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Abstract: The long-range ordered lattice structure and interconnected porous microstructure of porous
single crystals (PSCs) provide structural regularity and connectivity in remote electron movement to
stabilize oxygen vacancies and activate lattice oxygen linked to surface active sites. In this work, we
prepare NiO powder, single-crystal (SC) NiO, and PSC NiO. NiO contains a significant amount of
oxygen vacancies. We find that the structure of porous NiO can create more oxygen vacancies. We
load Pt onto these NiO crystals by atomic layer deposition (ALD) to activate lattice oxygen on definite
NiO surfaces. The results show that Pt-loaded NiO effectively exhibits CO oxidation performance, in
which Pt-loaded PSC NiO completely oxidizes CO at 65 ◦C. With 1% CO fully adsorbed, the density
of activate lattice oxygen becomes an essential factor affecting performance. PSC NiO with deposited
Pt clusters exhibited stable CO oxidation catalysis when run in air at ~65 ◦C for 300 h.

Keywords: porous single crystals (PSCs); NiO; oxygen vacancies; ALD; CO oxidation

1. Introduction

Emissions from factories and exhaust fumes from fossil fuels contain large amounts of
CO, which harms the human body and the atmosphere. Excess CO can affect atmospheric
chemistry, poisoning the ozone layer and thus altering the climate. How to avoid CO
pollution in the atmosphere is one of the most critical topics in treating the environment
nowadays, and the design of highly active and stable loaded catalysts for the complete
oxidation of CO is still a hot topic in academia and industry [1,2]. The transition elements
have a single electron in their electronic configuration, and the complexes in this class have
tunable valence electrons, electron densities, and an abundance of valence and valence
electron configurations. Transition metal oxides are one of the most promising catalyst
materials widely used in catalysis due to their unique activity and good stability [3,4]. For
example, it has been shown that Au and NiO composite catalysts have high activity for
CO oxidation reactions. The boundary density between a NiO patch and a Au surface
can be maximized by proper redox pretreatment of a Au-NiO catalyst to achieve optimal
activity. Preparing catalysts for ethane dehydrogenation by loading Nb onto NiO has also
been studied. Nb fills cationic vacancies in the NiO lattice and substitutes for nickel atoms,
and this substitution process likely results in a reduction in surface non-stoichiometric and
cationic defects, which leads to a reduction in non-selective oxygen and thus an increase in
ethane oxidative dehydrogenation (ODH) activity. These studies show that loaded catalysts
have high potential with excellent catalytic performance. It can be understood that NiO is
a typical fully oxidized catalyst with outstanding performance in fully oxidized catalytic
reactions [5–8].

NiO is a transition metal oxide and a p-type semiconductor. The bulk phase of
NiO is a face-centered cubic structure, and each Ni atom (or O atom) in the lattice is
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connected to six O atoms (or Ni atoms), respectively, in a six-coordinated state. NiO is
a non-stoichiometric oxide with cationic vacancies that can accommodate a significant
excess of electrophilic oxygen radicals and is a solid oxidizing substance [7,9–11]. The
structural defects present in NiO result in many vacancies, which lead to the formation of
strongly oxidizing electrophilic oxygen, and NiO exhibits superior oxidative properties in
catalytic reactions [12,13]. The surface of NiO is rich in hydroxyl groups, and these hydroxyl
groups will actively participate in catalytic reactions to reduce the catalytic temperature
and improve catalytic efficiency. NiO is widely available and inexpensive, so we can design
an efficient catalyst for CO oxidation based on NiO [14–17].

A single-crystalline substance is one in which the particles within the substance are
spatially, regularly, and periodically arranged. Construction of catalytically active sites
on the surface of a material needs to be based on the structure of the material. Polycrys-
talline and amorphous materials have complex surface structures, while single-crystalline
structures are long-range ordered. Single-crystalline regular periodic arrays provide a
unique advantage for precisely creating active sites on catalytically active surfaces [18–20].
Porosity is the presence of directional or random pores within a material. A material’s
specific surface area increases due to its porous structure, exposing more active sites.

