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Abstract: A series of Ag-modified manganese-mullite (SmMn2O5) catalysts with different Ag con-
tents (1, 3, and 6 wt.%) were prepared via a citric acid sol–gel method for catalytic soot oxidation.
The catalysts were characterized by powder X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET),
Raman spectroscopy, transmission electron microscopy (TEM), high-resolution transmission elec-
tron microscopy analysis (HRTEM), X-ray photoelectron spectroscopy (XPS), and H2 temperature-
programmed reduction (H2-TPR). The soot oxidation activity of the mullite was significantly pro-
moted by the addition of silver and affected by the loading amount of the metal. Herein, the influences
of silver loading on the metal size distribution and its interactions with the mullite were studied.
Based on these characterizations, a possible soot oxidation reaction mechanism was proposed for
silver-modified SmMn2O5.

Keywords: Mn-based mullite; Ag modification; soot oxidation; metal dispersion; metal–support
interaction; oxygen activation

1. Introduction

Diesel particulate matters (PM) pose a serious threat to the atmospheric environment
and human health [1–3]. A catalytic diesel particulate filter (CDPF) has been considered
as an efficient way to reduce diesel PM emissions [4,5]. PM from diesel exhaust gases
can be removed through two processes. The first process is the capture of PM, which
can be achieved by the wall-flow structure of the CDPF to capture PM effectively in the
exhaust gas. When PM is accumulated to a certain extent, the captured PM needs to be
burned clean. Then, the CDPF can continue to capture and oxidize the PM in the exhaust
gas, i.e., the so-called passive regeneration process. The core of this technology is to
develop highly efficient catalysts, which can convert soot, one of the most difficult oxidized
components in the PM, to CO2 at low temperatures. Pt-based materials have been widely
used as commercial catalysts due to their high NO oxidation ability, which can promote
soot oxidation through a NO2-assisted mechanism [6–8]. However, Pt as a scarce metal is
expensive. Therefore, there is an urgent need to seek alternatives with lower cost.

It has been reported that many non-noble metal oxides including Ce-based oxides [9,10],
transition metal oxides [11–14], and alkaline metal oxides [8,15] are effective for soot oxida-
tion. Among them, Mn-based metal oxides are one of the most promising soot oxidation
catalysts due to their abundance, non-toxicity, and high activity. Single manganese oxides
with different valence states are prone to sintering and phase changes at high tempera-
tures [16]. By contrast, Mn-based composite oxides not only have superior catalytic activity
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but also high thermal stability, especially Mn-based mullites. For example, Wang et al. [17]
reported that Mn-mullite (Sm,Gd)Mn2O5 was able to oxidize NO in simulated diesel ex-
haust at temperatures as low as 75 ◦C, which is comparable with the commercial Pt/Al2O3
catalyst. Liu et al. [18]. synthesized SmMn2O5 by in situ dismutation of solid-state Mn3+ in
bulk SmMnO3 perovskite for catalytic oxidation of VOC and found that it exhibits excellent
catalytic activity and stability. Chen et al. [19]. compared three kinds of Mn-based mullites
(SmMn2O5, YMn2O5, and PrMn2O5) for NO oxidation and found that SmMn2O5 exhibited
the best NO oxidation ability due to its abundant surface-adsorbed oxygen species and
good reducibility.

