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Abstract: Nowadays, it is highly desired to develop highly active and humidity-resistive ozone
decomposition catalysts to eliminate the ozone contaminant, one of the primary pollutants in the
air. In this work, a series of Cu2S hollow structured materials were rapidly synthesized using
different structured Cu2O templates. The Cu2S from porous Cu2O showed the highest ozone
catalytic decomposition efficiency of >95% to 400 ppm ozone with a weight hourly space velocity
of 480,000 cm3·g−1·h−1 in dry air. Importantly, the conversion remained >85% in a high relative
humidity of 90%. The mechanism was explored by diffusive reflectance infrared spectroscopy
which showed the decomposition intermediate of O2

2−, and X-ray photoelectron spectroscopy
revealed the dual active site of both Cu and S. The EPR and UPS characterization results also
explained the superiority of porous Cu2S catalysts from the material itself. All these results show the
effective decomposition of ozone by Cu2S, especially in harsh environments, promising for active
ozone elimination.

Keywords: Cu2S hollow structure; Cu2O template; ozone decomposition; DRIFT; high efficiency

1. Introduction

Among the various air pollutants that humans are currently confronted with, near-
surface ozone (O3) pollution presents a particularly challenging issue [1]. This type of
pollution is commonly found in large urban areas and is closely linked to the presence of
volatile organic compounds (VOCs) and nitrogen oxides (NOx), which pose significant
health risks [2,3]. O3 is currently recognized as the second most harmful air pollutant and is
the primary air pollutant in many urban areas during the summer. Consequently, there is a
widespread and pressing need for O3 treatment technology, both in outdoor environments
and enclosed spaces. The most effective ozone treatment technology currently relies on
precious metal catalysts such as Au and Pd, which offer excellent performance but lack
cost-effectiveness [4,5]. In contrast, transition metal oxides such as MnOx and Cu2O are
more favorable due to their high efficiency and lower cost for O3 decomposition [6–8].

It is important to note that transition metal oxides typically exhibit high activity in de-
composing O3 in dry air, but their performance is hindered by competitive adsorption with
water vapor, resulting in reduced activity. Additionally, O3 pollution is often accompanied
by more acidic gas pollutants such as SO2 and NO2. For example, Ma et al. [9] showed that
although SO2 and NO2 pollution in China’s atmosphere has been significantly reduced
in recent years, their total amount is still higher than O3. Mukta et al. [10] reported that
the concentration of NO2 is always higher than O3 in Gazipur in Bangladesh. The study
by Stevens et al. [11] also supports the considerable amount of acidic gases such as NO2
and SO2 in the atmosphere of Europe and North America. Therefore, in addition to the
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interference caused by humidity, metal oxide catalysts are also susceptible to combining
with acidic substances, which can hasten the deactivation of the catalysts.

Copper sulfide (Cu2S), a narrow bandgap p-type semiconductor, has been extensively
researched and utilized in advanced fields such as photocatalysis and high-temperature
superconductivity due to its distinctive crystal structure and band gap [12–16]. No-
tably, Cu2S demonstrates exceptional acid resistance owing to its extremely low solu-
bility (Ksp = 2 × 10−47) [17,18]. This insolubility provides additional advantages to sulfides
in creating complex morphologies, which are essential for catalysts, particularly certain
hollow structures and microstructures. Chun-Hong Kuo et al. [19] reported that Cu2O
nanoparticles can be gradually transformed into Cu2S by 0.2 M Na2S solution in 360 s. After
being transformed into Cu2S, the nanoparticles form a hollow cage structure based on their
original cubic morphology. For example, Lei Ran et al. [20] reported a synthesis process of
double-walled heterostructured Cu2-xSe/Cu7S4 nano boxes used as a material for quantum
dot sensitized solar cells. The complex morphology of this catalyst was synthesized using
a simple Cu2O template. Cu2S materials have been also widely studied and applied in
the field of hydrogen energy [21]. They are used as catalysts for the hydrogen evolution
reaction (HER) in electrochemical water splitting, which is a key process for producing
clean hydrogen fuel [22]. Copper sulfide materials have shown promising catalytic activity
and stability for HER, making them potential candidates for efficient and cost-effective
hydrogen production [23]. Although the application of Cu2S materials in CO2 conversion,
HER, and solar cell materials has attracted increasing attention from researchers, there are
currently no reports on the application of Cu2S in O3 decomposition. In a previous study,
p-type semiconductor showed relatively higher O3 decomposition activity than the n-type
counterparts [24]. As a typical p-type semiconductor, Cu2S has more Cu vacancies, which
is advantageous in the catalyzed decomposition of ozone [25–28]. The performance of Cu2S
in ozone catalytic decomposition is worth exploring, because its convenient morphology
construction and stable composition are rare advantages.