PSC materials have the properties of both single-crystalline and porous structures.
PSCs are widely used in various fields: TiO2, SnO2, Cr2O3, ZrO2, and other PSC materi-
als are used in the field of semiconductors and PSC TiO2, CeO2, and SrTiO3 are applied
in the field of catalysis [21–26]. PSCs combined with an ordered lattice structure and
disordered interconnected pores will produce a well-defined surface structure, with the
single-crystalline nature of the monomer providing high stability similar to that of bulk
single-crystalline materials and the porous nature of the monomer providing higher cat-
alytic activity identical to that of nanocrystals. The pore structure of PSCs dramatically
increases the specific surface area of a material, thus increasing the number of active sites
and the rate of reaction by increasing the number of electron transport channels between the
catalyst and the reactants. Due to the single-crystalline nature of PSCs, a single-crystalline
skeleton has no grain boundaries, and fast electron transfer can be achieved by reducing
electron scattering in a porous structure. PSCs exhibit a well-defined lattice structure,
precise chemical composition, and clear termination surfaces, while maintaining both high
stability and activity [27–29]. Therefore, it is crucial to study PSCs as catalytic substrates.

In the present study, we consider constructing stable, efficient, and affordable loaded
catalysts for CO oxidation by loading Pt onto PSC NiO and modulating surface oxygen
defects [30–32]. The potential applications of porous metal oxide materials are evaluated,
providing a valuable reference for future studies.

2. Results

XRD is used to analyze crystal structure, while SEM is used for surface morphology
observation. Figure 1 shows XRD and SEM images of precursor single-crystalline Ni
(HCO3)2 and PSC NiO. Raman spectra of Ni (HCO3)2 precursor with PSC NiO are displayed
in Figure S1. Figure 1a shows the XRD pattern and crystal ball-and-stick structure model of
a Ni (HCO3)2 single-crystalline sample. The diffraction peaks of the Ni (HCO3)2 precursor
overlap with those of PDF#150782, and the high signal of peak intensity proves that Ni
(HCO3)2 crystals have been synthesized successfully and have better crystal characteristics.
Figure 1c,e shows the XRD spectrum and crystal ball-and-stick structure model of SC NiO
and PSC NiO. The diffraction peaks of NiO coincide with those of PDF#711179, which
belongs to the cubic system. Figure S2 presents XRD Rietveld refinement patterns of
the samples.
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Figure 1. (a) XRD patterns of Ni (HCO3)2 single-crystalline sample, with the structure of Ni (HCO3)2 
single crystals in the inset. (b) SEM image of Ni (HCO3)2 single-crystalline sample. (c) XRD patterns 
of SC NiO, with the structure of NiO single crystals in the inset. (d) SEM image of SC NiO. (e) XRD 
patterns of PSC NiO, with the structure of NiO single crystals in the inset. (f) SEM image of PSC 
NiO. (An SEM image of a single particle is shown in the lower left corner of the image.). 

Figure 1b shows an SEM image of Ni (HCO3)2, which can be observed as a non-po-
rous tetrahedral shape. Ni (HCO3)2 grain size is between 100 and 300 nm, and porous NiO 
nanoparticles obtained from Ni (HCO3)2 precursor have the same size as those of Ni 
(HCO3)2, both of which are tetrahedral in morphology. SC NiO has smooth surfaces in 
Figure 1d, but the surfaces of PSC NiO are not as smooth in Figure 1f. The reason for this 
difference is the formation of worm-like pores in PSC NiO. The conversion of Ni (HCO3)2 
into the crystal structure of NiO remains stable without structural collapse or shrinkage. 
Figure S3 shows the weight change in the process of single-crystalline Ni (HCO3)2 into 
PSC NiO and the schematic process of crystal structure modeling. Figure S3a exemplifies 
the weight change during the conversion of Ni (HCO3)2 to NiO. The TG curve shows that 
there is a mass loss of 43.27%, which is less than the theoretical value (57.0%) for the de-
composition of Ni (HCO3)2 to produce NiO, which may be since a portion of the precursor 
has been converted to NiO during the process of growing the Ni (HCO3)2 precursor. Fig-
ure S3b demonstrates the schematic process of the modeled crystal structure for trans-
forming Ni (HCO3)2 to NiO. 