Although Ag also belongs to noble metals, it has attracted widespread attention for
catalytic oxidation reactions due to its relatively low price and high reactivity. Research has
found that introducing Ag into metal oxides such as CeO2 [20], MnO2 [21], MnCo2O4 [22],
and LaMnO3 [23] is beneficial for activating oxygen species by accelerating dissociation
of adsorbed O2 and migration of lattice oxygen in the bulk of oxides. Due to its distinct
characteristics, Ag exhibits potential application prospects in the catalytic oxidation of soot.
Cui et al. [24] developed Ag-supported CoCe porous nanosheet catalysts for soot oxidation.
They reported that the introduction of Ag significantly reduced the ignition temperature
of the catalyst under a loose contact mode without the assistance of other exhaust gases
such as NOx, due to the good contact with soot and low energy barrier for O2 dissociation.
Chen et al. [25] reported that Ag/Co3O4 presented competitive catalytic activity toward
soot combustion with a T50 (the temperature at soot conversion of 50%) below 290 ◦C
in 10% O2/N2. They attributed the high activity of Ag/Co3O4 catalyst to the enhanced
metal–support interaction induced by the formation of uniform, dispersive, and suitable
sized metallic Ag nanoparticles. In our previous work [26,27], we also discovered that
SmMn2O5 had good catalytic performance in oxidation of soot and VOCs. Additionally,
the influence of preparation methods of silver on SmMn2O5 was also investigated. It was
found that in situ introduction of Ag by a sol–gel method exhibited better catalytic activity
than the impregnated one. However, the effect of Ag loading on the catalytic performance
of the mullite remains unknown.

Following our previous method [26,27], this work synthesized a series of Ag-modified
manganese-mullite catalysts with different Ag contents. As expected, introducing Ag
significantly boosted soot oxidation. More importantly, we found that there was an optimal
Ag loading to achieve a balance between Ag loading and Ag particle size. This work
presents new insights into the interactions between SmMn2O5 mullite and silver by tuning
the loading amount of the metal and developing catalyst candidates for oxidation reactions.

2. Results and Discussion
2.1. Characterization of Catalysts
2.1.1. XRD Analysis

The crystalline phases of the catalysts were characterized by XRD, and the results
are shown in Figure 1. In Figure 1a, the XRD pattern of the SMO sample shows main
diffraction peaks at 2θ values of 28.7◦, 30.5◦, 33.8◦, 35.5◦, and 41.3◦ corresponding to the
(121), (211), (130), (112), and (212) planes of a typical mullite-type mixed oxides SmMn2O5.
The introduction of Ag does not change the crystal structure of the catalyst. Additionally,
the peak at 2θ = 33.2◦ attributed to the perovskite-type mixed oxides (SmMnO3) can be
detected, indicating the incomplete phase transformation from the perovskite to the mullite
for all the samples. Although the diffraction peaks of Ag overlap partially with those of
mullite, it can be observed by the slow scanning technique in Figure 1b that the diffraction
peak at 2θ = 38.1◦ attributed to the metallic silver (111) plane increases significantly in
intensity in the patterns of 3Ag/SMO and 6Ag/SMO catalysts, implying the aggregation
and sintering of silver with increasing Ag loading.
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Figure 1. (a) Normal and (b) slow-scanning XRD patterns of the catalysts.

Table 1 lists the crystal cell parameters and the average crystallite sizes of SmMn2O5
over the catalysts. Compared with pure mullite, the addition of silver leads to a shrinkage
of the mullite crystal cell, which may be related to the transformation of Mn3+ (with the
ionic radii of 0.065 nm [28]) to Mn4+ (0.053 nm [29]) according to the charge balance law
arising from the replacement of the Sm3+ (0.108 nm [30]) sites by Ag+ (0.115 nm [31]) in the
mullite. Another possible explanation is the electron transfer from Mn3+ ions in the mullite
to silver at the metal–support interface. At a high loading of 6 wt.%, the aggregation and
sintering of silver weakens its interaction with the mullite, resulting in an expansion of the
mullite crystal cell again. Overall, the greatest crystal cell shrinkage occurs over 3Ag/SMO,
implying the maximum lattice distortion in the mullite resulting from the addition of 3 wt.%
silver. Additionally, the introduction of Ag accelerates the sintering of the mullite, with
the average crystallite size increasing from 30 to ca. 40 nm. Correspondingly, the specific
surface areas of the SMO, 1Ag/SMO, 3Ag/SMO, and 6Ag/SMO catalysts are 16.2, 13.7,
10.6, and 11.7 m2 g−1, respectively, indicating that the sintering of the mullite crystallites
and loss of the textural feature of the Ag-containing catalysts assisted with the metal.

Table 1. Structural and textural properties of the catalysts.