In this study, hollow structures of Cu2S were fabricated using a Cu2O sacrificial
template method and employed as a catalyst for ozone decomposition. The resulting
catalyst exhibited high activity and demonstrated strong resistance to relative humidity,
indicating potential for effective ozone decomposition in the atmosphere.

2. Results and Discussion

The Cu2O sacrificial template was synthesized according to the experimental Section 3.1.
Cu2S was synthesized using Cu2O with porous (Cu2O-P), spherical (Cu2O-P), and cubic
(Cu2O-C) morphologies as sacrificial templates, which are named Cu2S porous (Cu2S-P),
Cu2S sphere (Cu2S-S), and Cu2S cube (Cu2S-C). The catalytic performance of Cu2S for
ozone decomposition is superior to its corresponding Cu2O template. The performance of
Cu2S varies significantly among the three morphologies, with Cu2S-P exhibiting substan-
tially better performance (Figure 1a). More than 95% of 400 ppm O3 can be decomposed at a
space velocity of WHSV 480,000 cm3·g−1·h−1 in dry conditions. To verify whether Cu2S is
a catalyst or a simple chemically absorbing agent for O3, a durability test was conducted on
Cu2S-P in Figure 1b. After working continuously for 18 h, the cumulative amount of O3 pro-
cessed was 3.86 mmol, which was tens of times higher than the amount of Cu2S-P substance
(50 mg, ~0.31 mmol). After dealing with much more O3 than itself, the O3 decomposition
activity still exceeds 90%, which proves the catalytic process of ozone decomposition by
Cu2S, rather than a simple oxidation/reduction process of Cu2S and O3. At the same time,
the catalytic decomposition performance of Cu2S in high-humidity environments was
investigated. As shown in Figure 1c, due to the competitive adsorption of water molecules,
high humidity has a particular impact on its catalytic performance. However, the conver-
sion still maintains over 85% performance under conditions of 480,000 cm3·g−1·h−1 and
humidity greater than 90%, showing the good humidity resistance of this catalyst.
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Figure 1. Cu2S catalytic performance testing. (a) Cu2S with different morphologies for ozone decom-
position at room temperature, 480,000 cm3·g−1·h−1 (50 mg catalyst, 400 sccm airflow), and 400 ppm 
dry O3; (b) durability testing of CuS-P at room temperature, 480,000 cm3·g−1·L−1 (50 mg catalyst, 400 
sccm), and 200 ppm dry O3; (c) performance of Cu2S-P on catalytic decomposition of 200 ppm O3 at 
480,000 cm3·g−1·h−1 and high humidity (>90% RH). All catalysts were loaded into a U-type reactor 
using a mixture of 50 mg granulated particles and 450 mg quartz sand of similar size. Using only 
500 mg quartz sand as a blank control test showed no catalytic activity for ozone decomposition. 

To investigate the relationship between structure and performance further, XRD 
characterization was performed on three types of Cu2S. In Figure 2, the characteristic peak 
intensity in Cu2S-P and Cu2S-S is relatively weak, with most Cu2S exhibiting an amor-
phous structure. Cu2S-C particles crystallize better, and the three types of Cu2S conform 

Figure 1. Cu2S catalytic performance testing. (a) Cu2S with different morphologies for ozone
decomposition at room temperature, 480,000 cm3·g−1·h−1 (50 mg catalyst, 400 sccm airflow), and
400 ppm dry O3; (b) durability testing of CuS-P at room temperature, 480,000 cm3·g−1·L−1 (50 mg
catalyst, 400 sccm), and 200 ppm dry O3; (c) performance of Cu2S-P on catalytic decomposition
of 200 ppm O3 at 480,000 cm3·g−1·h−1 and high humidity (>90% RH). All catalysts were loaded
into a U-type reactor using a mixture of 50 mg granulated particles and 450 mg quartz sand of
similar size. Using only 500 mg quartz sand as a blank control test showed no catalytic activity for
ozone decomposition.

