anode and cathode during the redox reaction involving VO2+/VO2+. As depicted in 
the figure, both peak current densities exhibit an increase as the mixing time progresses 
from 0 to 4 h, with no substantial changes in the peak current density observed after 2 h. 
Similarly, in Figure 1d, the maximum current density observed at the anode and cathode 
for the V2+/V3+ redox reactions does not exhibit a notable rise, even following a duration of 

Figure 1. Peak current density at functionalized CNTs: (a) VO2+/VO2
+ redox reactions at

different treatment temperatures, (b) V2+/V3+ redox reactions at different treatment tempera-
tures, (c) VO2+/VO2

+ at different treatment times, and (d) V2+/V3+ redox reactions at different
treatment times.

The study examined the efficiency of catalysts in facilitating redox reactions involving
VO2+/VO2

+ and V2+/V3+ by analyzing the impact of varying mixing durations on the
performance of the catalysts. Figure 1c displays the maximum current density observed at
the anode and cathode during the redox reaction involving VO2+/VO2

+. As depicted in
the figure, both peak current densities exhibit an increase as the mixing time progresses
from 0 to 4 h, with no substantial changes in the peak current density observed after 2 h.
Similarly, in Figure 1d, the maximum current density observed at the anode and cathode
for the V2+/V3+ redox reactions does not exhibit a notable rise, even following a duration
of 2 h. This is because the modification reaction between CNTs and taurine has reached
equilibrium, with the reaction value reaching saturation. This finding led to the conclusion
that the most effective reaction time for the combination of taurine and CNTs was 2 h.

2.2. Effect of Taurine-Functionalized CNTs on the Redox Reactivity of Vanadium Ions

The electrocatalytic activity of sulfonated CNTs (SO3H-CNTs) produced through
optimized treatment parameters is subsequently evaluated and contrasted with the catalytic
efficiency of COOH-CNTs. Figure 2a shows the cyclic voltammograms of 0.1 M VO2+ and
0.1 M VO2

+ at SO3H-CNTs and COOH-CNTs electrodes in 2 M H2SO4 as the supporting
electrolyte. In both voltammograms, the peak at 0.910 V corresponds to the oxidation
of VO2+ to VO2

+, while the peak at 0.862 V corresponds to the reduction of VO2
+ to

VO2+. Similarly, Figure 2b displays the cyclic voltammograms of 0.1 M V2+ and 0.1 M
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V3+ at the same two electrodes in 2 M H2SO4 as the supporting electrolyte. In these
voltammograms, the peak at −0.449 V corresponds to the oxidation of V2+ to V3+, while
the peak at −0.500 V corresponds to the reduction of V3+ to V2+. Several electrochemical
parameters measured for the VO2+/VO2

+ redox pair and the V2+/V3+ pair at the two
electrodes are tabulated in Table 1 and Table 2, respectively. The reactivity of SO3H-
CNTs is notably superior to that of the COOH-CNTs, as illustrated in Figure 2a. At the
positive electrode, the anodic and cathodic peak current densities of the SO3H-CNTs
electrode (Jpa and Jpc) are 16.40 and −13.42 mA·cm−2, respectively. The values showed a
68.21% and 75.65% increase compared to Jpa of 9.75 mA·cm−2 and Jpc of −7.64 mA·cm−2

at the COOH-CNTs electrode. Jpc/Jpa serves as an indicator of the reversibility of the
electrode reactions [32]. The Jpc/Jpa value of SO3H-CNTs is higher than that of COOH-
CNTs, indicating enhanced electrode reversibility. The Jpa and Jpc values for COOH-CNTs
are 7.21 and −9.54 mA·cm−2, respectively, at the negative electrode. The SO3H-CNTs
electrode exhibited a Jpa of 11.17 mA·cm−2 and a Jpc of −13.5 mA·cm−2, showing a 54.92%
and 41.51% increase. The presence of SO3H-CNTs significantly enhances the electrochemical
reactivity of vanadium ions in electrode reactions.
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Figure 2. Cyclic voltammograms of (a) 0.1 M VO2+ and 0.1 M VO2+ and (b) 0.1 M V2+ and 0.1 M V3+ 
at COOH-CNT and SO3H-CNT electrodes in 2 M H2SO4 supporting electrolyte. Scan rate: 10 mV·s−1. 