Catalyst
Cell Parameter a

dSmMn2O5
b (nm) SBET

c (m2/g)
a (nm) b (nm) c (nm) a × b × c (nm3)

SMO 0.7502 0.8503 0.5704 0.3638 30.4 16.2
1Ag/SMO 0.7477 0.8548 0.5665 0.3620 39.5 13.7
3Ag/SMO 0.7429 0.8525 0.5662 0.3585 40.4 10.6
6Ag/SMO 0.7455 0.8530 0.5686 0.3615 40.3 11.7

a The lattice constants estimated from consecutive peaks using the Bragg formula. b Crystallite size of the mullite
calculated by Debye–Scherrer equation. c Surface area derived from the BET equation.
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2.1.2. Raman Analysis

Raman spectroscopy is a powerful technique for characterizing the molecular structure
of the materials. To further evaluate the effect of Ag addition on M-O bonds in the mullite,
Raman spectroscopy was performed and the results are shown in Figure 2. Both the peaks
at 612.1 and 678.5 cm−1 are assigned to Mn-O stretching vibrations, which shift towards
lower frequencies and are strengthened in intensity after introduction of Ag. These peak
shifts are closely related to the changes in lattice defects as reported by Wang’s work [32],
suggesting the prolonged Mn-O bond and the shared lattice oxygen in the mullite with Ag
species. The highest shifts appear in the Raman peaks of 3Ag/SMO due to the creation of
more lattice defects, which agrees with the variations in crystal cell parameters obtained
by XRD.
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Figure 2. Raman spectra of the catalysts.

2.1.3. TEM Observation

TEM can be utilized to observe the morphology of the catalysts and determine the
size distribution of silver, and the results are shown in Figure 3a,c,e,g. It can be observed
in Figure 3a that SMO consists of aggregated nanoparticles. As the solid was obtained
by calcination at 800 ◦C for 5 h, aggregation between nanoparticles occurred significantly,
which leads to the reduction of the free surface with the secondary elimination of the grain
boundary area and low specific surface area of the mixed oxides. To further confirm the
lattice spacing of the catalyst, HRTEM was conducted. As shown in Figure 3b, the mullite
is well crystallized. The measured lattice fringes are 0.279 and 0.287 nm, corresponding
to the (220) and (002) planes of SmMn2O5, respectively. All the Ag-containing catalysts
(Figure 3c,e,g) show similar morphology with larger mullite particle size. The lattice
fringes of 0.235 nm corresponding to the Ag (111) facet can be clearly observed in these Ag-
containing catalysts (Figure 3d,f,h). A total of 100–150 silver nanoparticles were measured
for size distribution statistics of each sample and the results are shown in the inserted
figures. The average Ag nanoparticle size is 2.53, 3.49 and 5.64 nm for 1Ag/SMO, 3Ag/SMO
and 6Ag/SMO, respectively. Clearly, the average size of Ag nanoparticles increases with
the metal loading, agreeing with the XRD results.
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2.1.4. XPS Analysis

XPS can be used to detect the elementary composition and elemental chemical state of
the catalysts, and the results are shown in Figure 4. The XPS peaks at 641.5 and 653.0 eV
in Figure 4a, corresponding to the binding energies (BE) of Mn 2p3/2 and 2p1/2 levels,
can be assigned to Mn3+, while the other two peaks located at 642.7 and 654.2 eV are
attributed to Mn4+ [27,33]. The Mn4+/Mn3+ ratio was calculated by deconvoluting the
Mn 2p XPS spectra and the results are listed in Table 2. Compared with pure mullite, the
introduction of silver results in an increase in the Mn4+/Mn3+ ratio, which agrees with the
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XRD results about shrinkage of crystal cell. However, the Mn4+/Mn3+ ratio varies little for
the Ag-modified catalysts. This is probably because of the formation of large Ag particles
with increasing Ag loading, which weaken the interactions between the metal and the
mullite support.
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Table 2. Surface elemental contents of the catalysts.