In order to analyze the microstructure and crystal orientation of the NiO used in 
PSCs, crystals were characterized by TEM and HR-TEM. It can be observed from Figure 
2a,d,g that the crystal size ranges between 100 and 300 nm, which is consistent with SEM 
observations. A comparison of the three images shows an apparent porous structure in 
Figure 2g. The crystal spacing of Ni (HCO3)2 and NiO can be observed very clearly in 
Figure 2b,e,h. The precise lattice spacing indicates that Ni (HCO3)2 and NiO have excellent 
crystallinity. The crystal face spacings of Ni (HCO3)2 and NiO are 0.618 nm and 0.237 nm, 
corresponding to the (511) face of Ni (HCO3)2, the (111) face of SC NiO, and the (111) face 
of PSC NiO, respectively. Figure 2c,f,i shows SAED maps of Ni (HCO3)2, SC NiO, and PSC 
NiO, and it can be seen that all are single-crystal diffractions. These images show that Ni 
(HCO3)2 and NiO maintain good single-crystalline properties, and even though NiO has 
a porous structure, the samples remain single-crystalline like the precursor. 

Figure 1. (a) XRD patterns of Ni (HCO3)2 single-crystalline sample, with the structure of Ni (HCO3)2

single crystals in the inset. (b) SEM image of Ni (HCO3)2 single-crystalline sample. (c) XRD patterns
of SC NiO, with the structure of NiO single crystals in the inset. (d) SEM image of SC NiO. (e) XRD
patterns of PSC NiO, with the structure of NiO single crystals in the inset. (f) SEM image of PSC NiO.
(An SEM image of a single particle is shown in the lower left corner of the image.).

Figure 1b shows an SEM image of Ni (HCO3)2, which can be observed as a non-
porous tetrahedral shape. Ni (HCO3)2 grain size is between 100 and 300 nm, and porous
NiO nanoparticles obtained from Ni (HCO3)2 precursor have the same size as those of
Ni (HCO3)2, both of which are tetrahedral in morphology. SC NiO has smooth surfaces
in Figure 1d, but the surfaces of PSC NiO are not as smooth in Figure 1f. The reason
for this difference is the formation of worm-like pores in PSC NiO. The conversion of
Ni (HCO3)2 into the crystal structure of NiO remains stable without structural collapse
or shrinkage. Figure S3 shows the weight change in the process of single-crystalline Ni
(HCO3)2 into PSC NiO and the schematic process of crystal structure modeling. Figure S3a
exemplifies the weight change during the conversion of Ni (HCO3)2 to NiO. The TG curve
shows that there is a mass loss of 43.27%, which is less than the theoretical value (57.0%)
for the decomposition of Ni (HCO3)2 to produce NiO, which may be since a portion of
the precursor has been converted to NiO during the process of growing the Ni (HCO3)2
precursor. Figure S3b demonstrates the schematic process of the modeled crystal structure
for transforming Ni (HCO3)2 to NiO.

In order to analyze the microstructure and crystal orientation of the NiO used in PSCs,
crystals were characterized by TEM and HR-TEM. It can be observed from Figure 2a,d,g that
the crystal size ranges between 100 and 300 nm, which is consistent with SEM observations.
A comparison of the three images shows an apparent porous structure in Figure 2g. The
crystal spacing of Ni (HCO3)2 and NiO can be observed very clearly in Figure 2b,e,h. The
precise lattice spacing indicates that Ni (HCO3)2 and NiO have excellent crystallinity. The
crystal face spacings of Ni (HCO3)2 and NiO are 0.618 nm and 0.237 nm, corresponding
to the (511) face of Ni (HCO3)2, the (111) face of SC NiO, and the (111) face of PSC NiO,
respectively. Figure 2c,f,i shows SAED maps of Ni (HCO3)2, SC NiO, and PSC NiO, and
it can be seen that all are single-crystal diffractions. These images show that Ni (HCO3)2
and NiO maintain good single-crystalline properties, and even though NiO has a porous
structure, the samples remain single-crystalline like the precursor.
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images.). 
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were compared by a series of characterizations. To analyze the metal oxidation state, XPS 
characterization of NiO was performed. The XPS spectra in Figure 3a show the difference 
in the spectra of catalysts with different morphologies, lattice oxygen, oxygen vacancies, 
and surface adsorbed oxygen by integrating the area of each spectrum. The peak at 529.4 
eV is attributed to lattice oxygen (Oa: O−); the peak at 531.3 eV is attributed to surface ox-
ygen (Ob: O2−, O22−, or O−); and the peaks above 532.0 eV are attributed to other weakly 
bound oxygen species (Og) such as carbonate (CO32−), adsorbed molecular water, and hy-
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Ob + Og). We find that the densities of oxygen vacancies (Ov) in NiO are as follows: PSC 
NiO (0.26) > SC NiO (0.21) > powder NiO (0.16), which is consistent with the results in 
Figure 3b [33–35]. We discover a significant number of Ov in NiO, and we use platinum to 
further modulate these vacancies. To investigate the performance of a complete oxidation 
reaction with CO, Figure S4a shows high-sensitivity low-energy ion scattering spectra 
(HS-LEIS) of PSC NiO, confirming the atomic termination layer of Ni and O on the surface. 
Figure 3c shows the HS-LEIS spectra of PSC NiO loaded with Pt; its surface elements add 
Pt [36,37]. Figure S5 shows the XPS spectra of the integral spectrum, C 1s peaks, and Ni 
2p peaks of PSC NiO, SC NiO, and powder NiO; the experimental results are consistent 
with the theoretical predictions, indicating accurate preparation of PSC NiO, SC NiO, and 