Table 1. Electrochemical property of catalyst in 0.1 M VOSO4 + 2 M H2SO4 solution. 

VO2+/VO2+ 
Peak Current Density (mA∙cm−2) Peak Potential (V) 

∆E/V Jpc/Jpa 
Anodic Cathodic Anodic Cathodic 

COOH-CNTs 9.75 −7.64 0.910 0.862 0.048 0.784 
SO3H-CNTs 16.40 −13.42 0.920 0.857 0.063 0.818 

  

Figure 2. Cyclic voltammograms of (a) 0.1 M VO2+ and 0.1 M VO2
+ and (b) 0.1 M V2+ and 0.1 M V3+

at COOH-CNT and SO3H-CNT electrodes in 2 M H2SO4 supporting electrolyte. Scan rate: 10 mV·s−1.

Table 1. Electrochemical property of catalyst in 0.1 M VOSO4 + 2 M H2SO4 solution.

VO2+/VO2
+

Peak Current Density (mA·cm−2) Peak Potential (V)
∆E/V Jpc/Jpa

Anodic Cathodic Anodic Cathodic

COOH-CNTs 9.75 −7.64 0.910 0.862 0.048 0.784

SO3H-CNTs 16.40 −13.42 0.920 0.857 0.063 0.818

Table 2. Electrochemical property of catalyst in 0.1 M V3+ + 0.2 M H2SO4 solution.

V2+/V3+
Peak Current Density (mA·cm−2) Peak Potential (V)

∆E/V Jpc/Jpa
Anodic Cathodic Anodic Cathodic

COOH-CNTs 7.21 −9.54 −0.449 −0.500 0.051 1.323

SO3H-CNTs 11.17 −13.50 −0.450 −0.505 0.055 1.209

Cyclic voltammetry was performed on COOH-CNTs and SO3H-CNTs by increasing
the potential scan rate from 10 to 50 mV/s to examine the redox reaction kinetics of CNTs.
The cyclic voltammograms of 0.1 M VOSO4 at COOH-CNT and SO3H-CNT electrodes in
2 M H2SO4 at the positive electrode are depicted in Figure 3a and Figure 3b, respectively.
Similarly, the cyclic voltametric profiles of COOH-CNTs and SO3H-CNTs at the negative
electrode are illustrated in Figure 4a and Figure 4b, respectively.
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Figure 3. Cyclic voltammetry plots were obtained using an electrolyte solution containing 0.1 M 
VOSO4 + 2 M H2SO4 for (a) COOH-CNTs and (b) SO3H-CNTs at scan rate from 10 to 50 mV·s−1; (c) 
peak current density as a functional of the square root of the scan rate. 
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(c) peak current density as a functional of the square root of the scan rate.
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The findings reveal that the current density of the oxidation and reduction peaks at
both electrodes increased with the scan rate, and that the oxidation peak shifted positively
and the reduction peak shifted negatively as the scan rate was increased from 10 to 50 mV/s.
This suggests that the reactions involving the electron pairs VO2+/VO2

+ and V2+/V3+

exhibit reversibility [33]. The peak current density at the SO3H-CNTs electrode is notably
higher than that at the COOH-CNTs electrode over the entire range of the scan rate,
indicating improved catalytic activity at the former.

The determination of the diffusion coefficient of vanadium ions in the electrolyte can
be achieved by analyzing the correlation between the peak current and the potential scan
rate [34], as demonstrated in the equation:

Ip = 2.69 × 105 AD0
1/2n3/2v1/2C

where Ip is the peak current; A is the true surface area of the electrode; D0 is the diffusion
coefficient; C is the bulk concentration of the reactants; n is the number of electrons gained
or lost in the electrode reaction; and v denotes the scan rate in cyclic voltammetry [35]. As
shown in Figures 3c and 4c, the slope can intuitively demonstrate the diffusion ability of
the electrolyte through a graphical representation of the square root of the peak current
against the scan rate.