Catalyst
Surface Content (wt.%) a

Mn4+/Mn3+ a Oads/Olatt
a Mn4+/(Mn4+ + Mn3+) b

Sm Mn O Ag

SMO 40.2 32.4 27.4 --- 0.53 0.48 0.43

1Ag/SMO 40.4 28.5 24.8 6.3 0.70 0.63 0.69

3Ag/SMO 38.2 28.1 26.1 7.6 0.73 0.65 0.74

6Ag/SMO 38.7 27.3 25.8 8.2 0.71 0.62 0.70
a Calculated from XPS data. b Estimated from H2-TPR results.

The O 1s spectra were fitted into two peaks in Figure 4b. The higher binding energy
peak at 531.3 eV is assigned to chemisorbed oxygen (Oads), while the lower binding energy
one at 529.3 eV is assigned to lattice oxygen (Olatt) [34]. As listed in Table 2, the introduction
of Ag increases the Oads/Olatt ratio, arising from the generation of lattice defects accom-
panied with the significantly increased Mn4+/Mn3+ ratio. Among the prepared catalysts,
3Ag/SMO exhibits the highest Mn4+/Mn3+ and Oads/Olatt ratios, although the differences
are not obvious. These implies the strongest interactions between the metal and the support
over this catalyst.

The Ag 3d XPS spectra are shown in Figure 4c. Ag exists in the form of metallic Ag0,
with the Ag 3d5/2 and Ag 3d3/2 peaks at 368.0 and 374.0 eV [35], respectively, which agrees
well with the HRTEM and XRD results. It is interesting to note in Table 2 that the surface
contents of Ag on the catalysts by XPS are higher than their nominal Ag contents, resulting
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from the enrichment of the metal on the mullite surface. Although the nominal Ag contents
in Ag/SMO are in multiple relations, the surface contents of Ag on xAg/SMO are close to
each other. As is well-known, XPS measurements are influenced by some factors, such as
the probing depth (generally a few nanometers), the distribution of the aimed elements,
and the sample homogeneity. In this work, the size of Ag nanoparticles in Ag/SMO
increases with increasing Ag content according to the HRTEM results. Relatively large
Ag nanoparticles and poor dispersion of Ag in 6Ag/SMO results in incomplete detection
of surface Ag by XPS. Therefore, the obtained surface Ag content on Ag/SMO does not
increase significantly along with their nominal loadings. Similar phenomena have been
previously reported [27,36].

2.1.5. H2-TPR Analysis

The redox property of catalysts is crucial to the catalytic oxidation of soot. H2-TPR
characterization was used to determine the redox properties of catalysts, and the results are
shown in Figure 5. The overlapped peaks were fitted by Gaussian curves. It can be seen that
SMO mainly exhibits four reduction peaks at 251.5, 319.5, 382.5, and 418.2 ◦C. The first two
peaks are ascribed to the reduction of surface-adsorbed oxygen and the reduction of Mn4+

to Mn3+ in the mullite, respectively. The last two peaks are both ascribed to the reduction
of Mn3+ to Mn2+, maybe due to the different coordination environments of Mn atoms in
the mullite. The introduction of Ag significantly promotes the reduction of the mullite,
with the reduction peaks shifting towards lower temperatures by more than one hundred
degrees centigrade. For 1Ag/SMO, the peak at 182.1 ◦C is attributed to the reduction of
surface-adsorbed oxygen. The peaks at 246.6 and 286.7 ◦C are attributed to the successive
reduction of Mn4+ and Mn3+ in the mullite promoted by silver, while the small peak at
325.3 ◦C may be attributed to the reduction of Mn3+ in the mullite without interaction
with silver [27]. Apparently, it can be seen that the relative peak area ratio of Mn4+ to
(Mn4+ + Mn3+) reaches the maximum over 3Ag/SMO, indicating the strongest promotion
effect of silver on the reducibility of the mullite. As listed in Table 2, the Mn4+/Mn ratio
follows the order of SMO (0.43) < 1Ag/SMO (0.69) < 6Ag/SMO (0.70) < 3Ag/SMO (0.74),
suggesting that introducing Ag increases the content of high-valent Mn4+ significantly.
However, at a higher Ag loading, the interactions between the metal and the mullite is
weakened in 6Ag/SMO due to the aggregation of segregated metal.

