MDPI Article # Templated Synthesis of Cu₂S Hollow Structures for Highly Active Ozone Decomposition Yishan Jiang ¹, Ying Xu ¹, Qichao Zhang ^{1,*}, Xin Zhao ¹, Feng Xiao ^{1,*}, Xinbo Wang ¹ and Guojun Ma ^{2,3,*} - Navy Submarine Academy, Qingdao 266199, China; jys@126.com (Y.J.); xuying@qibebt.ac.cn (Y.X.); zxnew2657zx@163.com (X.Z.); wangxinbo@ustc.edu (X.W.) - State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China - ³ School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China - * Correspondence: zhangqcocean@163.com (Q.Z.); qdxuwx@126.com (F.X.); gjma@ipe.ac.cn (G.M.) **Abstract:** Nowadays, it is highly desired to develop highly active and humidity-resistive ozone decomposition catalysts to eliminate the ozone contaminant, one of the primary pollutants in the air. In this work, a series of Cu_2S hollow structured materials were rapidly synthesized using different structured Cu_2O templates. The Cu_2S from porous Cu_2O showed the highest ozone catalytic decomposition efficiency of >95% to 400 ppm ozone with a weight hourly space velocity of $480,000 \, \mathrm{cm}^3 \cdot \mathrm{g}^{-1} \cdot \mathrm{h}^{-1}$ in dry air. Importantly, the conversion remained >85% in a high relative humidity of 90%. The mechanism was explored by diffusive reflectance infrared spectroscopy which showed the decomposition intermediate of $O_2^{\, 2^-}$, and X-ray photoelectron spectroscopy revealed the dual active site of both Cu and S. The EPR and UPS characterization results also explained the superiority of porous Cu_2S catalysts from the material itself. All these results show the effective decomposition of ozone by Cu_2S , especially in harsh environments, promising for active ozone elimination. Keywords: Cu₂S hollow structure; Cu₂O template; ozone decomposition; DRIFT; high efficiency Citation: Jiang, Y.; Xu, Y.; Zhang, Q.; Zhao, X.; Xiao, F.; Wang, X.; Ma, G. Templated Synthesis of Cu₂S Hollow Structures for Highly Active Ozone Decomposition. *Catalysts* **2024**, *14*, 153. https://doi.org/10.3390/catal14020153 Academic Editor: Francisco Javier Rivas Toledo Received: 11 January 2024 Revised: 7 February 2024 Accepted: 7 February 2024 Published: 19 February 2024 Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). #### 1. Introduction Among the various air pollutants that humans are currently confronted with, near-surface ozone (O_3) pollution presents a particularly challenging issue [1]. This type of pollution is commonly found in large urban areas and is closely linked to the presence of volatile organic compounds (VOCs) and nitrogen oxides (NOx), which pose significant health risks [2,3]. O_3 is currently recognized as the second most harmful air pollutant and is the primary air pollutant in many urban areas during the summer. Consequently, there is a widespread and pressing need for O_3 treatment technology, both in outdoor environments and enclosed spaces. The most effective ozone treatment technology currently relies on precious metal catalysts such as Au and Pd, which offer excellent performance but lack cost-effectiveness [4,5]. In contrast, transition metal oxides such as MnO_x and Cu_2O are more favorable due to their high efficiency and lower cost for O_3 decomposition [6–8]. It is important to note that transition metal oxides typically exhibit high activity in decomposing O_3 in dry air, but their performance is hindered by competitive adsorption with water vapor, resulting in reduced activity. Additionally, O_3 pollution is often accompanied by more acidic gas pollutants such as SO_2 and NO_2 . For example, Ma et al. [9] showed that although SO_2 and NO_2 pollution in China's atmosphere has been significantly reduced in recent years, their total amount is still higher than O_3 . Mukta et al. [10] reported that the concentration of NO_2 is always higher than O_3 in Gazipur in Bangladesh. The study by Stevens et al. [11] also supports the considerable amount of acidic gases such as NO_2 and SO_2 in the atmosphere of Europe and North America. Therefore, in addition to the interference caused by humidity, metal oxide catalysts are also susceptible to combining with acidic substances, which can hasten the deactivation of the catalysts. Copper sulfide (Cu₂S), a narrow bandgap p-type semiconductor, has been extensively researched and utilized in advanced fields such as photocatalysis and high-temperature superconductivity due to its distinctive crystal structure and band gap [12–16]. Notably, Cu₂S demonstrates exceptional acid resistance owing to its extremely low solubility ($K_{sp} = 2 \times 10^{-47}$) [17,18]. This insolubility provides additional advantages to sulfides in creating complex morphologies, which are essential for catalysts, particularly certain hollow structures and microstructures. Chun-Hong Kuo et al. [19] reported that Cu₂O nanoparticles can be gradually transformed into Cu₂S by 0.2 M Na₂S solution in 360 s. After being transformed into Cu₂S, the nanoparticles form a hollow cage structure based on their original cubic morphology. For example, Lei Ran et al. [20] reported a synthesis process of double-walled heterostructured Cu_{2-x}Se/Cu₇S₄ nano boxes used as a material for quantum dot sensitized solar cells. The complex morphology of this catalyst was synthesized using a simple Cu₂O template. Cu₂S materials have been also widely studied and applied in the