The data presented in Figures 3c and 4c illustrate that the peak current has a strong
linear correlation with v1/2 of the potential, suggesting that the diffusion step governs the
reaction on both electrodes. The linear equation representing the results obtained at the
SO3H-CNTs electrode shows a larger slope than that at the COOH-CNTs electrode, indicat-
ing an improved diffusion of the active substance, diminishing concentration polarization
and elevating the pace of the electrode reactions.

2.3. Effect of Taurine-Functionalized CNTs on their Molecular Composition

X-ray photoelectron spectroscopy measurements were conducted on COOH-CNTs and
SO3H-CNTs to analyze their elemental composition within the binding energy spectrum of
0–1350 eV. The respective spectrum is shown in Figure 5a.

Notably, the spectrum of COOH-CNTs exhibits two distinct peaks at 285 and 531 eV,
where the aforementioned phenomena are ascribed to the C1s and O1s binding energies,
respectively [36,37]. In contrast, SO3H-CNTs exhibit a small new peak at 169 eV, attributed
to S2p [38], and a new small peak at 401 eV, attributed to N1s [39]. Quantitative analyses
confirm that the elemental N and S content is 0.63% and 0.14%, respectively. The analysis
confirms the presence of carbon (C), oxygen (O), sulfur (S), and nitrogen (N) on the surface
of the SO3H-CNTs.

The high-resolution N1s X-ray photoelectron spectrum for SO3H-CNTs, depicted in
Figure 5b, shows two peaks at 398.83 and 401.53 eV, which are assigned to -NH- and
-(O=C)-N, respectively [40]. Additionally, the corresponding high-resolution S2p X-ray
photoelectron spectrum in Figure 5c shows two peaks at 168.67 and 172.76 eV, correspond-
ing to the C-SO3H and C-S bonds, respectively. This indicates the chemical bonding of
the sulfonic acid group to the carbon backbone. The sulfonic acid group is effectively
incorporated onto the surface of the carbon nanotube.

The surface functional groups of the CNT samples were analyzed using infrared
spectroscopy, with the results being depicted in Figure 6a. In the case of COOH-CNTs, the
peaks at 1749 cm−1 and 3437 cm−1 are attributed to the stretching vibrations associated with
-COOH and -OH, respectively. Conversely, in SO3H-CNTs, two additional peaks emerge at
1049 cm−1 and 1089 cm−1, representing the symmetric and asymmetric vibration modes of
-SO3H, respectively [41]. Additionally, the -COOH peak at 1749 cm−1 is attenuated and
transformed into the amide bond peak at 1650 cm−1. The heightened intensity observed
at 3440 cm−1 is attributed to the concurrent stretching vibration of -OH and sulfonic acid
moieties. The findings from FTIR substantiate the effective incorporation of sulfonic acid
groups onto the carbon nanotube surface, thereby generating supplementary reactive sites
conducive to electrode redox reactions.
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fitted data.
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The Raman spectra of CNTs are depicted in Figure 6b. The two specimens exhibit
comparable Raman spectra, featuring two prominent peaks referred to as the D and G bands
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at 1340 and 1580 cm−1, respectively. The peak observed at 1340 cm−1 signifies disordered
graphite (D band), while the peak at 1580 cm−1 is associated with sp2 hybrid carbon atoms
(G band). The G band intensity and D band intensity ratio (ID/IG) is commonly used as an
indicator to assess defects in disordered carbon materials. Accordingly, an ID/IG of 1.32 for
SO3H-CNTs is higher than 1.16 for COOH-CNTs, indicating more structural defect sites
in the former, leading to a highly disordered carbon structure. The alteration of carbon
structure and the increase in surface defects enhance the electrochemical reactivity.

