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Abstract: The catalytic cracking of pyrolysis gasification tar into H2 has garnered significant attention
due to its exceptional conversion efficiency. In this study, the effects of pollutant concentration,
residence time, weight hourly space velocity (WHSV), and reaction temperature on the hydrogen
performance of LaFe0.5Ni0.5O3 perovskite were comprehensively investigated. Results revealed
that moderate pollutant concentration (0.3 g/L), low-medium residence time (250 SCCM), and low
WHSV (0.24 gtoluene/(gcat·h)) facilitated efficient interaction between LaFe0.5Ni0.5O3 and toluene,
thus achieving high hydrogen production. An increase in reaction temperature had minimal effect on
the hourly hydrogen production above 700 ◦C but caused a significant increase in methane production.
Additionally, the effects of oxygen evolution reactions, methane reactions, and methane catalytic
cracking reactions of perovskite induced by different reaction conditions on tar cracking products
were discussed in detail. Compared to previous reports, the biggest advantages of this system were
that the hydrogen production per gram of tar was as high as 1.002 L/g, and the highest hydrogen
content in gas-phase products reached 93.5%, which can maintain for approximately 6 h. Finally,
LaFe0.5Ni0.5O3 showed good thermal stability, long-term stability, and catalyst reactivation potential.

Keywords: perovskite; tar cracking; hydrogen; reaction conditions; stability

1. Introduction

The depletion of fossil fuels, the global energy demand, and the environmental issues
resulting from the burning of fossil fuels have led to increased global attention towards
renewable energy development [1]. Hydrogen, recognized for its minimal environmental
footprint, played a significant role in mitigating air pollution and reducing greenhouse gas
emissions [2,3]. Ensuring the economical, efficient, and clean acquisition of hydrogen was a
critical focus in the development of hydrogen production technologies. Biomass pyrolysis
gasification for green hydrogen production held great potential. However, Tar, a by-
product of the pyrolysis gasification process, posed a challenge to the system’s operational
stability, obstructed the removal of pollutants, hampered resource product utilization,
and posed environmental hazards [4,5]. Despite these issues, tar is a valuable source of
hydrocarbons and contains considerable chemical energy, making it a candidate for high-
energy utilization [6]. Employing catalysts to break down tar into hydrogen and other
flammable gases at high temperatures addressed a critical obstacle in biomass pyrolysis
gasification for hydrogen production, thereby enhancing the system’s hydrogen output
efficiency [7].

Nickel-based catalysts were currently the main choice for catalytic cracking of tar to
produce hydrogen due to their economy and efficiency [8,9]. Doping nickel-based catalysts
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with different metals can improve their hydrogen production performance. Huang et al.
pointed out that the performance of carbon-supported bimetallic nickel-copper catalysts is
superior to that of single metal catalysts, with tar conversion rates and hydrogen production
reaching 93.2% and 0.304 L/g, respectively, at 800 ◦C [10]. Li et al. reported that the multi-
metal doped Ni-4% Ce/HZSM-5 catalyst exhibited good catalytic activity and stability, with
a toluene conversion rate of 94.5% [11]. Huang et al. demonstrated that toluene conversion
was up to 96.83% by using ferrite NiFe2O4 as catalysts, with a hydrogen production rate of
0.91 L/g [6]. Zhang et al. demonstrated that toluene conversion was up to 97.5% at 750 ◦C
by using ferrite NiFe2O4@SBA-15 as catalysts, with syngas yield of 34.22 mmol/g and good
stability after 15 cycles [12]. Metal-doped nickel-based catalysts had research potential.

As a composite metal oxide, nickel-based perovskite catalysts had been prepared for
catalytic cracking, catalytic reforming, and chemical looping partial oxidation of tar [13–16].
Thanks to the synergistic effect of different metals in optimizing the perovskite performance,
it had shown good catalytic performance in catalytic cracking and reforming hydrogen
production. Cui et al. investigated the catalytic cracking performance of LaNi0.8Fe0.2O3
for coal tar and found that its hydrogen yield can reach 20.9 mmol/g [17]. Gai et al.
investigated the catalytic performance of La0.8Sr0.2Ni0.8Fe0.2O3 catalyst for tar cracking.
It was confirmed that it achieved 100% conversion of tar in a short reaction time, with a
hydrogen yield of 27.5 mmol/g [18]. However, current research on the catalytic cracking or
reforming performance of nickel-based perovskites focused on dry and wet reforming of
methane [19–21], and further research on tar was urgently needed.