To investigate the relationship between structure and performance further, XRD char-
acterization was performed on three types of Cu2S. In Figure 2, the characteristic peak
intensity in Cu2S-P and Cu2S-S is relatively weak, with most Cu2S exhibiting an amorphous
structure. Cu2S-C particles crystallize better, and the three types of Cu2S conform with the
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calcite alpha low in the standard card (JCPDS Ref. code 00-009-0328). High crystallinity
means fewer defects, which is usually detrimental to the performance of heterogeneous
catalysts, and may be the reason for the poor performance of Cu2S-C.
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Figure 2. XRD patterns of Cu2S samples.

To further understand the specific morphologies of Cu2S samples and their templates,
FESEM and TEM techniques were used as shown in Figure 3. Through SEM images, all
three Cu2O templates exhibit different morphologies: the sphere template has fine particles
on the surface (Figure 3a), the cube template reveals varying sizes (Figure 3b), and the
porous templates are formed by the accumulation of many small particles (Figure 3c).
Due to the much lower solubility product of Cu2S in water compared to Cu2O [19], Cu2O
dispersed in water is prone to generate more insoluble Cu2S with S2−, and the morphology
of the developed product is correlated with the sacrificial template (Cu2O) [29]. However,
due to differences in mass transfer rates, internal substances quickly transfer to the surface
through mass transfer channels and form voids inside, as shown in Figure 3d,e, which
is described in the literature as the Kirkendall effect [30–32]. The significant contrast
difference between the edge and center of particles in TEM images indicates that Cu2S-C
and Cu2S-S have hollow structures. However, the tiny particles in Figure 3f were not
observed to have apparent hollow structures, and it is speculated that the nanoscale effect
of the stacked small particles is enhanced, thereby overcoming the interface resistance and
fusing. The average diameter of Cu2S-C and Cu2S-S particles slightly increased (by about
10% compared to the template), which can be attributed to the hollowing of the internal
structure; the diameter of Cu2S-P particles increased significantly (about 40%) due to the
agglomeration of some particles during sulfurization. All these processes can be clearly
seen in the schematic view in Figure 4: Taking spherical Cu2O particles as an example,
when spherical particles are suspended in water solution, the ions (Cu+) in the solution
are attracted by the surface charge of the particles, forming an electrical double layer. This
electrical double layer leads to an increase in the solution concentration near the particle
surface, creating a concentration gradient in the solution. Due to the concentration gradient
generating osmotic pressure, solvent molecules accumulate near the particle surface, further
increasing the solution concentration near the particle surface. The particle core transports
Cu to the surface through several mass transfer channels, gradually forming voids inside.
This process represents the Kirkendall effect in spherical particles. This effect is equally
applicable in both cubic and porous structures.
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Cu2S-S 7.31 111.75 0.02043 
Cu2S-P 14.67 59.25 0.02174 

Figure 3. SEM and TEM image of the Cu2S and template. (a) SEM of Cu2O sphere template, (b) SEM
of Cu2O cube template, (c) SEM of Cu2O porous template, (d) TEM image of Cu2S-S, (e) TEM image
of Cu2S-C, and (f) TEM image of Cu2S-P.

Catalysts 2024, 12, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 3. SEM and TEM image of the Cu2S and template. (a) SEM of Cu2O sphere template, (b) SEM 
of Cu2O cube template, (c) SEM of Cu2O porous template, (d) TEM image of Cu2S-S, (e) TEM image 
of Cu2S-C, and (f) TEM image of Cu2S-P. 

 
Figure 4. Schematic diagram of structural evolution process: the internal Cu2O is rapidly transferred 
to the surface through several mass transfer channels, forming Cu2S hollow structures. 

Another important property of the catalyst is the specific surface area and surface 
pore structure. The characterization results of three types of Cu2S are shown in Table 1. 
According to the BET characterization results, Cu2S-P has the largest specific surface area 
and the smallest average pore size of about 5 nm. Although studies [33,34] have shown 
that specific surface area is not a decisive indicator of the performance of ozone catalysts, 
Cu2S-P has a larger specific surface area and pore capacity compared to other structures, 
which can improve its contact efficiency with ozone gas flow and is a favorable factor in 
situations where surface chemical properties are similar. 