field of hydrogen energy [21]. They are used as catalysts for the hydrogen evolution reaction (HER) in electrochemical water splitting, which is a key process for producing clean hydrogen fuel [22]. Copper sulfide materials have shown promising catalytic activity and stability for HER, making them potential candidates for efficient and cost-effective hydrogen production [23]. Although the application of Cu₂S materials in CO₂ conversion, HER, and solar cell materials has attracted increasing attention from researchers, there are currently no reports on the application of Cu₂S in O₃ decomposition. In a previous study, p-type semiconductor showed relatively higher O₃ decomposition activity than the n-type counterparts [24]. As a typical p-type semiconductor, Cu₂S has more Cu vacancies, which is advantageous in the catalyzed decomposition of ozone [25–28]. The performance of Cu₂S in ozone catalytic decomposition is worth exploring, because its convenient morphology construction and stable composition are rare advantages. In this study, hollow structures of Cu₂S were fabricated using a Cu₂O sacrificial template method and employed as a catalyst for ozone decomposition. The resulting catalyst exhibited high activity and demonstrated strong resistance to relative humidity, indicating potential for effective ozone decomposition in the atmosphere. # 2. Results and Discussion The Cu₂O sacrificial template was synthesized according to the experimental Section 3.1. Cu₂S was synthesized using Cu₂O with porous (Cu₂O-P), spherical (Cu₂O-P), and cubic (Cu₂O-C) morphologies as sacrificial templates, which are named Cu₂S porous (Cu₂S-P), Cu₂S sphere (Cu₂S-S), and Cu₂S cube (Cu₂S-C). The catalytic performance of Cu₂S for ozone decomposition is superior to its corresponding Cu₂O template. The performance of Cu₂S varies significantly among the three morphologies, with Cu₂S-P exhibiting substantially better performance (Figure 1a). More than 95% of 400 ppm O₃ can be decomposed at a space velocity of WHSV 480,000 cm³·g⁻¹·h⁻¹ in dry conditions. To verify whether Cu₂S is a catalyst or a simple chemically absorbing agent for O₃, a durability test was conducted on Cu₂S-P in Figure 1b. After working continuously for 18 h, the cumulative amount of O₃ processed was 3.86 mmol, which was tens of times higher than the amount of Cu₂S-P substance (50 mg, \sim 0.31 mmol). After dealing with much more O_3 than itself, the O_3 decomposition activity still exceeds 90%, which proves the catalytic process of ozone decomposition by Cu₂S, rather than a simple oxidation/reduction process of Cu₂S and O₃. At the same time, the catalytic decomposition performance of Cu₂S in high-humidity environments was investigated. As shown in Figure 1c, due to the competitive adsorption of water molecules, high humidity has a particular impact on its catalytic performance. However, the conversion still maintains over 85% performance under conditions of 480,000 cm $^3 \cdot g^{-1} \cdot h^{-1}$ and humidity greater than 90%, showing the good humidity resistance of this catalyst. **Figure 1.** Cu₂S catalytic performance testing. (a) Cu₂S with different morphologies for ozone decomposition at room temperature, $480,000~\rm cm^3 \cdot g^{-1} \cdot h^{-1}$ (50 mg catalyst, 400 sccm airflow), and 400 ppm dry O₃; (b) durability testing of CuS-P at room temperature, $480,000~\rm cm^3 \cdot g^{-1} \cdot L^{-1}$ (50 mg catalyst, 400 sccm), and 200 ppm dry O₃; (c) performance of Cu₂S-P on catalytic decomposition of 200 ppm O₃ at $480,000~\rm cm^3 \cdot g^{-1} \cdot h^{-1}$ and high humidity (>90% RH). All catalysts were loaded into a U-type reactor using a mixture of 50 mg granulated particles and 450 mg quartz sand of similar size. Using only 500 mg quartz sand as a blank control test showed no catalytic activity for ozone decomposition. To investigate the relationship between structure and performance further, XRD characterization was performed on three types of Cu_2S . In Figure 2, the characteristic peak intensity in Cu_2S -P and Cu_2S -S is relatively weak, with most Cu_2S exhibiting an amorphous structure. Cu_2S -C particles crystallize better, and the three types of Cu_2S conform with the Catalysts **2024**, 14, 153 4 of 13 calcite alpha low in the standard card (JCPDS Ref. code 00-009-0328). High crystallinity means fewer defects, which is usually detrimental to the performance of heterogeneous catalysts, and may be the reason for the poor performance of $\text{Cu}_2\text{S-C}$. Figure 2. XRD patterns of Cu₂S samples. To further understand the specific morphologies of Cu₂S samples and their templates, FESEM and TEM techniques were used as shown in Figure 3. Through SEM images, all three Cu₂O templates exhibit different morphologies: the sphere template has fine particles on the surface (Figure 3a), the cube template reveals varying sizes (Figure 3b), and the porous templates are formed by the accumulation of many small particles (Figure 3c). Due to the much lower solubility product of Cu₂S in water compared to Cu₂O [19], Cu₂O dispersed in water is prone to generate more insoluble Cu₂S with S²⁻, and the morphology of the developed product is correlated with the sacrificial template (Cu₂O) [29]. However, due to differences in mass transfer rates, internal substances quickly transfer to the surface through mass transfer channels and form voids inside, as shown