The catalytic cracking and reforming performance of tar was significantly affected by
reaction conditions [22,23]. The study by Lu et al. showed that carbon-based Fe-Ni-Ca
catalysts achieved a hydrogen yield of 288.41 mL/g at 800 ◦C and discussed the effects
of heating rate, pyrolysis temperature, and catalyst calcination temperature on their per-
formance [23]. The pyrolysis temperature of 800 ◦C and heating rate of 10 ◦C/min can
be used as the optimum reaction conditions for industrial hydrogen production using
carbon-based Fe-Ni-Ca catalysts. Gu et al. reported that in the process of LaFe1−xNix steam
catalytic reforming of toluene, increasing the steam volume can increase the hydrogen
production of the system, and increasing the temperature is beneficial for the conversion of
toluene [24]. Importantly, the relationship between the performance of nickel-based per-
ovskite catalytic cracking tar and reaction conditions had not been systematically analyzed,
and the strategies to enhance hydrogen production had not been provided.

To enhance the efficiency of hydrogen generation through perovskite catalytic cracking
tar, this research explored the effects of various factors, including reaction temperature,
pollutant concentration, residence time, and weight hourly space velocity (WHSV) on the
hydrogen production of LaFe0.5Ni0.5O3 for the first time. Measurements were taken to
determine the hydrogen production per gram of tar, the proportion of hydrogen in gas-
phase products, and the hourly hydrogen production under different process parameters.
Combined with real-time monitoring of hydrogen production, the reaction process and
potential influencing factors were analyzed. A comparison with existing studies verified
the superior catalytic effectiveness of LaFe0.5Ni0.5O3 in tar decomposition for hydrogen
generation and underscored the significance of optimizing reaction conditions to boost
hydrogen production. Additionally, the research assessed the thermal durability of per-
ovskite, the sustained stability of hydrogen generation from tar catalytic cracking, and the
catalyst’s reactivation potential.

2. Results and Discussion
2.1. Effect of Pollutant Concentrations

The effect of pollutant concentration on the catalytic cracking performance of perovskite
for tar was discussed at a reaction temperature of 700 ◦C, WHSV of 0.72 gToluene/(gcat·h)
and carrier gas flow rate of 150 SCCM. The pollutant concentration in the fixed bed was
controlled by the mass of tar input per second and the amount of catalyst filling. The
production rates of various products from the continuous catalytic cracking of tar for 6 h
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were shown in Figure 1a,b. Hydrogen (H2) was the major gas-phase product of perovskite
catalytic cracking tar, much higher than methane (CH4), carbon monoxide (CO), and
carbon dioxide (CO2). Accompanied by the elevated pollutant concentration from 0.2 g/L
to 0.3 g/L in the fixed bed reactor, the H2 production per gram of tar was increased from
0.624 L/g to 0.827 L/g. This was attributed to the increased utilization of active sites on
perovskite due to the elevated pollutant concentration, which promoted more cracking of
toluene into H2. Although the amount of pollutants passing through each gram of catalyst
per unit time is controlled to be the same (WHSV), due to the constant diameter of the
quartz tube, the amount of pollutants passing through the catalyst surface after filling still
varies under different pollutant concentrations. The number of toluene molecules on a
single micro interface increases with the increase of pollutant concentration. As the number
of toluene molecules gradually increases, more active sites on a single micro interface can
participate in the adsorption and degradation process of toluene, promoting more toluene
to be cracked per unit time. Additionally, the impact of pollutant concentration on chemical
equilibrium also needs to be considered. Under high toluene concentration conditions,
the reaction will proceed toward the production of fewer small molecules, resulting in an
increase in hydrogen production. The H2 production per gram of tar was decreased when
the tar concentration was greater than 0.3 g/L due to the absence of available active sites
on the catalyst. The trend of carbon production per gram of tar was consistent with that of
H2 production, further confirming the above findings.

The variation of the gas phase product distribution with the pollutant concentration
was summarized in Figure 1c. Pollutant concentration led to an increase in the volume
percentage of H2 in the gas phase product. With the pollutant concentration increased from
0.2 g/L to 0.4 g/L, the volume percentage of H2 was increased by nearly 7.53%, reaching a
maximum of 83.12%. Correspondingly, the volume percentage of methane was decreased
by 6.96%. This was attributed to the catalytic cracking of methane to produce hydrogen
and carbon by nickel atoms at a suitable reaction temperature (500–800 ◦C) [25].

The real-time volume percentages of H2, CH4, and CO during the 6 h continuous
reaction were summarized in Figure 1d–f. The volume percentage of H2 showed high
stability during the reaction. As the pollutant concentration rose to 0.35 g/L, the real-time
volume proportion of H2 was gradually increased. The H2 proportion was stabilized at
more than 85% when the pollutant concentration was 0.3 g/L and 0.35 g/L. The highest
proportion of hydrogen components can reach 89.9% (0.3 g/L). At high concentrations
(0.4 g/L), the H2 proportion was decreased with the extension of reaction time. The
component fluctuations at low concentration (0.2 g/L) were due to the uneven distribution
of trace contaminants in the large-volume reactor. The real-time volume fraction of methane
was decreased as the hydrogen proportion increased. The highest volume proportion of
methane can reach 26.2%, and the lowest proportion can be stable at 9–12%. The real-time
volume proportion of CO followed the same trend as that of hydrogen, and its production
was attributed to the oxygen precipitation reaction of perovskite [16,17,26].