Table 1. Specific surface area and pore structure parameters of Cu2S. 

Sample BET Surface Area (m²/g) Pore Size (Å) Pore Volume (cm³/g) 
Cu2S-C 11.48 71.31 0.02047 
Cu2S-S 7.31 111.75 0.02043 
Cu2S-P 14.67 59.25 0.02174 

Figure 4. Schematic diagram of structural evolution process: the internal Cu2O is rapidly transferred
to the surface through several mass transfer channels, forming Cu2S hollow structures.

Another important property of the catalyst is the specific surface area and surface
pore structure. The characterization results of three types of Cu2S are shown in Table 1.
According to the BET characterization results, Cu2S-P has the largest specific surface area
and the smallest average pore size of about 5 nm. Although studies [33,34] have shown
that specific surface area is not a decisive indicator of the performance of ozone catalysts,
Cu2S-P has a larger specific surface area and pore capacity compared to other structures,
which can improve its contact efficiency with ozone gas flow and is a favorable factor in
situations where surface chemical properties are similar.

Table 1. Specific surface area and pore structure parameters of Cu2S.

Sample BET Surface Area (m2/g) Pore Size (Å) Pore Volume (cm3/g)

Cu2S-C 11.48 71.31 0.02047
Cu2S-S 7.31 111.75 0.02043
Cu2S-P 14.67 59.25 0.02174
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Although the sample with the best performance also has the largest specific surface
area, overall, the difference in specific surface area among the three morphologies of
Cu2S particles is not significant. It seems difficult to explain the significant performance
differences, especially in Cu2S-P. Therefore, EPR characterization was employed to measure
the sulfur vacancies in three different morphologies of Cu2S. Figure 5 shows that Cu2S-P
has prominent sulfur vacancies [35], which are not present in other samples. This can be
attributed to the generation of S vacancies caused by the nanoscale effect of small particles
during mass transfer. More sulfur vacancies mean more defects and crystal structure
imbalances, which are usually beneficial for catalytic reactions. It is generally believed in
the literature that these sulfur vacancies are active sites [36,37].
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Figure 5. EPR signal of S vacancies in different samples.

The work function (Φ) has an important impact on the performance of semiconductor
catalysts, which can affect their electron transfer, reaction activity, and photocatalytic
performance, thereby affecting the efficiency and effectiveness of catalysts in catalytic
reactions [38]. The photoelectron spectroscopy method obtains the escape work of materials
by measuring the non-elastic secondary electron cutoff edge. According to the basic energy
relationship of photoelectric emission, the energy interval from the cutoff edge of inelastic
scattering secondary electrons to the vacuum level is the energy of photons [39]. Therefore,
the work function is calculated as follows:

Φ = hν − (EFermi − Ecutoff)

Figure 6 shows that there are significant differences in the work functions of the three
morphologies of Cu2S materials. Although the work function is usually not significantly
correlated with the catalytic performance of the material, the lower work function of the
Cu2S-P (3.04 eV) material means that electrons have higher transfer efficiency in the system,
which is more favorable for the adsorption and desorption of ozone molecules. This also
explains that Cu2S-S has a lower specific surface area and similar pore capacity, while
its catalytic performance is not inferior to Cu2S-C. Although we have explained in the
discussion of the data results in Table 1 that the internal surface areas of hollow spheres
and hollow cubes may make it difficult for them to participate in catalytic reactions, there
is no difference in the adsorption/desorption data of mesoporous performance, and the
difference in their work functions may be one of the determining factors.
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Figure 6. UV photoelectron spectroscopy of samples with different morphologies. The instrument
automatically calibrated the Fermi edge, and then corrected the abscissa using the emitted photon
kinetic energy and bias voltage. The intercept can be equivalent to the work function (Φ).