The discussion pertains to the electrocatalytic mechanism of the sulfonic acid group
that is developed on the CNT catalysts for facilitating redox reactions involving VO2+/VO2

+

and V3+/V2+. This analysis is based on the existing literature [42] and experimental results.
This is illustrated in Figure 7. The procedure of charging and discharging comprises a series
of discrete stages. Initially, an ion exchange mechanism takes place, wherein vanadium ions
within the electrolyte migrate to the electrode surface and establish coordination bonds
with the sulfonic acid groups present on the surface of CNTs. Subsequently, an electron
transfer process occurs, facilitated by the S-O-V bond, enabling efficient electron transport.
Finally, vanadium ions resulting from oxidation or reduction reactions detach from the
electrode surface due to their coordination with sulfonic acid groups and diffuse back into
the electrolyte. Taurine plays a crucial role as a facilitator in the mass transfer mechanism
and as a mediator in the charge transfer process during the electrode reaction, accelerating
the electrode reaction rate of vanadium ions. The hydrogen atom in the sulfonic acid
group dissociates more readily than the -COOH group due to the pronounced electron-
withdrawing influence exerted by the two oxygen atoms on the sulfur atom within the
sulfonic acid group. Consequently, vanadium ions exhibit a stronger attraction towards
the S-O bond in comparison to the C-O bond, leading to an acceleration in the redox
reaction rate.
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2.4. The Performance Evaluations of VRFB

To clarify the function of SO3H-CNTs in the implementation of the VRFB, individual
batteries were constructed using untreated graphite felt and graphite felt coated with
catalysts (COOH-CNTs and SO3H-CNTs) as the positive and negative electrodes. Charge–
discharge experiments were conducted using an individual battery.
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To compare the charge and discharge voltages and capacities of batteries with three
different electrodes, constant current charge and discharge experiments were conducted
at a current density of 100 mA·cm−2. The results are presented in Figure 8a. The battery
using SO3H-CNTs has a charging capacity of 1.08 Ah and a discharging capacity of 0.99 Ah.
The battery containing COOH-CNTs has a charging capacity of 0.99 Ah and a discharging
capacity of 0.90 Ah, while the battery with blank graphite felt (GF) has a charging capacity
of 0.86 Ah and a discharging capacity of 0.78 Ah. The use of SO3H-CNTs/GF electrodes
increases the charge capacity by 25.58% and the discharge capacity by 26.92% compared to
conventional GF electrodes. A battery using SO3H-CNTs as electrocatalysts shows lower
charge voltages and higher discharge voltages. The graphite felts coated with SO3H-CNTs
show improved electrochemical activity, leading to decreased electrochemical polarization.
This phenomenon benefits from the reduction in battery overpotential and the enhancement
of its capacity.
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Figure 8. (a) Charge–discharge capacity, (b) coulombic efficiencies, (c) voltage efficiencies, and
(d) energy efficiencies of VRFB.

To analyze thoroughly the impact of sulfonated CNTs on the performance of batter-
ies, experiments were conducted to assess the charge and discharge capabilities under
varying current densities. The efficiency was assessed across five cycles at various current
densities between 100 and 300 mA·cm−2. Subsequently, the current density was reset to
200 mA·cm−2. Figure 8b illustrates that the coulombic efficiency of the VRFB remains
consistent across the different current densities. However, there are significant differences
in their voltage efficiency and energy efficiency, as shown in Figure 8c and Figure 8d,
respectively. The battery utilizing SO3H-CNTs/GF as electrodes shows improved voltage
efficiency and energy efficiency in comparison to those with untreated GF electrodes. At a
current density of 300 mA·cm−2, the voltage efficiency and energy efficiency values for the
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battery using GF as the electrode are 75.31% and 72.71%, respectively. The voltage efficiency
and energy efficiency of cells using COOH-CNTs/GF electrodes are 78.58% and 75.76%,
respectively. The voltage efficiency and energy efficiency of batteries using SO3H-CNTs/GF
as electrodes are 81.46% and 78.83%, respectively. In comparison to cells with standard GF
electrodes, the improvements are 6.15% and 6.12%, respectively. This trend aligns with
the catalytic activity pattern exhibited by the electrodes. The addition of sulfonic acid
groups to electrode surfaces increases active sites, improving the electrochemical activity
of graphite felts and reducing electrochemical polarization during high-current-density
electrode reactions. This indicates that SO3H-CNTs positively affect the electrochemical
performance.