2.2. Catalytic Activity for Soot Oxidation

The catalytic activity of the catalysts for soot oxidation under loose contact between
soot and the catalyst was evaluated. Figure 6a shows the soot conversion profiles of
the catalysts in the presence of NO as a function of temperature, and Table 3 lists the
corresponding values of T10, T50 and T90 for soot oxidation. It was found that compared
with SMO, all the Ag-containing catalysts behaves much better in the soot conversion
within the whole temperature range due to their superior redox properties. Among these
modified catalysts, 3Ag/SMO exhibits some advantage especially at the soot catalytic
ignition stage, achieving the lowest T10. Both the mullite and Ag-containing catalysts
exhibit high CO2 selectivity (SCO2 > 99.5%) during soot oxidation, which can effectively
avoid the generation of secondary pollutants such as CO. Additionally, the NO2 production
over Ag-containing catalysts, taking 3%Ag/SMO as an example, during the TPO runs of
NO and soot oxidation is shown in Figure 6b. The NO2 concentration during the NO-TPO
is higher than that obtained during the soot-TPO tests at the temperatures above 220 ◦C,
which is due to the consumption of NO2 by reacting with soot. The catalytic performance
of this material was similar to those modified SmMn2O5 [37–39] and superior to those of
many other previously reported compounds, such as Ag [40,41], Pt [42,43], Pd [44], Cu [45],
and Ce-based catalysts [15,46,47], as briefly summarized in Table S1. The reusability of
the catalysts was evaluated via a cycled soot-TPO test, taking 3%Ag/SMO as an example
(Figure S1). Compared with the fresh catalyst, the used counterparts even exhibit somewhat
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improved activity in O2, maybe due to the redispersion of the metal on the mullite during
the TPO runs.
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Table 3. Catalytic features of the catalysts for soot oxidation.

Catalyst T10 (◦C) T50 (◦C) T90 (◦C) SCO2 (%)

SMO 323 403 456 99.4
1% Ag/SMO 300 372 420 99.7
3% Ag/SMO 278 367 420 99.8
6% Ag/SMO 290 372 421 99.9

2.3. The Proposed Reaction Mechanism

Based on the above results and previous studies, a possible soot oxidation reaction
mechanism over Ag/SMO is proposed in Figure 7. During reactions in the presence
of O2 and NO, NO interacts with active oxygen species provided by the activation of
oxygen vacancies in the mullite and especially dissociation of gaseous oxygen on silver
nanoparticles, resulting in the formation of NO2. As is well known, NO2 has stronger
oxidizing ability than O2, which can directly oxidize soot. As evidenced by the difference
in NO2 concentration between NO-TPO and soot-TPO results (Figure 6b), the consumption
of NO2 indicates its involvement in the oxidation of soot, known as the NO2-assisted
soot oxidation mechanism. After the loading of Ag in SMO, the reducibility and catalytic
activity of the catalysts are improved remarkably. This suggests that the introduction of
Ag plays critical roles for soot oxidation. On the one hand, Ag with low work function
could stimulate the lattice oxygen in the mullite support with abundant oxygen vacancies
via back spillover effect to produce active oxygen species [48,49], leading to a favorable
environment for NO and soot oxidation. On the other hand, gaseous O2 can be adsorbed on
the Ag sites and dissociated into atomic oxygen efficiently [48–50]. During these processes,
the loading content of Ag is crucial to the amount and reactivity of active sites by affecting
the particle size of Ag and the interactions between Ag and the mullite. The lower the
Ag loading, the smaller the metal particle size, which facilitates the oxygen activation and
interaction with the mullite. At a low content of Ag, it is not sufficient for 1Ag/SMO to
produce sufficient active oxygen species and high valence Mn4+ in the mullite. At a much
higher Ag loading, the aggregation and sintering of the metal weaken the interactions
with the mullite, resulting in a decrease in redox ability of 6Ag/SMO catalyst. Therefore, a
proper Ag loading such as 3 wt.% enables the catalyst with sufficient active sites with high
reactivity and thereby the lowest soot ignition temperature T10 (Table 3).
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3. Experimental
3.1. Chemicals and Materials