To reveal the process of ozone conversion on the catalyst surface, in situ FTIR spec-
troscopy was employed to detect changes in surface functional groups after exposure
to ozone. In Figure 7a, the introduction of ozone produced a weak O2

2− [40] peak at a
wavenumber of 756 cm−1, and in Figure 7b, the peak weakens after stopping the ozone
for a period, which is similar to the transition metal oxides in the literature [41,42], which
can be attributed to the classical reaction process of ozone on sulfide surfaces. Due to the
widespread presence of ppm-level water vapor in gas cylinders, its characteristic peaks
gradually increase over time. In addition, signals generated by S–O (1060 cm−1) and S=O
(1350–1420 cm−1) stretching vibrations [43] were observed on the surface of Cu2S and did
not disappear after the introduction of ozone was stopped. This indicates that during the
surface transformation process of ozone, a layer of sulfate salt is formed on the surface of
Cu2S. The literature indicates that a surface sulfate layer helps maintain the stability of
catalyst particles [44]. This result is consistent with Figure 5. The S vacancy on the surface
is beneficial for O3 adsorption, and the adsorbed O atom fills the vacancy, stabilizing the
surface chemical structure and facilitating further participation in surface reactions.
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XPS characterization was performed on Cu2S-P before and after the reaction to study
the mechanism of the catalytic decomposition of ozone. In Figure 8a, the S 2p 1/2 and S
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2p 2/3 peaks at ~162 eV can be attributed to the S–Cu bond [45], and peaks at ~169 eV
can be attributed to the S–O bond [46]. After continuous operation for 18 h, the S–O bond
in Cu2S-P was enhanced, and the Cu II peak was clearly observed in the shoulder peak
of the dominant Cu I peak (Figure 8b). The enhancement of S–O bonds indicates that the
surface S atoms are also effective active sites besides the commonly believed active sites of
Cu atoms and defects. Secondly, after 18 h of continuous catalysis of O3, there is a certain
degree of oxidation on the catalyst surface, but the initial composition is still dominant.
This indicates that the durability of sulfide-catalytic materials and oxide-catalyzed ozone
is similar. In some previous studies [47], the same situation is commonly observed in
metastable transition metal oxides. Since the test sample for XPS is Cu2S-P, this may also
be due to a large number of S vacancies on the surface being filled by O atom, which has a
high electronegativity and is prone to further electron valence change in Cu. Combined
with the surface depth limitation of XPS testing, this phenomenon is more pronounced on
the surface.
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In addition, Raman spectroscopy characterization was performed on Cu2S-P before
and after use, and the results are shown in Figure 9. According to the literature [48–50], the
Raman peaks at 268 cm−1 and 472 cm−1 are attributed to Cu2S, while the Raman peak at
284 cm−1 is attributed to Cu2O. Consistent with the XPS characterization results, Raman
spectroscopy shows that although there is a weak CuO signal in the catalyst after 18 h of
use, Cu2S is still the main component, further proving the catalyst’s stability.
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Based on the above characterization and test results, it can be inferred that Cu2S, a
p-type semiconductor similar to Cu2O, has a similar catalytic principle for ozone decompo-
sition. However, the active center has been replaced by metal atoms and oxygen defects
in transition metal oxides with metal and surface sulfur atoms. The catalytic process and
intermediate products, as proposed by Oyama et al. [24], are described in Equations (1)–(3).

O3 + active site (Cu, S)* → O2 + O− (1)

O3 + O− + * → O2 + O2
2− (2)

O2
2− → O2 + 2* (3)

The charged intermediate products in the process of ozone decomposition have strong
oxidizing properties, which can quickly oxidize some surfaces and transform them into
CuO. This heterostructure is not entirely unfavorable for ozone decomposition, as shown
in Figure 1c, where the performance improves in the first few hours and then slightly
decreases. This is very consistent with the performance of cuprous oxide catalytic mate-
rials, and all these results show the promising prospect of the Cu2S catalyst for effective
ozone decomposition.

3. Experimental
3.1. Synthesis of Catalysts

The Cu2S catalyst was prepared using the sacrificial template method. Referring to
the synthesis principle in the literature [33,51,52], three types of Cu2O templates were
synthesized using different methods: cubic, porous, and spherical. The specific methods
are as follows.