To investigate the impact of SO3H-CNTs catalyst on the operational stability and
robustness of the VRFB, a 50-cycle charge–discharge experiment was conducted at a current
density of 200 mA·cm−2. The outcomes are depicted in Figure 9a,b, indicating that the
voltage and energy efficiencies of the three cells exhibit a relatively stable performance over
50 cycles. The average voltage efficiency of the battery using conventional GF is 81.75%,
with an energy efficiency of 78.71%. The average voltage efficiency and energy efficiency
of batteries using COOH-CNTs/GF are 83.85% and 80.42%, respectively. The average
voltage efficiency and energy efficiency of batteries using SO3H-CNTs/GF are 87.12% and
83.95%, respectively, showing an increase of 5.37% and 5.24% compared to conventional
cells. This phenomenon is attributed to the use of SO3H-CNTs as catalysts, which improves
the electrochemical activity by facilitating mass transfer and reducing the activation energy
of the reaction. Even when exposed to highly acidic electrolyte conditions (3 M H2SO4),
SO3H-CNTs maintained their catalytic activity over a prolonged period. Figure 9c,d show
scanning electron micrographs of graphite felt coated with SO3H-CNTs. In Figure 9c, the
successful adhesion of CNTs to the surface of the graphite felt is evident. In Figure 9d, it is
clear that even after 50 cycles, a portion of CNTs remain firmly attached to the graphite felt.
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3. Experimental Section
3.1. Materials

Carboxylic acid functionalized multi-walled CNTs (COOH-CNTs, >95%, outer di-
ameter: 5–15 nm, inner diameter: 2–5 nm, length: 0.5–2 µm, 3.86 wt% carboxylic acid
functionalized) were purchased from Xianfeng Nano Materials Technology Co. Ltd. (Nan-
jing, China). Taurine was purchased from Shanghai Maclin Biochemical Technology Co.
Ltd. (Shanghai, China). N-Methylpyrrolidone (NMP) and Nafion 117 solution (~5% in a
mixture of lower aliphatic alcohols and water) were purchased from Aladdin (Shanghai,
China) and used as received. VOSO4·nH2O (99 wt%) was acquired from Shanghai Huiyan
Chemical Products Co. Ltd. (Shanghai, China).

3.2. Preparation of Functionalized CNTs

In synthesizing sulfonic-acid-functionalized CNTs, 100 mg of taurine was mixed with
2 mL of deionized water, followed by 4 mg of COOH-CNTs. This mixture was heated to a
range of temperatures (20 ◦C, 40 ◦C, 60 ◦C, 80 ◦C, 100 ◦C) and different durations (0.5 h, 1 h,
2 h, 3 h, 4 h). Afterward, each mixed solution was centrifuged and purified with deionized
water five times until a neutral pH was achieved to obtain taurine-modified CNTs. In our
study, the changes in the functional groups on CNTs before and after modification were
examined using Fourier transform infrared (FTIR) spectroscopy (Thermo Nicolet Nexus
670, Waltham, MA, USA). The chemical characterization of CNTs specimens was assessed
using X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha+, Thermo Fisher,
Waltham, MA, USA). The XPS spectra were fit using Avantage 5.9931 software. Raman
spectra were acquired by employing a laser as an excitation source on a Raman spectrometer
(WITec alpha300R, Ulm, GER).

3.3. Electrochemical Characterizations of Functionalized CNTs

To assess the electrochemical properties of CNTs on vanadium ion redox reactions,
cyclic voltammetry was performed using an electrochemical workstation (PARSSTAT
4000A, AMETEK, Berwyn, PA, USA). Cyclic voltammetry was carried out using a standard
three-electrode cell consisting of a saturated calomel electrode (SCE; warning: this electrode
must be handled with care owing to health risks associated with mercury vapor in the
electrode) as the reference electrode, a platinum counter electrode, and a CNTs-coated
glassy carbon electrode (GCE; 5 mm diameter) as the working electrode. After ultrasonically
mixing 3 mg of CNTs with 1 mL of ethanol for 30 min, 20 µL of a 0.5 wt% Nafion solution
was added before the mixture was further ultrasonicated for 10 min to achieve a uniform
dispersion. In our work, 30 µL of the solution was applied on a 5 mm diameter glassy
carbon electrode, which was then dried using a baking lamp. Electrolytes used in cyclic
voltammetry were 0.1 mol/L V4+ + 2 mol/L H2SO4 and 0.1 mol/L V3+ + 2 mol/L H2SO4.
A potential window between 0.5 and 1.2 V was used in assessing the anode, while that
between −0.3 V and −0.7 V was used in assessing the cathode. The scanning rate for both
tests was 10 mV/s.