The real-time H2 production rate is shown in Figure 1g. When the pollutant con-
centration was greater than 0.3 g/L, the trends of the hydrogen production rate and the
production rate over time were basically the same. This indicated that continuously increas-
ing the pollutant concentration had a limited improvement on the hydrogen production
efficiency of the catalyst. Increasing the pollutant concentration had a minimal effect on the
hydrogen production rate under high concentrations. The trends of the real-time produc-
tion rates of methane and carbon monoxide were consistent with those of hydrogen. And
the production efficiency could be improved by increasing the pollutant concentration at
low and medium concentrations.
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2.2. Effect of Residence Time

The effect of residence time on the performance of perovskite catalytic cracking tar
was discussed under the conditions of a reaction temperature of 700 ◦C, a space velocity of
0.72 gtoluene/(gcat·h), and a pollutant concentration of 0.4 g/L. The contaminant residence
time in the fixed bed was controlled by the input tar mass per second, catalyst loading,
and carrier gas flow rate. The yields of various products produced by continuous catalytic
cracking of tar for 6 h were shown in Figure 2a,b. As the carrier gas flow rate increased
from 100 SCCM to 150 SCCM, the H2 production per gram of tar did not change much and
remained between 0.671 L/g and 0.8 L/g. The small decrease in gas production rate caused
by the carrier gas flow rate was attributed to insufficient reaction. The hydrogen production
per tar was gradually increased from 0.671 L/g (150 SCCM) to 1.002 L/g (250 SCCM)
with the further increasing flow rate. This may be attributed to the rapid release of active
sites or the reduction of side reactions. Theoretically, the carbon produced by toluene
cracking can be oxidized to CO or CO2 under the action of micro-oxidation sites [27,28].
In addition, H2 produced by toluene cracking could be converted into methane under the
action of metal active sites (especially nickel) in perovskite [29]. However, the production
of H2 and CH4 increased with the residence time decreased, while the production of CO
and CO2 decreased (Figure 2f). This indicated that the products of toluene cracking did
not have enough time to undergo secondary reactions with the residence time shortened.
Nickel and iron active sites preferentially catalyze the cracking of toluene to release H2.
When the flow rate was increased to 300 SCCM, the hydrogen production per gram of tar
reached the minimum. This was also attributed to insufficient reaction between the active
sites and toluene due to the residence time being too low. The trends of the carbon and
methane production per gram of tar were consistent with the H2 production trends, further
confirming the above findings.

The variation of gas phase product distribution with pollutant concentration was
summarized in Figure 2c. Residence time had little effect on the volume percentage of H2
in the gas phase product. When the carrier gas flow rate was increased from 100 SCCM
to 300 SCCM, the volume percentage of H2 only was decreased by 3.04%. However, the
volume percentage of methane was increased by 4.47%. This showed that low residence
time would promote the existence of hydrogen in the form of methane, which was not
conducive to hydrogen production in perovskites.

The real-time volume percentages of gas phase products during the continuous reac-
tion were summarized in Figure 2d–f. The stabilized volume percentage of H2 was higher
than 81.9% (300 SCCM) and could reach up to 90.4% (200 SCCM). When the carrier gas
flow rate was lower than 200 SCCM, there was basically no difference in hydrogen volume
percentage. When the carrier gas flow rate was increased from 200 SCCM to 300 SCCM, the
volume percentage of hydrogen gradually was decreased, which was attributed to insuffi-
cient tar reaction under short residence time. The real-time volume fraction of methane
was increased as the proportion of hydrogen was decreased. The volume proportion of
methane reached up to 16.1%, and the lowest was stable at about 9%. The real-time volume
percent of CO was decreased as the reaction proceeded, which proved that there was a
release process of oxygen element during the perovskite catalytic cracking of tar, and it
mainly played an important part in the early stage of the reaction [21,30]. Accompanying
the reaction, the oxygen element in the perovskite was continuously consumed, resulting
in the production of no oxygen-containing compounds.

The real-time H2 production rate is shown in Figure 2g. The hydrogen production per
hour can be stabilized at 6 L/h (250 SCCM), and its change pattern with residence time
was consistent with the hydrogen production per gram of tar. Along with the reaction,
the methane production per hour at each residence time was relatively stable and did not
fluctuate significantly. This showed that the stability of the methanogenesis process was
not easily affected by processes such as catalyst reduction and had advantages over the
hydrogen production process.