Figure 2. TEM images, HRTEM images, and SAED patterns of Ni (HCO3)2 precursor (a–c), SC
NiO (d–f), and PSC NiO (g–i). (The lower left corner pictures of (b,e,h) in the figure are partial
enlarged images.).

Differences in the oxygen vacancies contained in NiO with different morphologies
were compared by a series of characterizations. To analyze the metal oxidation state, XPS
characterization of NiO was performed. The XPS spectra in Figure 3a show the difference in
the spectra of catalysts with different morphologies, lattice oxygen, oxygen vacancies, and
surface adsorbed oxygen by integrating the area of each spectrum. The peak at 529.4 eV is
attributed to lattice oxygen (Oa: O−); the peak at 531.3 eV is attributed to surface oxygen
(Ob: O2−, O2

2−, or O−); and the peaks above 532.0 eV are attributed to other weakly
bound oxygen species (Og) such as carbonate (CO3

2−), adsorbed molecular water, and
hydroxyl groups (OH−). The density of oxygen vacancies (Ov) can be considered as
Ob/(Oa + Ob + Og). We find that the densities of oxygen vacancies (Ov) in NiO are as
follows: PSC NiO (0.26) > SC NiO (0.21) > powder NiO (0.16), which is consistent with the
results in Figure 3b [33–35]. We discover a significant number of Ov in NiO, and we use
platinum to further modulate these vacancies. To investigate the performance of a complete
oxidation reaction with CO, Figure S4a shows high-sensitivity low-energy ion scattering
spectra (HS-LEIS) of PSC NiO, confirming the atomic termination layer of Ni and O on
the surface. Figure 3c shows the HS-LEIS spectra of PSC NiO loaded with Pt; its surface
elements add Pt [36,37]. Figure S5 shows the XPS spectra of the integral spectrum, C 1s
peaks, and Ni 2p peaks of PSC NiO, SC NiO, and powder NiO; the experimental results
are consistent with the theoretical predictions, indicating accurate preparation of PSC NiO,
SC NiO, and powder NiO. The Pt 4f spectrum of PSC NiO loaded with Pt contains two
peaks corresponding to Pt 4f5/2 and Pt 4f7/2, which indicate that platinum exists in metal
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and ionic form (Figure 3d). The as-received sample contains Pt0 and Pt2+ states in 56.32%
and 43.68%. In Figure 3e, Ni, O, and Pt are evenly spread across the surface of PSC NiO.
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right, the electronic excited state energy of oxygen becomes higher, and the oxygen activ-
ity increases more easily to form PSC NiO oxygen vacancies [38–41]. The results of the Pt 
nanoparticle size distribution are displayed in Figure S7a, which range from 1.1 to 1.9 nm, 
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adsorption strength of CO gradually increases with increasing temperature, and there is 
a strong affinity for CO at the Pt/NiO active site. The stretching vibrations of C=O in CO2 
become progressively stronger above an onset temperature of 30 °C. Higher operating 
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Figure 3. (a) XPS spectra of the O 1s peaks of powder NiO, SC NiO, and PSC NiO. (b) EPR spectra of
powder NiO, SC NiO, and PSC NiO. (c) HS-LEIS spectra of NiO loaded with Pt. (d) XPS spectra of
the Pt 4f peaks of NiO loaded with Pt. (e,f) EDS elemental mapping of NiO loaded with Pt.