in Figure 3d,e, which is described in the literature as the Kirkendall effect [30-32]. The significant contrast difference between the edge and center of particles in TEM images indicates that Cu₂S-C and Cu₂S-S have hollow structures. However, the tiny particles in Figure 3f were not observed to have apparent hollow structures, and it is speculated that the nanoscale effect of the stacked small particles is enhanced, thereby overcoming the interface resistance and fusing. The average diameter of Cu₂S-C and Cu₂S-S particles slightly increased (by about 10% compared to the template), which can be attributed to the hollowing of the internal structure; the diameter of Cu₂S-P particles increased significantly (about 40%) due to the agglomeration of some particles during sulfurization. All these processes can be clearly seen in the schematic view in Figure 4: Taking spherical Cu₂O particles as an example, when spherical particles are suspended in water solution, the ions (Cu⁺) in the solution are attracted by the surface charge of the particles, forming an electrical double layer. This electrical double layer leads to an increase in the solution concentration near the particle surface, creating a concentration gradient in the solution. Due to the concentration gradient generating osmotic pressure, solvent molecules accumulate near the particle surface, further increasing the solution concentration near the particle surface. The particle core transports Cu to the surface through several mass transfer channels, gradually forming voids inside. This process represents the Kirkendall effect in spherical particles. This effect is equally applicable in both cubic and porous structures. Catalysts **2024**, 14, 153 5 of 13 **Figure 3.** SEM and TEM image of the Cu_2S and template. (a) SEM of Cu_2O sphere template, (b) SEM of Cu_2O cube template, (c) SEM of Cu_2O porous template, (d) TEM image of Cu_2S -S, (e) TEM image of Cu_2S -C, and (f) TEM image of Cu_2S -P. **Figure 4.** Schematic diagram of structural evolution process: the internal Cu₂O is rapidly transferred to the surface through several mass transfer channels, forming Cu₂S hollow structures. Another important property of the catalyst is the specific surface area and surface pore structure. The characterization results of three types of Cu_2S are shown in Table 1. According to the BET characterization results, Cu_2S -P has the largest specific surface area and the smallest average pore size of about 5 nm. Although studies [33,34] have shown that specific surface area is not a decisive indicator of the performance of ozone catalysts, Cu_2S -P has a larger specific surface area and pore capacity compared to other structures, which can improve its contact efficiency with ozone gas flow and is a favorable factor in situations where surface chemical properties are similar. Table 1. Specific surface area and pore structure parameters of Cu₂S. | Sample | BET Surface Area (m ² /g) | Pore Size (Å) | Pore Volume (cm ³ /g) | |---------------------|--------------------------------------|---------------|----------------------------------| | Cu ₂ S-C | 11.48 | 71.31 | 0.02047 | | Cu ₂ S-S | 7.31 | 111.75 | 0.02043 | | Cu ₂ S-P | 14.67 | 59.25 | 0.02174 | Although the sample with the best performance also has the largest specific surface area, overall, the difference in specific surface area among the three morphologies of Cu_2S particles is not significant. It seems difficult to explain the significant performance differences, especially in Cu_2S -P. Therefore, EPR characterization was employed to measure the sulfur vacancies in three different morphologies of Cu_2S . Figure 5 shows that Cu_2S -P has prominent sulfur vacancies [35], which are not present in other samples. This can be attributed to the generation of S vacancies caused by the nanoscale effect of small particles during mass transfer. More sulfur vacancies mean more defects and crystal structure imbalances, which are usually beneficial for catalytic reactions. It is generally believed in the literature that these sulfur vacancies are active sites [36,37]. Figure 5. EPR signal of S vacancies in different samples. The work function (Φ) has an important impact on the performance of semiconductor catalysts, which can affect their electron transfer, reaction activity, and photocatalytic performance, thereby affecting the efficiency and effectiveness of catalysts in catalytic reactions [38]. The photoelectron spectroscopy method obtains the escape work of materials by measuring the non-elastic secondary electron cutoff edge. According to the basic energy relationship of photoelectric emission, the energy interval from the cutoff edge of inelastic scattering secondary electrons to the vacuum level is the energy of photons [39]. Therefore, the work function is calculated as follows: $$\Phi = h\nu - (E_{Fermi} - E_{cutoff})$$ Figure 6 shows that there are significant differences in the work functions of the three morphologies of Cu_2S materials. Although the work function is usually not significantly correlated with the catalytic performance of the material, the lower work function of the Cu_2S -P (3.04 eV) material means that electrons have higher transfer efficiency in the system, which is more favorable for the adsorption and desorption of ozone molecules. This also explains that Cu_2S -S has a lower specific surface area and similar pore capacity, while its catalytic performance is not inferior to Cu_2S -C. Although we have explained in the discussion of the data results in Table 1 that the internal surface areas of hollow spheres and hollow cubes may make it difficult for them to participate in catalytic reactions, there is no difference in the adsorption/desorption data of mesoporous performance, and the difference in their work functions may be one of the determining factors. **Figure 6.