Catalysts 2024, 14, 188 6 of 18
Catalysts 2024, 14, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 2. Effect of residence time on (a) H2 and carbon yield per gram of tar (b) CH4, CO, and CO2 
yield per gram of tar (c) gas phase product distribution (d) real-time volume percentages of H2 (e) 
real-time volume percentages of CH4 (f) real-time volume percentages of CO (g) real-time H2 
production rate (h) real-time CH4 production rate (i) real-time CO production rate. 

2.3. Effect of Weight Hourly Space Velocity 
The effect of WHSV on perovskite catalytic cracking tar was discussed under the 

conditions of 700 °C, carrier gas flow rate of 150 SCCM, and pollutant concentration of 0.4 
g/L. WHSV was controlled by catalyst filling amount. The yields of various products 
produced by tar continuous catalytic cracking for 6 h were shown in Figure 3a,b. With the 
increase of WHSV from 0.24 gtoluene/(gcat·h) to 1.44 gtoluene/(gcat·h), the H2 yield per gram of 

Figure 2. Effect of residence time on (a) H2 and carbon yield per gram of tar (b) CH4, CO, and
CO2 yield per gram of tar (c) gas phase product distribution (d) real-time volume percentages of H2

(e) real-time volume percentages of CH4 (f) real-time volume percentages of CO (g) real-time H2

production rate (h) real-time CH4 production rate (i) real-time CO production rate.

2.3. Effect of Weight Hourly Space Velocity

The effect of WHSV on perovskite catalytic cracking tar was discussed under the
conditions of 700 ◦C, carrier gas flow rate of 150 SCCM, and pollutant concentration of
0.4 g/L. WHSV was controlled by catalyst filling amount. The yields of various products
produced by tar continuous catalytic cracking for 6 h were shown in Figure 3a,b. With the
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increase of WHSV from 0.24 gtoluene/(gcat·h) to 1.44 gtoluene/(gcat·h), the H2 yield per gram
of tar was gradually decreased from 0.98 L/g to 0.48 L/g. The variation of CH4, CO, CO2,
and carbon yield per gram of tar was consistent with that of H2. This showed that low
WHSV was conducive to the full occurrence of catalytic cracking reaction and improved
the catalytic efficiency and hydrogen generation efficiency of the catalyst.
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Figure 2c summarizes the variation of total gaseous product distribution with WHSV.
WHSV had little effect on the volume percentage of H2 in the gas phase product, which
was distributed in the range of 78.52–83.4%. The lowest volume percentage of hydrogen
and the highest volume percentage of methane both occurred at the maximum WHSV of
1.44 gtoluene/(gcat·h). The volume percentage of carbon monoxide was increased with the
decrease of WHSV. It was attributed to the full occurrence of perovskite oxygen evolution
reaction at low WHSV [31,32].

The real-time volume percentage of gas phase products during the continuous reaction
was summarized in Figure 2d–f. When WHSV was less than 0.72 gtoluene/(gcat·h), the
volume percentage of H2 can be stabilized at more than 83.3% (0.72 gtoluene/(gcat·h)),
and the highest can be stabilized to 90.5% (0.36 gtoluene/(gcat·h)). An increase in WHSV
resulted in a rapid stabilization of hydrogen volume percentage due to an increase in
tar input per hour. A rapid decrease in hydrogen volume percentage occurs under high
WHSV (1.44 gtoluene/(gcat·h)) conditions, which was attributed to the decline of hydrogen
production performance of the catalyst under heavy pollutant loading. Combining with
the real-time gas production changes in Figure 3g,h, it can be seen that the reason for the
decrease in the proportion of hydrogen and the increase in the proportion of methane
was mainly due to the decrease of hydrogen production, but had little correlation with
the change of methane production. The effect of WHSV on hydrogen production was
significantly higher than that of methane.

The real-time production rates of different products are shown in Figure 3g–i. The
higher the WHSV, the more obvious the reduction of hydrogen production per hour. The
methane production per hour at different space velocities was relatively stable without
significant fluctuations. It showed that the change in gas composition caused by mass space
velocity was mainly due to the influence of space velocity on the hydrogen production
path. In addition, the low and medium WHSV was helpful in increasing the hydrogen and
methane production in the reaction process, which was attributed to the full pyrolysis of
toluene. The output of CO per hour was decreased with the reaction, which proved the
occurrence of a perovskite oxygen evolution reaction. Low WHSV was helpful for the full
reaction between carbon and reactive oxygen species to produce more CO.

2.4. The Influence of Reaction Temperature

The effect of reaction temperature on the performance of perovskite catalytic cracking
tar was investigated under the condition of WHSV of 0.72 gtoluene/(gcat·h). The yields of
various products produced by continuous catalytic cracking of tar for 6 h were shown
in Figure 4a,b. Almost no products such as H2, CO, or CH4 were produced at 600 ◦C,
indicating that the catalytic cracking of tar was able to promote by perovskite above 600 ◦C.
As the reaction temperature was raised from 600 ◦C to 800 ◦C, the hydrogen production
per gram of tar was gradually increased from 0.001 L/g to 0.266 L/g. The hydrogen
production per gram of tar was reduced at 900 ◦C. The carbon production per gram of tar
was decreased from 0.535 g/gtoluene to 0.299 g/gtoluene, and the methane production per
gram of tar was increased from 0.007 L/g to 0.094 L/g, with the temperature increasing
from 700 ◦C to 900 ◦C. The selectivity of methane products was improved at high reaction
temperatures in the catalytic cracking, attributed to the methanation reaction above 800 ◦C
promoting the combination of carbon elements with hydrogen [33,34].