In Figure S6a, the presence of Pt dramatically alters PSC NiO reducibility, resulting in
a shift of both characteristic TPR peaks to a lower temperature. The enhancing effect of
Pt on NiO reduction towards metallic nickel indicates that Pt favors the formation of PSC
NiO oxygen vacancies. The EXAFS are also characterized by a change in oxygen vacancies
between loaded and unloaded on the catalyst surface, as shown in Figure S6b. The region
around 533 eV is assigned to the oxygen p character of the transition metal 3d band, and
the broader structures at 537 eV and 540 eV belong to the oxygen p part of the metal 4s
and 4p bands, respectively. After loading Pt, the O K-edge peak position is shifted to the
right, the electronic excited state energy of oxygen becomes higher, and the oxygen activity
increases more easily to form PSC NiO oxygen vacancies [38–41]. The results of the Pt
nanoparticle size distribution are displayed in Figure S7a, which range from 1.1 to 1.9 nm,
with an average size of only 1.48 nm, belonging to the category of nanoclusters (<2 nm).
Figure S7b–f shows a mapping image of PSC NiO with 2.07 wt% Pt sample, in which it can
be clearly seen that the Pt nanoclusters are uniformly dispersed on the surface.

Figure 4a,b shows in situ FT-IR of CO with air at the Pt/NiO sites in PSC NiO. The
adsorption strength of CO gradually increases with increasing temperature, and there is a
strong affinity for CO at the Pt/NiO active site. The stretching vibrations of C=O in CO2
become progressively stronger above an onset temperature of 30 ◦C. Higher operating
temperatures accelerate CO oxidation by activating lattice oxygens connected to surface Pt.
In situ FT-IR analysis investigated the surface-adsorbed substances for CO oxidation during
the catalytic process. During the reaction, hydroxyl groups on the catalyst surface tend to
form carboxyl groups with CO. In Figure 4d, the broad band around 1390 cm−1 could be
assigned to bicarbonates. The broad band around 1363 cm−1 could be assigned to formate.
The broad band around 1334 cm−1 could be assigned to monodentate carbonate. The broad
band around 1278 cm−1 could be assigned to bidentate carbonates [42]. Figure 4e shows
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the in situ FT-IR of CO adsorption on Pt clusters on PSC NiO. The narrow band around
2060 cm−2 can be reasonably attributed to the linear adsorption of CO at the Pt site, the
intensity of which decreased when we flowed He for desorption. Pt clusters on PSC NiO
have an extreme affinity for CO, and the higher the active site density, the more muscular
the adsorption strength. The efficient activation of CO oxidation by lattice oxygen in the
interfacial structure is indicated by the disappearance of the adsorption strength of CO
when flowing O2 undergoes desorption.
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ature was tested as a measure of catalyst performance. Figure 5a illustrates the CO oxida-
tion process, where the catalyst completely oxidized CO at 240 °C, 205 °C, and 175 °C for 
commercial powder NiO, SC NiO, and PSC NiO, respectively. Figure 5b shows that the 
performance of NiO was enhanced substantially after loading Pt. PSC NiO loaded with 
0.25% Pt could completely oxidize CO at 160 °C, and the temperature of complete oxida-
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Figure 4. (a,b,d) In situ FT-IR of CO oxidation with air using PSC NiO with 2.07 wt% Pt. (e) In situ
FT-IR of CO adsorption at the Pt/NiO sites in PSC NiO with 2.07 wt% Pt loading contents. Blue lines
indicate CO adsorption after equilibrium with CO; black color indicates CO adsorption after moving
to He for 2 min; and purple, green, and red lines indicate CO adsorption after moving to O2 for 2 min,
4 min, and 8 min, respectively. (c) The loading content of Pt in PSC NiO. (f) Surface oxygen exchange
coefficients of PSC NiO with different Pt loadings.