** UV photoelectron spectroscopy of samples with different morphologies. The instrument automatically calibrated the Fermi edge, and then corrected the abscissa using the emitted photon kinetic energy and bias voltage. The intercept can be equivalent to the work function (Φ) . To reveal the process of ozone conversion on the catalyst surface, in situ FTIR spectroscopy was employed to detect changes in surface functional groups after exposure to ozone. In Figure 7a, the introduction of ozone produced a weak O_2^{2-} [40] peak at a wavenumber of 756 cm⁻¹, and in Figure 7b, the peak weakens after stopping the ozone for a period, which is similar to the transition metal oxides in the literature [41,42], which can be attributed to the classical reaction process of ozone on sulfide surfaces. Due to the widespread presence of ppm-level water vapor in gas cylinders, its characteristic peaks gradually increase over time. In addition, signals generated by S–O (1060 cm⁻¹) and S=O (1350–1420 cm⁻¹) stretching vibrations [43] were observed on the surface of Cu₂S and did not disappear after the introduction of ozone was stopped. This indicates that during the surface transformation process of ozone, a layer of sulfate salt is formed on the surface of Cu₂S. The literature indicates that a surface sulfate layer helps maintain the stability of catalyst particles [44]. This result is consistent with Figure 5. The S vacancy on the surface is beneficial for O₃ adsorption, and the adsorbed O atom fills the vacancy, stabilizing the surface chemical structure and facilitating further participation in surface reactions. **Figure 7.** In situ FTIR spectroscopy characterization of Cu_2S in (a) O_2 /ozone mixed inlet and (b) stopped ozone airflow. XPS characterization was performed on Cu_2S -P before and after the reaction to study the mechanism of the catalytic decomposition of ozone. In Figure 8a, the S 2p 1/2 and S $2p\ 2/3$ peaks at ~162 eV can be attributed to the S–Cu bond [45], and peaks at ~169 eV can be attributed to the S–O bond [46]. After continuous operation for 18 h, the S–O bond in Cu₂S-P was enhanced, and the Cu II peak was clearly observed in the shoulder peak of the dominant Cu I peak (Figure 8b). The enhancement of S–O bonds indicates that the surface S atoms are also effective active sites besides the commonly believed active sites of Cu atoms and defects. Secondly, after 18 h of continuous catalysis of O₃, there is a certain degree of oxidation on the catalyst surface, but the initial composition is still dominant. This indicates that the durability of sulfide-catalytic materials and oxide-catalyzed ozone is similar. In some previous studies [47], the same situation is commonly observed in metastable transition metal oxides. Since the test sample for XPS is Cu₂S-P, this may also be due to a large number of S vacancies on the surface being filled by O atom, which has a high electronegativity and is prone to further electron valence change in Cu. Combined with the surface depth limitation of XPS testing, this phenomenon is more pronounced on the surface. **Figure 8.** XPS characterization of Cu₂S-P deconvolution peak before and after reaction. (a) S 2p scan and (b) Cu 2p scan. In addition, Raman spectroscopy characterization was performed on Cu_2S -P before and after use, and the results are shown in Figure 9. According to the literature [48–50], the Raman peaks at 268 cm⁻¹ and 472 cm⁻¹ are attributed to Cu_2S , while the Raman peak at 284 cm⁻¹ is attributed to Cu_2O . Consistent with the XPS characterization results, Raman spectroscopy shows that although there is a weak CuO signal in the catalyst after 18 h of use, Cu_2S is still the main component, further proving the catalyst's stability. Figure 9. Raman spectra of Cu₂S-P, before and after the ozone decomposition. Catalysts 2024, 14, 153 9 of 13 Based on the above characterization and test results, it can be inferred that Cu_2S , a p-type semiconductor similar to Cu_2O , has a similar catalytic principle for ozone decomposition. However, the active center has been replaced by metal atoms and oxygen defects in transition metal oxides with metal and surface sulfur atoms. The catalytic process and intermediate products, as proposed by Oyama et al. [24], are described in Equations (1)–(3). $$O_3$$ + active site (Cu, S)* \rightarrow O_2 + O^- (1) $$O_3 + O^- + * \rightarrow O_2 + O_2^{2-}$$ (2) $$O_2^{2-} \to O_2 + 2^*$$ (3) The charged intermediate products in the process of ozone decomposition have strong oxidizing properties, which can quickly oxidize some surfaces and transform them into CuO. This heterostructure is not entirely unfavorable for ozone decomposition, as shown in Figure 1c, where the performance improves in the first few hours and then slightly decreases. This is very consistent with the performance of cuprous oxide catalytic materials, and all these