Figure 4c summarizes the distribution of total gas-phase products as a function of
reaction temperature. Low temperature (600 ◦C) was not conducive to the catalytic cracking
reaction, and only a small amount of synthesis gas was produced, mainly composed
of methane. The volume percentage of H2 in gas-phase products was decreased with
increasing temperature, and the synthesis gas with the highest proportion of hydrogen
was obtained at 700 ◦C, reaching 93.5%. The proportion of methane in the synthesis gas
continued to increase above 700 ◦C, reaching a maximum of 30.2% at 900 ◦C. This also
confirmed the occurrence of methanation reaction induced by high temperature.
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The real-time volume percentage of gas-phase products during the continuous reaction
was summarized in Figure 4d–f. The real-time proportion of hydrogen in synthesis gas was
the most stable at 700 ◦C, exceeding 90%. The proportion of hydrogen gas showed a slight
decrease with the prolongation of reaction time at 800 ◦C and 900 ◦C, attributed to the high
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hydrogen concentration and high temperature promoting the occurrence of methanation
reaction. The variation of methane proportion in syngas over time also proved this point.

The real-time production rates of different products are shown in Figure 3g–i. The
stable hydrogen production per hour was around 0.8 L/h at reaction temperatures ranging
from 700 ◦C to 900 ◦C. As the reaction temperature increased (700–900 ◦C), the methane
production per hour continued to increase, with the highest stable at 0.4 L/h (900 ◦C). The
methane production per hour was the lowest at 700 ◦C, stable at 0.028 L/h. The variation
pattern of hydrogen and methane production per hour indicated that the temperature
significantly affected the selectivity of methane products and had a relatively small impact
on hydrogen production when the reaction temperature was sufficiently high (≥700 ◦C).

The proportion of CO in syngas (Figure 4f) and hourly production (Figure 4i) indicated
that oxygen-active sites in perovskite could participate in the reaction at low temperatures
(600 ◦C) to promote the production of methane and carbon monoxide and obtain a small
amount of hydrogen gas. Oxygen-active sites in perovskite were more easily activated than
metal-active sites to promote tar cracking.

2.5. Comparison of Catalytic Performance

Compared with the previous literature on catalytic pyrolysis of tar or tar model
compounds, which is shown in Table 1. The reaction temperature, tar conversion rate,
hydrogen production efficiency, proportion of hydrogen in gas-phase products, and reaction
time were mainly compared. The reaction temperature of the currently studied was
concentrated between 600–900 ◦C, and a higher tar conversion rate was achieved at 900 ◦C.
Among them, the tar conversion rate of Ni-4% Fe/HZSM-5 can reach 99.1% (40 min) at
900 ◦C, excluding some reports of extremely short reaction time [35]. In this work, 99.9%
of the tar conversion rate can be achieved at 900 ◦C, and 99.4% of the tar conversion rate
can be achieved at 800 ◦C by adjusting the reaction conditions. Even at 700 ◦C, the tar
conversion rate can reach 93.6%. It was worth noting that the tar conversion rate reported
in this work was the average tar conversion rate of continuous operation for 6 h, indicating
that the catalyst involved in this work had good catalytic stability.

Table 1. Comparison with previous research results.

Catalytic Agent T/◦C Tar Conversion Rate/% Product Time

NiFe2O4 850 96.83 H2: 0.91 L/g 1 h [6]

Pyrolysis coke H2: 0.145 L/g
H2: 56.78% [36]

Nickel-dolomite
700 94.8 H2: 50.1% 1 h

[8]700 84.3 H2: 51.5% 6 h

La1-xSrxNi0.8Fe0.2O3 700 H2: 0.217 L/g
CO: 0.258 L/g 10 min [15]

Fe-Co-K 700 H2: 0.154 L/g
CO: 0.108 L/g 1 h [37]

5Fe1.5Ca@C 600 H2: 0.299 L/g [38]

Ni-4 wt%Ca-0.1 wt%Co 900 98.6 H2: 0.12 L/g
H2: 51.6% 40 min [39]

Ni-4%Fe/HZSM-5 900 99.1 H2: 0.224 L/g
H2: 54.47% 40 min [35]

Fe-loaded biochar 800 94.0 H2: 81% 90 min [40]

Ni-4%Ce/HZSM-5 800 94.5 H2: 0.04 L/g
H2: 37.66% [41]

Ni-1%Mg/HZSM-5 800 89.5 H2: 0.039 L/g
H2: 37.64% [41]

PSC-K2FeO4 800 94.9
H2: 0.18 L/g

H2: ~30%
CO: 0.3 L/g

[42]



Catalysts 2024, 14, 188 11 of 18

Table 1. Cont.