All analytical-grade chemicals were used without further purification. Samarium
nitrate hexahydrate (Sm(NO3)3·2H2O, 99.99%), manganese nitrate solution (Mn(NO3)3,
50%), citric acid monohydrate (C6H10O8, 99.5%), and silver nitrate (AgNO3, 9.5%) were
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purchased from Aladdin Reagent Co., Ltd., Shanghai, China. High-purity nitrogen (N2,
≥99.999%), nitric oxide standard gas (NO, 1%) mixed with the base gas of highly pure
nitrogen, and synthetic air were purchased from Beijing Praxis Practical Gases Co., Ltd.,
Beijing, China. Deionized water was obtained from a Millipore water purification system
(Darmstadt, Germany).

3.2. Catalyst Preparation

Manganese-mullite SmMn2O5 was prepared by a facile citric acid sol–gel method. In
a typical preparation, stoichiometric Sm(NO3)3, Mn(NO3)3, and citric acid were mixed in
deionized water under stirring to form a homogeneous solution at room temperature. To
ensure complete complexation of the metal ions, the molar ratio of citric acid and total
metal nitrates in the solution was 1.1:1. The mixed solution was then heated to 90 ◦C and
continuously stirred. After evaporation of water, a dark brown gel formed. The gel was
dried at 110 ◦C overnight to form a spongy amorphous solid. The obtained solid was
heated to 800 ◦C at a rate of 1 ◦C min−1 and kept for 5 h. The obtained mullite was denoted
as SMO. Ag-modified SMO catalysts (xAg/SMO) with various Ag to SMO mass ratios
(1:100, 3:100, and 6:100) were also prepared using the same method with additional additive
of AgNO3 as one of the precursors and these solids were calcined at 800 ◦C for 5 h. The
obtained catalysts were denoted as 1Ag/SMO, 3Ag/SMO, and 6Ag/SMO, respectively.

3.3. Characterizations

X-ray diffraction (XRD) was carried out on a Bruker D8 Advance (Billerica, MA, USA)
operating at 40 kV and 10 mA and using Cu Kα radiation (λ = 1.54184 Å), and the XRD
patterns were collected in a 2θ range of 10◦ to 60◦ at a scanning rate of 6◦/min. In addition,
slow scanning XRD analysis was performed in the range 30◦ to 40◦ at a scanning rate of
1◦/min. The crystallite size of mullite was calculated by Scherrer equation.

N2 adsorption/desorption measurement was carried out at −196 ◦C using a JW-
BK122 F (Beijing JWGB, Beijing, China) instrument. Prior to the analysis, the samples were
degassed at 220 ◦C under vacuum for 1 h. The specific surface area of the samples was
obtained from the Brunauer–Emmett–Teller (BET) theory in the relative pressure (p/p0)
range of 0.05–0.30.

Raman spectra of the solids were recorded on a confocal micro-Raman spectrometer
(IDSpec Aurora, Hong Kong, China) under ambient conditions. Prior to the analysis, the
samples were fixed on a glass slide, and the slide was then placed onto the platform of the
microscopy. After the laser beam was focused onto the sample surface, the Raman spectra
were excited by a detective laser of 632.8 nm and recorded in the region of 500–800 cm−1.

The morphology of the samples was characterized by transmission electron microscopy
(TEM) (JEOL-2100, JEOL, Tokyo, Japan) operated at an accelerating voltage of 200 kV. High-
resolution transmission electron microscopy analysis (HRTEM) (JEOL-2100, JEOL, Tokyo,
Japan) of the samples was further carried out with a point resolution of 0.19 nm.

X-ray photoelectron spectroscopy (XPS) analysis was performed on an ESCALAB
250 Xi system (Thermo Fisher Scientific, Waltham, MA, USA) equipped with monochro-
matic Al Kα (1486.6 eV) X-ray source. The elemental composition of the catalyst was
derived through a simple conversion formula according to the atomic ratios given by XPS
without applying any standardization procedure. To obtain more information of Mn and O
species, the obtained XPS spectra were deconvoluted employing the XPSPEAK41 software
(version 4.1) after deducting the background signals using the Shirley algorithm. The C 1s
line of adventitious hydrocarbon on air exposed samples with a binding energy of 284.6 eV
was used as the reference to calibrate the XPS results.