results show the promising prospect of the Cu_2S catalyst for effective ozone decomposition. # 3. Experimental #### 3.1. Synthesis of Catalysts The Cu_2S catalyst was prepared using the sacrificial template method. Referring to the synthesis principle in the literature [33,51,52], three types of Cu_2O templates were synthesized using different methods: cubic, porous, and spherical. The specific methods are as follows. Cubic Cu₂O: 80 mmol (20 g) CuSO₄·5H₂O (Macklin reagent, AR, Jining, China) was dissolved in 250 mL distilled water. Then, 100 mL NaOH (Macklin reagent, AR, Jining, China) solution (4 mol/L) was added dropwise. After further stirring the blue suspension for 30 min, 112 mL ascorbic acid (AA) (MERYER CHEMICAL, 99%, Shanghai, China) aqueous solution (1 mol/L) was added dropwise within approximately 5 min. The solution was then stirred until the suspension gradually turned orange red. The precipitate was separated by centrifugation, washed three times with water and ethanol, and then dried in an 80 $^{\circ}$ C oven for 8 h. Spherical Cu₂O: 20 mmol (3.98 g) Cu(OAC)₂·H₂O (Macklin reagent, AR, Jining, China) was dissolved in 150 mL distilled water. After it was completely dissolved, 10 mL NaOH solution (4 mo1/L) was added and stirred for 30 min. Then, 20 mL AA aqueous solution (1 mol/L) was added dropwise. The precipitate was obtained by centrifuge, washed three times with water and ethanol, and then dried in an 80 °C oven for 8 h. Porous Cu₂O: 20 mmol (5 g) CuSO₄·5H₂O was dissolved in 150 mL distilled water. After it was completely dissolved, 10 mL NaOH solution (4 mol/L) was added. After further stirring the blue suspension for 30 min, 3.5 g AA powder was added directly. After stirring for 5 min, the sediment was separated by centrifuge, washed three times with water and ethanol, and then dried in an 80 °C oven for 8 h. Cu_2S hollow structures were synthesized by vulcanizing the three Cu_2O templates. They were added to a $Na_2S \cdot 9H_2O$ (Aladdin Reagent Co., Ltd., 99%, Shanghai, China) aqueous solution at a concentration of 2M with a S:Cu molar ratio of 1:2. The suspension was stirred for 15 min to react, and then the powders were obtained by separation, washing, and drying as the porous Cu_2O sample. ## 3.2. Characterization of the Catalyst The catalyst's crystal structure was analyzed using an X-ray diffractometer (XRD, X'pert Pro System) manufactured by Panalytical, Eindhoven The Netherlands, operating at 40 kV and 40 mA, with Cu K α radiation (wavelength of 0.154 nm). The scanning range was 5–90° at a speed of 10° min⁻¹. The obtained results were converted to xrdml format using PowDll software V 2.97, and then imported into XpertHighscore software Version plus 3 for analysis and compared with standard cards in the database. Microscopy analysis was conducted using an ultra-high resolution field emission scanning electron microscope (FESEM, JSM-7800, JEOL, Tokyo, Japan). The Cu₂O/Cu₂S were fixed onto the sample stage using conductive tape and the sample morphology was captured under an accelerated voltage of 15 kV after spray-gold treatment. The focus and brightness were adjusted, then the image was recorded at a magnification of 50,000 to 100,000. The transmission electron microscope (TEM) photos and high-resolution transmission electron microscopy (HRTEM) were conducted using a JEOL JEM-2100F transmission electron microscope (JEOL, Nagoya, Japan) at an accelerating voltage of 200 kV. The catalyst samples were dispersed in ethanol and loaded onto copper grids covered with microgrid carbon films. The Cu₂S products' specific surface areas were analyzed using the Brumaire-Emmett-Teller (BET) method with a Surface Area Analyzer by Micromeritics (ASAP2460, Beijing, China) at a temperature of liquid nitrogen (-196 °C) with N₂ gas as the adsorbate. Prior to the analysis, the samples were dried at 120 °C for 4 h and then degassed at 150 °C for 1 h. The pore size distributions were determined from the desorption branches of the isotherms based on the Barrett-Joyner-Halenda (BJH) theory. Surface chemical bonds and chemical states of the catalysts were characterized by X-ray photoelectron spectroscopy (XPS, ESCALAB 250XI, Thermo Fisher, Waltham, MA, USA) using a monochromatic Al Kα X-ray source (1486 eV) with a beam size of 200 μm. Charge compensation was achieved by dual-beam charge neutralization, and the binding energy was corrected by setting the binding energy of the hydrocarbon C 1s feature to 284.8 eV. The electron paramagnetic resonance (EPR) signals of radicals' spin trapped were carried out on a Bruker EMXplus-6/1 (Munich, Germany) spectrometer by spin-trap reagents of DMPO and TEMP for S vacancy. The ultraviolet photoelectron spectroscopy (UPS) testing instrument was the ESCALab 250Xi multi energy electron spectrometer produced by ThermoScientific (Waltham, MA, USA). During UPS testing, a He I ultraviolet light source (h \approx 21.22 eV) was selected, and the vacuum in the analysis room was about 3×10^{-6} Pa. The bias voltage was set at -5 eV in the experiment. An appropriate energy analyzer was selected for energy and spectral scanning range, and the corresponding secondary electron energy distribution curve was recorded. The measurement of the secondary electron cutoff edge (Ecutoff) and Fermi edge (E_{Fermi}) involved cleaning the surface of the semiconductor sample with