Catalytic Agent T/◦C Tar Conversion Rate/% Product Time

Nano-NiO/γ-A12O3 800 73.06 H2: 0.47 L/g
H2: 48.44% [22]

NiO-Pr2O3/TiO2 850 97 H2: 22% [43]

Ni-Cu/ASC 800 93.2 H2: 0.304 L/g
H2: 37.82% [10]

Fe-Ni-Ca 800 H2: 0.288 L/g
H2: 71.48% [23]

Ni-Cu/ASC 800 93.2 H2: 0.105 L/g
H2: 33.87% [10]

High-activity coal char 800 93.5 H2: 0.175 L/g
H2: 36.84% [44]

LaNi0.5Fe0.5O3

700 93.6 H2 MAX:
1.002 L/g

93.5%
6 h This study800 99.4

900 99.9

In addition, in the current reported work, without the involvement of gasifying agents,
the proportion of hydrogen in gas-phase products was generally concentrated at 30% to
50%, with a maximum of 71.48%. The hydrogen production per gram of tar was mainly
concentrated at 0.1 L/g–0.3 L/g, with a maximum of 0.91 L/g and a minimum of 0.039 L/g.
In this work, the proportion of hydrogen gas in the gas-phase products was concentrated in
the range of 70% to 90%, with a maximum of 93.5% and a minimum of 67.8%, excluding the
scenario of unsuccessful catalyst activation (600 ◦C). Under different reaction conditions,
the hydrogen production per gram of tar was mainly concentrated at 0.6 L/g–0.9 L/g, with
a maximum of 1.002 L/g and a minimum of 0.203 L/g. Prove that the LaFe0.5Ni0.5O3 used
in this work had good hydrogen production performance and was significantly superior
to the reported work. At the same time, it also reflected the importance of regulating the
reaction conditions.

2.6. Catalyst Stability Evaluation

The perovskite catalyst prepared in this work exhibited good stability. The thermo-
gravimetric analysis results of the original catalytic material in air and nitrogen atmospheres
showed that the material had good thermal stability below 900 ◦C and was not prone to
thermal decomposition (Figure 5a). The good thermal stability was attributed to the co-
existence of nickel and iron elements at the B site. Yan et al. confirmed that doping Fe in
LaNiO3 made it more stable at high temperatures, especially LaFe0.5Ni0.5O3 [45]. Chava
et al. also confirmed that the structural failure of LaNiO3 under reducing and reaction
conditions made it easy to deactivate [46]. The metal-support interactions, catalytic activity,
thermal stability, and carbon tolerance were improved by substituting Ni with alkaline
earth metals or transition metals.

The long-term stability evaluation was conducted under the following conditions: a
reaction temperature of 700 ◦C, a space velocity of 0.72 gtoluene/(gcat·h), a carrier gas flow
rate of 150 SCCM, and a pollutant concentration of 0.4 g/L. The results showed that the
perovskite had a stable distribution of gas-phase components within 24 h without gasifying
agents, demonstrating its good catalytic stability (Figure 5b).

The XPS spectrum of the perovskite after the reaction showed a change in the species
distribution of nickel and oxygen elements (Figure 5e,f). Ni2+/ Ni3+ was reduced to
Ni0 [17,47–49]. The peak of Ni in the catalyst after the reaction shifted to the direction of
high binding energy, indicating that Ni was closer to the metallic state in the catalyst after
the reaction but still carried a negative charge [25]. The disappearance of lattice oxygen
peaks on the surface of the material after the reaction was attributed to the consumption of
adsorbed oxygen and the transformation of lattice oxygen by the surface oxygen evolution
reaction [21,50,51]. This was consistent with previous speculation about the occurrence of
oxygen evolution reaction in perovskites [52]. Numerous reports have confirmed that car-
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bon can be oxidized into CO and CO2 by lattice oxygen after transfer or diffusion [28,53–55].
The process in this study was similar to the existing reports of oxygen transfer and conver-
sion process in Ni-supported perovskite during catalytic cracking tar. During the toluene
catalytic cracking of LaFe0.5Ni0.5O3 perovskite, surface-adsorbed oxygen on the perovskite
was first desorbed. Subsequently, lattice oxygen within the perovskite was converted to
adsorbed oxygen to participate in the reaction.