The actual amounts of loaded Pt are 0 wt%, 0.25 wt%, 0.50 wt%, 2.07 wt%, and 3.64 wt%
for 5, 10, 20, and 30 cycles on NiO substrate, respectively, as shown in Figure 4c. Figure 4f
illustrates the surface oxygen exchange coefficient (Kex) of NiO, which demonstrates the
rapid equilibrium of the surface defect reaction OOx + 2h· ⇋ VO··+ 1/2O2 . This indicates
that the presence of oxygen deficiency increases the surface oxygen exchange coefficient by
approximately 10 times.

The catalyst performance was investigated by GC, and the complete reaction tem-
perature was tested as a measure of catalyst performance. Figure 5a illustrates the CO
oxidation process, where the catalyst completely oxidized CO at 240 ◦C, 205 ◦C, and 175 ◦C
for commercial powder NiO, SC NiO, and PSC NiO, respectively. Figure 5b shows that the
performance of NiO was enhanced substantially after loading Pt. PSC NiO loaded with
0.25% Pt could completely oxidize CO at 160 ◦C, and the temperature of complete oxidation
decreased with increasing content until it started to have a side effect on the catalytic
reaction. The experimental results show that loading of 2.07% has the most robust catalytic
performance and can be fully converted at 65 ◦C. Beyond this loading, the temperature of
complete oxidation will increase. Figure 5d shows the long-term stability test results of PSC
NiO with loaded Pt and that 0.25 wt% Pt/PSC NiO, 0.50 wt% Pt/PSC NiO, and 2.07 wt%
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Pt/PSC NiO were able to maintain the long-term stability of 300 h without decay. The
stability of the catalyst is further demonstrated by the approximately identical dynamics of
the catalyst at 70~300 h CO oxidation, as shown in Figure 5e [43–45].
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Figure 5. (a) CO oxidation properties of NiO commercial powders, SC NiO, and PSC NiO without Pt.
(b) CO oxidation properties of 0.25 wt%, 0.50 wt%, 2.07 wt%, and 3.64 wt% Pt loaded onto PSC NiO.
(c) Activation and electron transfer of PSC NiO in CO oxidation. (d) CO oxidation properties of PSC
NiO with different Pt loadings at 65 ◦C, 115 ◦C, and 160 ◦C. (e) CO oxidation kinetics of PSC NiO
containing 2.07 wt% Pt at 70~300 h. (f) Correlation of NiO morphology, surface area, Pt doping, and
Ov density content with CO complete oxidation temperature.

The Mars-van-Krevelen mechanism is generally followed in catalysts with reducible
carriers. Activated CO directly reacts with the interfacial lattice oxygen of the reducible
page to produce oxygen vacancies. Subsequently, gas-phase oxygen adsorbs oxygen
vacancies and continues to participate in the reaction after being activated by the electron-
rich environment created by the oxygen vacancies, with the noble metal or loaded reactive
metal providing the CO adsorption sites. The results of the adsorption activation process
of CO molecules on the surface of PSC NiO obtained by DFT calculations are shown in
Figure 5c. The red region gains electrons and the blue region loses electrons. The darker the
red color (the larger the value), the more electrons are gained, and the darker the blue color
(the larger the value), the more electrons are lost. It can be seen that CO loses electrons on
Pt to form CO2+ and oxygen forms O2- on PSC NiO to participate in the reaction, which is
consistent with the Mars-van-Krevelen mechanism.

Figure S8a–c shows the N2 adsorption and desorption isotherms for NiO powder, SC
NiO, and PSC NiO, respectively. The BET-specific surface areas (Figure S8d) of NiO powder,
SC NiO, and PSC NiO are about 71.4640 m2 g−1, 134.1370 m2 g−1, and 197.4990 m2 g−1,
respectively. Meanwhile, the average pore sizes of PSC NiO nanoparticles are ~15 nm
and can be characterized by BET. The pores shown in Figure 1 and Figure S9 confirm the
pore size from BET. Figure 5f displays the temperature of full CO oxidation catalyzed by
powder NiO, PSC NiO, and SC NiO with different loadings. From Figure 5f, it can be
observed that PSC NiO outperforms SCs, and SCs outperform powder. With an increase
in Pt loading onto PSC NiO, the complete oxidation temperature decreases. When the
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complete oxidation temperature reaches its lowest at one loading, the performance no
longer increases but decreases. It can be concluded that single-crystalline NiO outperforms
amorphous NiO, with enhanced performance as the specific surface area becomes more
extensive and as the loading increases.