Cubic Cu2O: 80 mmol (20 g) CuSO4·5H2O (Macklin reagent, AR, Jining, China) was
dissolved in 250 mL distilled water. Then, 100 mL NaOH (Macklin reagent, AR, Jining,
China) solution (4 mol/L) was added dropwise. After further stirring the blue suspension
for 30 min, 112 mL ascorbic acid (AA) (MERYER CHEMICAL, 99%, Shanghai, China)
aqueous solution (1 mol/L) was added dropwise within approximately 5 min. The solution
was then stirred until the suspension gradually turned orange red. The precipitate was
separated by centrifugation, washed three times with water and ethanol, and then dried in
an 80 ◦C oven for 8 h.

Spherical Cu2O: 20 mmol (3.98 g) Cu(OAC)2·H2O (Macklin reagent, AR, Jining, China)
was dissolved in 150 mL distilled water. After it was completely dissolved, 10 mL NaOH
solution (4 mo1/L) was added and stirred for 30 min. Then, 20 mL AA aqueous solution
(1 mol/L) was added dropwise. The precipitate was obtained by centrifuge, washed three
times with water and ethanol, and then dried in an 80 ◦C oven for 8 h.

Porous Cu2O: 20 mmol (5 g) CuSO4·5H2O was dissolved in 150 mL distilled water.
After it was completely dissolved, 10 mL NaOH solution (4 mol/L) was added. After
further stirring the blue suspension for 30 min, 3.5 g AA powder was added directly. After
stirring for 5 min, the sediment was separated by centrifuge, washed three times with water
and ethanol, and then dried in an 80 ◦C oven for 8 h.

Cu2S hollow structures were synthesized by vulcanizing the three Cu2O templates.
They were added to a Na2S·9H2O (Aladdin Reagent Co., Ltd., 99%, Shanghai, China)
aqueous solution at a concentration of 2M with a S:Cu molar ratio of 1:2. The suspension
was stirred for 15 min to react, and then the powders were obtained by separation, washing,
and drying as the porous Cu2O sample.

3.2. Characterization of the Catalyst

The catalyst’s crystal structure was analyzed using an X-ray diffractometer (XRD,
X’pert Pro System) manufactured by Panalytical, Eindhoven The Netherlands, operating
at 40 kV and 40 mA, with Cu Kα radiation (wavelength of 0.154 nm). The scanning range
was 5–90◦ at a speed of 10◦ min−1. The obtained results were converted to xrdml format
using PowDll software V 2.97, and then imported into XpertHighscore software Version
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plus 3 for analysis and compared with standard cards in the database. Microscopy analysis
was conducted using an ultra-high resolution field emission scanning electron microscope
(FESEM, JSM-7800, JEOL, Tokyo, Japan). The Cu2O/Cu2S were fixed onto the sample stage
using conductive tape and the sample morphology was captured under an accelerated
voltage of 15 kV after spray-gold treatment. The focus and brightness were adjusted, then
the image was recorded at a magnification of 50,000 to 100,000. The transmission electron
microscope (TEM) photos and high-resolution transmission electron microscopy (HRTEM)
were conducted using a JEOL JEM-2100F transmission electron microscope (JEOL, Nagoya,
Japan) at an accelerating voltage of 200 kV. The catalyst samples were dispersed in ethanol
and loaded onto copper grids covered with microgrid carbon films. The Cu2S products’
specific surface areas were analyzed using the Brumaire–Emmett–Teller (BET) method with
a Surface Area Analyzer by Micromeritics (ASAP2460, Beijing, China) at a temperature
of liquid nitrogen (−196 ◦C) with N2 gas as the adsorbate. Prior to the analysis, the
samples were dried at 120 ◦C for 4 h and then degassed at 150 ◦C for 1 h. The pore size
distributions were determined from the desorption branches of the isotherms based on
the Barrett–Joyner–Halenda (BJH) theory. Surface chemical bonds and chemical states
of the catalysts were characterized by X-ray photoelectron spectroscopy (XPS, ESCALAB
250XI, Thermo Fisher, Waltham, MA, USA) using a monochromatic Al Kα X-ray source
(1486 eV) with a beam size of 200 µm. Charge compensation was achieved by dual-beam
charge neutralization, and the binding energy was corrected by setting the binding energy
of the hydrocarbon C 1s feature to 284.8 eV. The electron paramagnetic resonance (EPR)
signals of radicals’ spin trapped were carried out on a Bruker EMXplus-6/1 (Munich,
Germany) spectrometer by spin-trap reagents of DMPO and TEMP for S vacancy. The
ultraviolet photoelectron spectroscopy (UPS) testing instrument was the ESCALab 250Xi
multi energy electron spectrometer produced by ThermoScientific (Waltham, MA, USA).
During UPS testing, a He I ultraviolet light source (h ≈ 21.22 eV) was selected, and the
vacuum in the analysis room was about 3 × 10−6 Pa. The bias voltage was set at −5 eV
in the experiment. An appropriate energy analyzer was selected for energy and spectral
scanning range, and the corresponding secondary electron energy distribution curve was
recorded. The measurement of the secondary electron cutoff edge (Ecutoff) and Fermi edge
(EFermi) involved cleaning the surface of the semiconductor sample with an Ar+ beam
and correcting it with an Au standard sample before testing. Raman spectroscopy was
analyzed at LabRAM HR Evolution (Horiba, Kyoto, Japan). The measurement span was
from 1500 to 200 cm−1 at room temperature. The 633 nm line of the laser was used as
the excitation source, with the capability of supplying 250 mW. Intermediate products
and surface adsorption groups on the Cu2S catalyst were characterized via FTIR-DRIFTS
(Diffuse Reflectance Infrared Fourier Transform Spectroscopy), the infrared spectrometer
was made by BRUKER (INVENIO, Ettlingen, Germany). The sample was mixed with
equal mass KBr powder in an in situ cell, and the measured wavelength range was from
400 to 4000 cm−1. After the sample was placed in the gas cell, the entire experimental
section was heated to 150 ◦C under nitrogen protection for 2 h, and then cooled to room
temperature to drive away moisture and other adsorbed gases. Before testing, the sample
was first purged with dry nitrogen gas for 1 h, followed by oxygen as the background.
Afterwards, the ultraviolet ozone generation device was activated in the oxygen gas path,
and the ozone concentration was maintained at approximately 30–50 ppm at a flow rate of
100 sccm. Stopping the introduction of ozone refers to shutting down the ozone generator
and continuing to blow the sample with the original flow rate of O2/N2 gas.