Catalysts 2024, 14, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 5. (a) TG analysis of LaFe0.5Ni0.5O3 (b) CH4, CO and CO2 yield of tar catalytic cracking by 
LaFe0.5Ni0.5O3 (24 h) (c) CH4, CO and CO2 yield of tar catalytic cracking by LaFe0.5Ni0.5O3 (24 h) (d) 
XRD patterns of catalysts (e) XPS Ni 2p patterns of spent catalysts (f) XPS O 1 s patterns of spent 
catalysts. 

The XPS spectrum of the perovskite after the reaction showed a change in the species 
distribution of nickel and oxygen elements (Figure 5e,f). Ni2+/ Ni3+ was reduced to Ni0 
[17,47–49]. The peak of Ni in the catalyst after the reaction shifted to the direction of high 
binding energy, indicating that Ni was closer to the metallic state in the catalyst after the 
reaction but still carried a negative charge [50]. The disappearance of lattice oxygen peaks 
on the surface of the material after the reaction was attributed to the consumption of 
adsorbed oxygen and the transformation of lattice oxygen by the surface oxygen evolution 
reaction [21,51,52]. This was consistent with previous speculation about the occurrence of 
oxygen evolution reaction in perovskites [53]. Numerous reports have confirmed that 
carbon can be oxidized into CO and CO2 by lattice oxygen after transfer or diffusion 
[28,54–56]. The process in this study was similar to the existing reports of oxygen transfer 
and conversion process in Ni-supported perovskite during catalytic cracking tar. During 
the toluene catalytic cracking of LaFe0.5Ni0.5O3 perovskite, surface-adsorbed oxygen on the 
perovskite was first desorbed. Subsequently, lattice oxygen within the perovskite was 
converted to adsorbed oxygen to participate in the reaction. 

Figure 5. (a) TG analysis of LaFe0.5Ni0.5O3 (b) CH4, CO and CO2 yield of tar catalytic cracking by
LaFe0.5Ni0.5O3 (24 h) (c) CH4, CO and CO2 yield of tar catalytic cracking by LaFe0.5Ni0.5O3 (24 h)
(d) XRD patterns of catalysts (e) XPS Ni 2p patterns of spent catalysts (f) XPS O 1 s patterns of
spent catalysts.

The XRD pattern showed that the catalyst exhibits characteristic peaks of C [18,56],
Ni [6], NiO [13,26], La2O3 [13,24], and Ni-Fe [18] after the reaction (Figure 5d), indicating
that the perovskite was reduced during the catalytic cracking of tar, producing zero-valent
metals and alloys to promote hydrogen evolution reaction. However, the perovskite
showed significant structural changes after 24 h of continuous reaction. The distribution of
La, Fe, Ni, and O elements on the surface of the perovskite after the reaction was uniform,
and no sintering or stacking occurred (Figure 6a–d). This indicated that the material still
exhibited good reactivity. The small change in crystallite size of the regenerated catalyst
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may be due to the change in metal dispersion caused by the growth of carbon filaments.
The recrystallization and growth of grains during high-temperature calcination also need
to be considered.
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In addition, the material was calcined for 2 h in a muffle furnace under an air atmo-
sphere of 700 ◦C to obtain a revived material. The XRD characterization results showed that
the structure of the revived catalyst was effectively restored, indicating that the material
had good reusability.

3. Material and Methods
3.1. Preparation of Perovskite

LaFe0.5Ni0.5O3 were prepared using the sol-gel method, using citric acid and ethylene
glycol as the complexing agent. The desired amount of La(NO3)2·6H2O (Macklin, Shang-
hai, China), Fe(NO3)3·9H2O (Macklin, Shanghai, China), Ni(CH3COO)2·4H2O (Macklin,
Shanghai, China), citric acid monohydrate (Macklin, Shanghai, China) and ethylene glycol
(Macklin, Shanghai, China) with a stoichiometric amounts of 1:0.5:0.5:2.4:0.96 were weighed
and sequentially added to deionized water. The molar ratio of lanthanum to deionized
water was 1:55. The mixture was stirred at 25 ◦C for 30 min and then heated to 80 ◦C for
90–120 min until a viscous gel was formed. Then, the samples were dried at 105 ◦C for 24 h,
followed by calcined at 700 ◦C for 4 h, and finally cooled to 500 ◦C and calcined for 2 h.

3.2. Catalyst Activity Testing

A vertical fixed-bed reactor was used to measure the catalytic performance of catalysts
for hydrogen production from tar. Toluene (99.5%, AR, HUSHI, Shanghai, China) was
selected as a model compound tar to evaluate the performance of different catalysts for the
catalytic cracking of tar. Toluene was one of the main tar species due to its large quantity
and stable aromatic structure, especially at relatively low temperatures [5].