H2 temperature-programmed reduction (H2-TPR) analysis was performed using a
chemisorption analyzer (Micromeritics Auto Chem II 2920, Norcross, GA, USA) for the
characterization of the redox properties of the catalysts. For each measurement, 0.05 g
of catalyst was loaded into a quartz U-tube. Before the measurement, the catalyst was
heated from room temperature to 300 ◦C at a rate of 10 ◦C·min−1 and kept in a stream of
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air (20 mL/min) for 1 h. After cooling to 50 ◦C, the gas was switched to 10 vol. % H2/Ar,
and then the catalyst was heated to 900 ◦C at a rate of 10 ◦C·min−1 under this atmosphere
(30 mL·min−1). During the tests, the H2 consumption was monitored as a TCD signal by
the chemisorption analyzer.

3.4. Catalytic Activity Measurements

The catalytic oxidation of soot was tested in a home-made fixed-bed quartz reactor
using a temperature-programmed oxidation (TPO) program at a heating rate of 5 ◦C/min
from room temperature to 600 ◦C. Printex-U (diameter 25 nm, surface area 100 m2/g,
Degussa AG, Dusseldorf, Germany) was used as the model soot. Prior to the measurements,
10 mg soot and 100 mg catalyst were mixed using a spatula for 3 min to simulate a “loose
contact” condition. To prevent reaction runaway, 0.3 g silica was then added to the mixture
of soot and catalyst. The above mixtures were always sandwiched by two layers of quartz
wool before put into the reactor. The inlet gas mixture containing 500 ppm NO and 10% O2
balanced with N2 was introduced into the reactor. The total flow rate of the feed mixture
was 500 mL min−1 and the gas hourly space velocity (GHSV) was 100,000 h−1. Before
heating the reaction tube, the gas concentration needed to achieve stable. The effluent gas
stream from the reactor was analyzed online by an infrared spectrometer (Nicolet iS10,
Thermo Fisher Scientific, Waltham, MA, USA). The temperatures at the soot conversion
of 10%, 50%, and 90% were defined as the T10, T50 and T90, respectively. Temperature-
programmed oxidation of NO over the catalysts was also carried out on the same apparatus
and steps without adding soot. The selectivity to CO2 during soot oxidation (SCO2) was
expressed as another important factor by the equation SCO2 = CCO2/(CCO + CCO2). CCO
and CCO2 were defined as the total CO and CO2 released in the outlet gas during the soot-
TPO test, respectively, which were obtained by integrating the outlet COx concentrations
over time.

4. Conclusions

In this work, a series of Ag-modified mullite catalysts (xAg/SMO, x = 1, 3 and 6)
with varied metal loadings were synthesized by the citric acid sol–gel method. Compared
with pure mullite, the modified catalysts, especially 3Ag/SMO, exhibit significantly im-
proved activity for soot oxidation in the presence of NO. Introduction of Ag increases the
high-valence Mn4+ content and active adsorbed oxygen species in the mullite, leading
to enhanced reducibility. Excessive loading of Ag, however, results in the formation of
large Ag nanoparticles and weakened interactions of the metal with the mullite. Therefore,
an appropriate Ag loading for SmMn2O5, which balances the amount and reactivity of
Ag active species, is crucial to the catalytic oxidation of diesel soot. We hope this work
can provide some theoretical foundations for the development of efficient soot oxidation
catalysts operating at exhaust temperatures.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/catal14020135/s1, Table S1: Comparative studies of catalytic
activity for soot oxidation among various materials and our designed catalysts [15,37–47]; Figure S1:
Cycled soot oxidation profiles of 3Ag/SMO. Reaction conditions: 10% O2/N2, GHSV = 100,000 h−1,
heating rate = 5 ◦C/min [51–54]; Figure S2: C 1s spectra for the catalysts [40].
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