3.3. Ozone Decomposition Test

The O3 decomposition performance was tested in a U-shape quartz tube reactor
(diameter 5.5 mm) at 25 ◦C with 50 mg (40–60 mesh) Cu2S mixed with 450 mg quartz
sand. The entire reactor was placed in a water bath constant temperature device (SC-20A,
Doosi, Shanghai, China) to ensure that the temperature was not affected by the laboratory
environment or thermal effects generated during the reaction.
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The overall weight hourly space velocity (WHSV) remained at 480,000 cm3·g−1·h−1.
Ozone was generated at concentrations from 200 to 400 ppm by a commercial ozone gener-
ator (COM-AD-01-OEM, ANSEROS COMPANY, Anshan, China), and the inlet and outlet
ozone concentrations were analyzed by an ozone monitor (model 106MH, 2B Technologies,
Denver, CO, USA). Ozone was generated from pure oxygen and mixed with air in a mixing
bottle to ensure stable concentration. The ozone conversion was calculated as:

Conv. of O3 = 100% × (O3 inlet − O3 outlet)/O3 inlet (4)

The moisture was produced by bubbling water with the airflow; in the bubbling
device, it can be ensured that the relative humidity is greater than 90. The relative humidity
(RH) was measured by a humidity and temperature sensor meter (center 310 RS-232, TES,
Xinbei, China).

4. Conclusions

Using the Kirkendall effect, Cu2S hollow structured materials with different mor-
phologies were rapidly synthesized from different shaped Cu2O templates. The catalytic
effect of Cu2S material on the ozone decomposition process was confirmed by combining
actual test results and material characterization before and after the reaction. Its catalytic
efficiency of 400 ppm ozone can exceed 95% at WHSV of 480,000 cm3·g−1·h−1 under dry
conditions, one of the highest in the literature. The DRIFT results showed the intermediate
O2

2−, showing the catalytic reaction mechanism. Furthermore, sulfur can be also active in
ozone decomposition as illustrated by XPS, which has broadened the application prospects
in the catalytic decomposition of ozone.
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