an Ar⁺ beam and correcting it with an Au standard sample before testing. Raman spectroscopy was analyzed at LabRAM HR Evolution (Horiba, Kyoto, Japan). The measurement span was from 1500 to 200 cm^{-1} at room temperature. The 633 nm line of the laser was used as the excitation source, with the capability of supplying 250 mW. Intermediate products and surface adsorption groups on the Cu₂S catalyst were characterized via FTIR-DRIFTS (Diffuse Reflectance Infrared Fourier Transform Spectroscopy), the infrared spectrometer was made by BRUKER (INVENIO, Ettlingen, Germany). The sample was mixed with equal mass KBr powder in an in situ cell, and the measured wavelength range was from 400 to 4000 cm⁻¹. After the sample was placed in the gas cell, the entire experimental section was heated to 150 °C under nitrogen protection for 2 h, and then cooled to room temperature to drive away moisture and other adsorbed gases. Before testing, the sample was first purged with dry nitrogen gas for 1 h, followed by oxygen as the background. Afterwards, the ultraviolet ozone generation device was activated in the oxygen gas path, and the ozone concentration was maintained at approximately 30-50 ppm at a flow rate of 100 sccm. Stopping the introduction of ozone refers to shutting down the ozone generator and continuing to blow the sample with the original flow rate of O₂/N₂ gas. # 3.3. Ozone Decomposition Test The O_3 decomposition performance was tested in a U-shape quartz tube reactor (diameter 5.5 mm) at 25 °C with 50 mg (40–60 mesh) Cu_2S mixed with 450 mg quartz sand. The entire reactor was placed in a water bath constant temperature device (SC-20A, Doosi, Shanghai, China) to ensure that the temperature was not affected by the laboratory environment or thermal effects generated during the reaction. The overall weight hourly space velocity (WHSV) remained at $480,000 \, \mathrm{cm^3 \cdot g^{-1} \cdot h^{-1}}$. Ozone was generated at concentrations from 200 to 400 ppm by a commercial ozone generator (COM-AD-01-OEM, ANSEROS COMPANY, Anshan, China), and the inlet and outlet ozone concentrations were analyzed by an ozone monitor (model 106MH, 2B Technologies, Denver, CO, USA). Ozone was generated from pure oxygen and mixed with air in a mixing bottle to ensure stable concentration. The ozone conversion was calculated as: Conv. of $$O_3 = 100\% \times (O_3 \text{ inlet } - O_3 \text{ outlet})/O_3 \text{ inlet}$$ (4) The moisture was produced by bubbling water with the airflow; in the bubbling device, it can be ensured that the relative humidity is greater than 90. The relative humidity (RH) was measured by a humidity and temperature sensor meter (center 310 RS-232, TES, Xinbei, China). #### 4. Conclusions Using the Kirkendall effect, Cu_2S hollow structured materials with different morphologies were rapidly synthesized from different shaped Cu_2O templates. The catalytic effect of Cu_2S material on the ozone decomposition process was confirmed by combining actual test results and material characterization before and after the reaction. Its catalytic efficiency of 400 ppm ozone can exceed 95% at WHSV of 480,000 cm $^3 \cdot g^{-1} \cdot h^{-1}$ under dry conditions, one of the highest in the literature. The DRIFT results showed the intermediate O_2^{2-} , showing the catalytic reaction mechanism. Furthermore, sulfur can be also active in ozone decomposition as illustrated by XPS, which has broadened the application prospects in the catalytic decomposition of ozone. **Author Contributions:** Conceptualization, methodology: Q.Z., F.X. and G.M.; formal analysis, investigation, data curation, writing—original draft preparation: Y.J., Y.X. and X.Z.; writing—review and editing, resources, supervision: F.X. and G.M.; software: X.W. All authors have read and agreed to the published version of the manuscript. **Funding:** This research was financially supported by a research fund of State Key Laboratory of Mesoscience and Engineering (MESO-23-A06). **Data Availability Statement:** The data presented in this work are available on request from the corresponding author. **Conflicts of Interest:** The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. #### References - 1. Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [CrossRef] - 2. Taylan, O.; Alkabaa, A.S.; Alamoudi, M.; Basahel, A.; Balubaid, M.; Andejany, M.; Alidrisi, H. Air Quality Modeling for Sustainable Clean Environment Using ANFIS and Machine Learning Approaches. *Atmosphere* **2021**, *12*, 713. [CrossRef] - 3. Li, Y.; Yin, S.; Yu, S.; Bai, L.; Wang, X.; Lu, X.; Ma, S. Characteristics of ozone pollution and the sensitivity to precursors during early summer in central plain, China. *J. Environ. Sci.* **2021**, *99*, 354–368. [CrossRef] [PubMed] - 4. Touati, H.; Mehri, A.; Karouia, F.; Richard, F.; Batiot-Dupeyrat, C.; Daniele, S.; Clacens, J.-M. Low-Temperature O₃ Decomposition over Pd-TiO₂ Hybrid Catalysts. *Catalysts* **2022**, 12, 448. [CrossRef] - 5. Hao, Z.; Cheng, D.; Yun, G.; Liang, Y. Supported gold catalysts used for ozone decomposition and simultaneous elimination of ozone and carbon monoxide at ambient temperature. *Appl. Catal. B-Environ.* **2001**, *33*, 217–222. [CrossRef] - 6. Gong, S.; Wu, X.; Zhang, J.; Han, N.; Chen, Y. Facile solution synthesis of Cu₂O–CuO–Cu(OH)₂ hierarchical nanostructures for effective catalytic ozone decomposition. *Cryst. Eng. Comm.