The reactor system is shown in Figure 7. The custom quartz tube size was 1 m × 60 mm
with a quartz sieve plate set in the constant temperature zone of the tubular furnace, and
the catalyst was fixed in the constant temperature zone of the furnace tube through the pipe
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plug and 3 mm quartz cotton. The amount of catalyst filled each time was 5 ± 0.01 g. The
carrier gas was N2 (99.999%), controlled by the mass flow controller, and the flow rate was
100–300 SCCM. Toluene was injected into the system through a high-precision injection
pump (TYD-01, Leadfluid, Baoding, China). The toluene and carrier gas transmission
pipeline were equipped with a heating belt (200 ◦C) and mixed in the heating pipeline.
The exposed part of the quartz tube and the gas outlet pipeline were also provided with a
heating band (200 ◦C) to prevent condensation of condensable components. The exhaust
gases were cleaned by two scrubber cartridges with a cooling system (−10 ◦C) and passed
into the gas analyzer (Vario Plus new, MRU, Heilbronn, Germany) for real-time monitoring.
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3.3. Characterizations

The thermal stability of perovskite was tested using a thermogravimetric analyzer (TA
TGA 550) with a temperature range of 30 ◦C–900 ◦C and a heating rate of 5 ◦C/min. X-ray
photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha, Waltham, USA) was adopted
to probe the oxygen element state of the catalysts. The carbonaceous C1s line (284.6 eV)
was used as the reference to calibrate the binding energies (BEs). The Element distribution
map (SEM-Mapping) of samples was obtained on a Zeiss Merlin Compact microscope to
explore the morphological properties. The X-ray diffraction (XRD) patterns of powder
catalysts were performed by a Rigaku Ultima IV diffractometer using Cu Kα radiation. The
samples were scanned in a 2θ range of 5–90◦ with a speed of 5◦/min.

3.4. Data Process

During the catalytic cracking of toluene, the synthetic gas mainly included hydrogen,
methane, carbon monoxide, and carbon dioxide. Real-time monitoring of the produced
gases was conducted using a gas analyzer, with a recording every 5 s. The production and
production rate of each gas phase product were calculated using the real-time gas flow
and component volume percentage data stored in the equipment to evaluate the catalytic
performance of LFNO.

Gas production per gram of toluene =
V1

mtoluene
(1)

Carbon production per gram of toluene =
mend − mstart

mtoluene
(2)

VOL% =
V1

Vgas
× 100 (3)

Real − time gas production rate = VOL%Real−time × u (4)

where V1 (L) represented the production of H2, CO, or CO2, mtoluene (g) represented the
input amount of toluene, mend (g) and mstart (g) represented the final and initial mass of the
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filling in the quartz tube, Vgas (L) represented the production of syngas, u (L/h) represented
the sampling flow.

4. Conclusions

In summary, LaFe0.5Ni0.5O3 achieved efficient and stable cracking of model tar (toluene)
to produce H2 without gasification agents. Within the tested reaction system, the highest
average conversion rate of toluene was 99.9% (900 ◦C), the greatest hydrogen production
per gram of tar was 1.002 L/g (700 ◦C), and the maximum average hydrogen proportion in
synthesis gas was 93.5%.

The effect of reaction conditions (pollutant concentration, residence time, WHSV, and
reaction temperature) on the gas-phase products of toluene catalytic cracking was fully
discussed. The hydrogen production per gram of tar first increased and then decreased
with the increase of pollutant concentration or residence time. The hydrogen production
efficiency was higher at medium pollutant concentration (0.3 g/L) and low-medium resi-
dence time (250 SCCM), reaching 0.827 g/L and 1.002 g/L, respectively. The smaller the
WHSV, the higher the hydrogen production of tar catalytic cracking, reaching a maximum
of 0.98 g/L (WHSV = 0.24 gtoluene/(gcat·h)). This was mainly attributed to the changes in tar
reaction adequacy caused by changes in process parameters. The H2 production decreased
above 800 ◦C, and carbon production was reduced above 700 ◦C. Combining the above
phenomena and the further analysis of the effect of reaction conditions on the real-time
gas component distribution and hourly gas production during the continuous reaction, the
necessary conditions for the occurrence of perovskite oxygen evolution reactions, methane
reactions, and methane catalytic cracking reactions were obtained.

The H2 production and the H2 proportion in the synthesis gas were controlled by
regulating the concentration of pollutants, residence time, WHSV, and reaction temperature.
The hydrogen production per gram of tar was concentrated in the range of 0.6 L/g to
0.9 L/g, with a maximum of 1.002 L/g and a minimum of 0.203 L/g. The H2 proportion in
the synthesis gas was concentrated in the range of 70% to 90%, with a maximum of 93.5%
and a minimum of 67.8%. Compared with existing research, the hydrogen production
performance of LaFe0.5Ni0.5O3 was significantly better. In addition, the LaFe0.5Ni0.5O3
was proven to have good thermal stability, long-term stability, and catalyst reactivation
potential. Therefore, LaFe0.5Ni0.5O3 exhibited significant prospects in converting tar into
high-purity hydrogen gas.
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