3.4. The Performance Evaluation of VRFB

A graphite felt was coated with a catalyst in preparation for conducting charge and
discharge testing. To prepare the catalyst ink, 10 mg of CNTs was ultrasonically mixed with
10 mL of NMP for 60 min to achieve a homogeneous dispersion. A 3 × 3 × 0.5 cm3 graphite
felt was incubated in the ink for 12 h before being dried at 100 ◦C for 10 h to prepare a
CNTs-coated graphite felt.

A single cell was assembled using catalyst-coated graphite felts as negative and posi-
tive electrodes. A Nafion 117 ion-exchange membrane (5 cm × 5 cm, Dupont, Minneapolis,
MN, USA) was used as a separator. The charge and discharge tests were conducted utilizing
the LANHE CT2001A (5 V/10 A) battery test system from Wuhan Electronic Technology
Co. Ltd. (Wuhan, China). The current density was increased from 100 mA·cm−2 to
300 mA·cm−2 during the tests. An electrolyte consisting of 30 mL of a solution contain-
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ing 1.5 mol/L VO2+ and 3 mol/L H2SO4 was used in an anodic scan, and an electrolyte
consisting of 30 mL of a solution containing 1.5 mol/L V3+ and 3 mol/L H2SO4 was used
in a cathodic scan. The charge and discharge voltages were maintained within the range
of 1.65 V and 0.65 V, respectively. The flow rate for the electrolyte circulation was set at
60 mL·min−1. All experiments were conducted under ambient conditions.

4. Conclusions

In this investigation, taurine-functionalized CNTs were used as catalysts to improve
the electrochemical efficiency of the VRFB. The SO3H-CNTs were prepared through a
simple modification process involving treating COOH-CNTs with a taurine solution. The
electrocatalytic activities of SO3H-CNTs were compared to those of the COOH-CNTs. At
the positive electrode, the peak anodic and cathodic current densities (Jpa and Jpc) of SO3H-
CNTs were 16.40 and −13.42 mA·cm−2, respectively. These values have exceeded those
of COOH-CNTs (Jpa: 9.75 mA·cm−2, Jpc: −7.64 mA·cm−2). At the negative electrode, the
Jpa and Jpc of SO3H-CNTs were 11.17 and −13.50 mA·cm−2, respectively. These values
exceed those of COOH-CNTs (Jpa: 7.21 mA·cm−2, Jpc: −9.54 mA·cm−2). The results show
a significant improvement in the electrocatalytic activity of CNTs after being modified with
taurine. The hydrophilic sulfonic acid groups act as active sites for the redox reactions
involving VO2+/VO2

+ and V3+/V2+, improving the transport of electrolyte active species
at the electrode interface and accelerating the electrochemical reaction kinetics.

Based on single-cell tests on the VRFB, the battery using SO3H-CNTs-coated graphite
felts as electrodes shows a higher voltage efficiency and energy efficiency compared to the
battery utilizing COOH-CNTs-coated graphite felts and a pristine battery. The battery using
SO3H-CNTs/GF electrodes shows greater charge–discharge capacity than the battery with
conventional graphite felt electrodes. At a current density of 300 mA·cm−2, the voltage
efficiency and energy efficiency of a battery using SO3H-CNTs/GF as electrodes are 81.46%
and 78.83%, respectively. These values reflect a 6.15% and 6.12% increase compared to
batteries with GF electrodes. During a 50-turn charge–discharge experiment at a current
density of 200 mA·cm−2, the battery using SO3H-CNTs/GF maintains an energy efficiency
of 83.95%, which is 5.24% higher than the original battery. This study shows that taurine-
functionalized CNTs are efficient catalysts for the electrodes of the VRFB, with significant
potential for practical use.
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