* **2018**, *20*, 3096–3104. [CrossRef] - 7. Deng, H.; Kang, S.; Ma, J.; Wang, L.; Zhang, C.; He, H. Role of Structural Defects in MnOx Promoted by Ag Doping in the Catalytic Combustion of Volatile Organic Compounds and Ambient Decomposition of O₃. *Environ. Sci. Technol.* **2019**, *53*, 10871–10879. [CrossRef] - 8. Wang, A.; Zhang, L.; Guan, J.; Wang, X.; Ma, G.; Fan, G.; Wang, H.; Han, N.; Chen, Y. Highly efficient ozone elimination by metal doped ultra-fine Cu₂O nanoparticles. *J. Environ. Sci.* **2023**, *134*, 108–116. [CrossRef] - 9. Chu, B.; Ma, Q.; Liu, J.; Ma, J.; Zhang, P.; Chen, T.; Feng, Q.; Wang, C.; Yang, N.; Ma, H.; et al. Air Pollutant Correlations in China: Secondary Air Pollutant Responses to NO_x and SO₂ Control. *Environ. Sci. Technol. Lett.* **2020**, *7*, 695–700. [CrossRef] 10. Mukta, A.; Hoque, M.; Sarker, E.; Hossain, N.; Biswas, K. Seasonal variations of gaseous air pollutants (SO₂, NO₂, O₃, CO) and particulates (PM2.5, PM10) in Gazipur: An industrial city in Bangladesh. *Adv. Environ. Technol.* **2020**, *6*, 195–209. [CrossRef] - 11. Stevens, C.J.; Bell, J.N.B.; Brimblecombe, P.; Clark, C.M.; Dise, N.B.; Fowler, D.; Lovett, G.M.; Wolseley, P.A. The impact of air pollution on terrestrial managed and natural vegetation. *Philos. T R Soc. A.* **2020**, *378*, 20190317. [CrossRef] - 12. Ranjith, K.S.; Ranjith Kumar, D.; Huh, Y.S.; Han, Y.-K.; Uyar, T.; Rajendra Kumar, R.T. Promotional Effect of Cu₂S–ZnS Nanograins as a Shell Layer on ZnO Nanorod Arrays for Boosting Visible Light Photocatalytic H₂ Evolution. *J. Phys. Chem. C.* **2020**, 124, 3610–3620. [CrossRef] - Ansari, M.Z.; Faraz, M.; Munjal, S.; Kumar, V.; Khare, N. Highly dispersible and uniform size Cu₂ZnSnS₄ nanoparticles for photocatalytic application. Adv. Powder. Technol. 2017, 28, 2402–2409. [CrossRef] - 14. Wang, S.; Huang, Q.; Wen, X.; Li, X.-y.; Yang, S. Thermal oxidation of Cu₂S nanowires: A template method for the fabrication of mesoscopic CuxO (x = 1,2) wires. *Phys. Chem. Phys.* **2002**, *4*, 3425–3429. [CrossRef] - 15. Zhu, S.; Wu, W.; Li, Z.; Luo, J. First-order transition in LK-99 containing Cu₂S. Matter 2023, 6, 4401–4407. [CrossRef] - 16. Ahmed, H.S.; Mohammed, R.Y. The Effect of Deposition Parameters on Morphological and Optical Properties of Cu₂S Thin Films Grown by Chemical Bath Deposition Technique. *Photonics* **2022**, *9*, 161. [CrossRef] - 17. Chen, T.-W.; Rajaji, U.; Chen, S.-M.; Govindasamy, M.; Paul Selvin, S.S.; Manavalan, S.; Arumugam, R. Sonochemical synthesis of graphene oxide sheets supported Cu₂S nanodots for high sensitive electrochemical determination of caffeic acid in red wine and soft drinks. *Compos. Part B Eng.* **2019**, *158*, 419–427. [CrossRef] - 18. Honarnezhad, R.; Fathinia, M.; Khataee, A. Mechanical production and sonocatalytic application of Cu₂S nanoparticles for degradation of isopropylxanthic acid: Kinetic modeling via white and black box methods. *J. Mol. Liq.* **2019**, 287, 110899. [CrossRef] - 19. Kuo, H.; Chu, T.; Song, F.; Huang, H. Cu₂O Nanocrystal-Templated Growth of Cu₂S Nanocages with Encapsulated Au Nanoparticles and In-Situ Transmission X-ray Microscopy Study. *Adv. Funct. Mater.* **2011**, *21*, 792–797. [CrossRef] - 20. Ran, L.; Yin, L. Double-walled heterostructured Cu_{2-x}Se/Cu₇S₄ nanoboxes with enhanced electrocatalytic activity for quantum dot sensitized solar cells. *Cryst. Eng. Comm.* **2017**, *19*, 5640–5652. [CrossRef] - 21. Yang, D.; Cao, L.; Huang, J.; Liu, Q.; Li, G.; He, D.; Wang, J.; Feng, L. Vanadium-doped hierarchical Cu₂S nanowall arrays assembled by nanowires on copper foam as an efficient electrocatalyst for hydrogen evolution reaction. *Scripta Mater.* **2021**, 196, 113756. [CrossRef] - 22. Yu, X.; Pan, L.; Son, K.; Mayer, T.; Zhang, D.; Hagfeldt, A.; Luo, J.; Grätzel, M. Solution-Processed Cu₂S Photocathodes for Photoelectrochemical Water Splitting. *ACS Energy Lett.* **2018**, *3*, 760–766. [CrossRef] - 23. Li, Z.; Zhang, Z. Tetrafunctional Cu₂S thin layers on Cu₂O nanowires for efficient photoelectrochemical water splitting. *Nano Res.* **2018**, *11*, 1530–1540. [CrossRef] - 24. Dhandapani, B.; Oyama, S.T. Gas phase ozone decomposition catalysts. Appl. Catal. B Environ. 1997, 11, 129–166. [CrossRef] - 25. Mousavi-Kamazani, M.; Zarghami, Z.; Salavati-Niasari, M. Facile and Novel Chemical Synthesis, Characterization, and Formation Mechanism of Copper Sulfide (Cu₂S, Cu₂S/CuS, CuS) Nanostructures for Increasing the Efficiency of Solar Cells. *J. Phys. Chem. C* 2016, 120, 2096–2108. [CrossRef] - 26. Mosali, V.S.S.; Puxty, G.; Horne, M.D.; Bond, A.M.; Zhang, J. Selective electrochemical methanation of carbon dioxide using a sulphide derived CuZn catalyst. *Electrochim. Acta* **2024**, *475*, 143628. [CrossRef] - 27. Mosali, V.S.S.; Zhang, X.; Liang, Y.; Li, L.; Puxty, G.; Horne, M.D.; Brajter-Toth, A.; Bond, A.M.; Zhang, J. CdS-Enhanced Ethanol Selectivity in Electrocatalytic CO₂ Reduction at Sulfide-Derived Cu—Cd. *ChemSusChem* **2021**, *14*, 2924–2934. [CrossRef] [PubMed] - 28. Van Thang, B.; Tung, H.T.; Phuc, D.H.; Nguyen, T.P.; Van Man, T.; Vinh, L.Q. High-efficiency quantum dot sensitized solar cells based on flexible rGO-Cu₂S electrodes compared with PbS, CuS, Cu₂S CEs. *Sol. Energy Mater. Sol. Cells* **2023**, 250, 112042. [CrossRef] - 29. Ma, R.; Stegemeier, J.; Levard, C.; Dale, J.G.; Noack, C.W.; Yang, T.; Brown, G.E.; Lowry, G.V. Sulfidation of copper oxide nanoparticles and properties of resulting copper sulfide. *Environ. Sci. Nano* **2014**, *1*, 347–357. [CrossRef] - 30. Minguez-Bacho, I.; Courté, M.; Fan, H.J.; Fichou, D. Conformal Cu₂S-coated Cu₂O nanostructures grown by ion exchange reaction and their photoelectrochemical properties. *Nanotechnology* **2015**, *26*, 185401. [CrossRef] - 31. Gusak, A.M.; Tu, K.N. Interaction between the Kirkendall effect and the inverse Kirkendall effect in nanoscale particles. *Acta Mater.* **2009**, *57*, 3367–3373. [CrossRef] - 32. Rice, K.P.; Paterson, A.S.; Stoykovich, M.P. Nanoscale Kirkendall Effect and Oxidation Kinetics in Copper Nanocrystals Characterized by Real-Time, In Situ Optical Spectroscopy. *Part. Part. Syst. Char.* **2015**, 32, 373–380. [CrossRef] - 33. Gong, S.; Wang, A.; Zhang, J.; Guan, J.; Han, N.; Chen, Y. Gram-scale synthesis of ultra-fine Cu₂O for highly efficient ozone decomposition. *RSC Adv.* **2020**, *10*, 5212–5219. [CrossRef] [PubMed] - 34. Gong, S.Y.; Chen, J.Y.; Wu, X.F.; Han, N.; Chen, Y.F. In-situ synthesis of Cu₂O/reduced graphene oxide composite as effective catalyst for ozone decomposition. *Catal. Commun.* **2018**, 106, 25–29. [CrossRef] - 35. Zhang, H.; Deng, L.; Chen, J. How MoS₂ assisted sulfur vacancies featured Cu₂S in hollow Cu₂S@MoS₂ nanoboxes to activate H₂O₂ for efficient sulfadiazine degradation? *Chem. Eng. J.* **2022**, *9*, 10370. [CrossRef] - 36. Zhang, H.; Zeng, C.; Wu, H.; Yang, H.; Deng, L.; Zhou, L. ZIF-8 assisted synthesis of magnetic core-shell Fe₃O₄@CuS nanoparticles for efficient sulfadiazine degradation via H₂O₂ activation: Performance and mechanism. *J. Colloid Interface Sci.* **2021**, 594, 502–512. [CrossRef] 37. Zhang, H.; Zhou, C.; Zeng, H.; Deng, L.; Shi, Z. Can Cu₂ZnSnS₄ nanoparticles be used as heterogeneous catalysts for sulfadiazine degradation? *J. Hazard. Mater.* **2020**, 395, 122613. [CrossRef] - 38. Wójcik, S.; Grzybek, G.; Stelmachowski, P.; Sojka, Z.; Kotarba, A. Bulk, Surface and Interface Promotion of Co₃O₄ for the Low-Temperature N₂O Decomposition Catalysis. *Catalysts* **2020**, *10*, 41. [CrossRef] - 39. Cho, H.; Joo, H.; Kim, H.; Kim, J.-E.; Kang, K.-S.; Jung, H.; Yoon, J. Enhanced Photoelectrochemical Activity of TiO₂ Nanotubes Decorated with Lanthanide Ions for Hydrogen Production. *Catalysts* **2022**, *12*, 866. [CrossRef] - Zhang, L.; Huo, F.; Wang, A.; Chai, S.; Guan, J.; Fan, G.; Yang, W.; Ma, G.; Han, N.; Chen, Y. Coordination-Controlled Catalytic Activity of Cobalt Oxides for Ozone Decomposition. *Inorg. Chem.* 2023, 62, 9178–9189. [CrossRef] - 41. Li, W.; Gibbs, G.V.; Oyama, S.T. Mechanism of Ozone Decomposition on a Manganese Oxide Catalyst. 1. In Situ Raman Spectroscopy and Ab Initio Molecular Orbital Calculations. *J. Am. Chem. Soc.* **1998**, *120*, 9041–9046. [CrossRef] - 42. Li, X.; Ma, J.; Zhang, C.; Zhang, R.; He, H. Detrimental role of residual surface acid ions on ozone decomposition over Ce-modified γ-MnO₂ under humid conditions. *J. Environ. Sci.* **2020**, *91*, 43–53. [CrossRef] [PubMed] - 43. Pietrogiacomi, D.; Sannino, D.; Magliano, A.; Ciambelli, P.; Tuti, S.; Indovina, V. The catalytic activity of CuSO₄/ZrO₂ for the selective catalytic reduction of NO_x with NH₃ in the presence of excess O₂. *Appl. Catal. B Environ.* **2002**, *36*, 217–230. [CrossRef] - 44. Yang, S.; Chen, S.; Mosconi, E.; Fang, Y.; Xiao, X.; Wang, C.; Zhou, Y.; Yu, Z.; Zhao, J.; Gao, Y.; et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. *Science* **2019**, *365*, 473–478. [CrossRef] [PubMed] - 45. Wahlqvist, M.; Shchukarev, A. XPS spectra and electronic structure of Group IA sulfates. *J. Electron. Spectrosc.* **2007**, 156–158, 310–314. [CrossRef] - 46. Smirnov, M.Y.; Kalinkin, A.V.; Pashis, A.V.; Sorokin, A.M.; Noskov, A.S.; Kharas, K.C.; Bukhtiyarov, V.I. Interaction of Al₂O₃ and CeO₂ Surfaces with SO₂ and SO₂ + O₂ Studied by X-ray Photoelectron Spectroscopy. *J. Phys. Chem. B.* **2005**, *109*, 11712–11719. [CrossRef] - 47. Ma, G.; Tang, W.; Wang, A.; Zhang, L.; Guan, J.; Han, N.; Chen, Y. Heterojunctioned CuO/Cu₂O catalyst for highly efficient ozone removal. *J. Environ. Sci.* **2023**, 125, 340–348. [CrossRef] - Huang, H.; Li, F.; Wang, H.; Zheng, X. The size controlled synthesis of Cu₂S/P25 hetero junction solar-energy-materials and their applications in photocatalytic degradation of dyes. RSC Adv. 2017, 7, 50056–50063. [CrossRef] - 49. Fu, S.-Y.; Chang, H.-H.; Hsu, Y.-K.; Lin, Y.-G. Facile synthesis of Cu₂S nanoarchitectures in application of surface enhanced Raman scattering. In *Nanophotonic Materials XI*; SPIE: Bellingham, WA, USA, 2014; pp. 25–28. - 50. Mai, H.E.; Fang, P.; Xie, G.Q.; Xie, Y.L.; Luo, M.F. Characterization of CuO Species in CuO/CeO₂-Al₂O₃ Catalysts by In-situ XRD, Raman Spectroscopy and TPR. *Acta Phys. Chim. Sin.* **2005**, *21*, 997–1000. [CrossRef] - 51. Liu, J.; Gao, Z.; Han, H.; Wu, D.; Xu, F.; Wang, H.; Jiang, K. Mesoporous Cu₂O submicro-spheres, facile synthesis and the selective adsorption properties. *Chem. Eng. J.* **2012**, *185–186*, 151–159. [CrossRef] - 52. Zhang, Y.; Wang, D.; Zhang, X.; Qu, F. Template-Free Synthesis of Porous Cu₂O Nanospheres at Room Temperature and Investigation on Their Adsorption Property. *J. Nanomater.* **2013**, 2013, 378919. [CrossRef] **Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.