The stability of a catalyst is an essential part of a catalyst’s performance, and the
ability of a catalyst to maintain its structure and morphology after a reaction dramatically
determines whether the catalyst can be used for an extended period. Figure 6a,b shows the
XRD and Raman spectra after the reaction, showing that the crystal structure of PSC NiO
did not change after the catalytic reaction and still maintained good crystallinity. Figure 6c,d
shows the SEM and TEM of the catalyst after the reaction, and it can be observed that
connected pores in the catalyst still existed and had a precise shape without collapse or
deformation. Figure 6e,f shows the lattice fringes of the catalyst with SAED, both consistent
with the pre-reaction. The results show that Pt-modified PSC NiO is very stable in the
catalytic reaction of CO oxidation and has the potential to work effectively for a long time.
A comparison of the performance of some loaded catalysts for the reaction of complete
oxidation of CO is shown in Table S1.
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3. Experiments
3.1. Syntheses of Porous Pt/NiO Crystals

SC Ni (HCO3)2 was grown by the hydrothermal method. All reagents were analytical
grade and did not require further purification. To create a clear green solution, a mixture of
0.640 g NiCl2·6H2O, 1.480 g urea, and 1.480 g PVP K30 was dissolved in 66.4 mL ethylene
glycol (EG) and 5.6 mL distilled water. This was conducted with vigorous stirring for
three hours. The solution was transferred to a 100 mL Poly tetra fluoro ethylene (PTFE)
lined autoclave, sealed, heated to 160 ◦C, kept for 12 h, and cooled to ambient temperature.
A green Ni (HCO3)2 precipitate was obtained. The precipitate was collected through
centrifugation, washed with ethanol-deionized water several times, and dried at room
temperature. The green Ni (HCO3)2 precipitate was calcined in a muffle furnace at 300 ◦C
and 400 ◦C for two hours at an elevated rate of 5 ◦C min−1 to obtain NiO. In the following,
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the samples obtained by calcination at 300 ◦C and 400 ◦C are named N300 and N400,
respectively. A growth schematic is shown in Figure S10.

Atomically dispersed platinum was confined to the surface of PSC NiO using ALD.
(Trimethyl)methylcyclopentadienyl platinum (IV) and O3 were precursors, and ultra-high-
purity Ar (99.999%) was used as the carrier gas at a flow rate of 50 mL min−1. The
(Trimethyl)methylcyclopentadienyl platinum (IV) precursor vial was heated to 70 ◦C for
sufficient vapor pressure. The ALD chamber was heated to 300 ◦C, and the precursor inlet
tube was kept at 150 ◦C. When the temperature of each part reached the set temperature
and was maintained for a certain period, 100 mg of carrier was loaded into the ALD reaction
chamber. The precursor (Trimethyl)methylcyclopentadienyl platinum (IV) pulse time, Ar
gas purge time, O3 pulse time, and Ar gas purge time were 60 s, 30 s, 30 s, and 30 s, in that
order, which was one cycle of Pt ALD.

3.2. Characterization

Phase characterization was analyzed by X-ray diffraction (XRD, Mini-Flex 600; Rigaku,
Tokyo, Japan), and the formation and orientation of the crystal planes were determined. The
morphology, pore distribution, and size of NiO crystals at an accelerating voltage of 5.0 kV
were observed using field emission scanning electron microscopy (FE-SEM, SU8010; Hitachi,
Tokyo, Japan). The orientation of the sample lattice was characterized by transmission
electron microscopy (TEM, JEOL JEM-F200; JEOL, Tokyo, Japan) at 200 kV. EPR spectra were
recorded on a spectrometer (Bruker Biospin GMBH E500 10/12; Bruker, Ettlingen, Germany)
to determine oxygen vacancies. Valence was detected by X-ray photoelectron spectroscopy
(XPS, ESCALAB 250Xi, Waltham, MA, USA). The surface area of BET was tested using
automated surface and microporous analysis (Tristar II 3020; Micromeritics, Norcross, GA,
USA). The concentration of Ni and Pt was measured with an Ultima-2 ICP-OES machine
(Horiba, Paris, France). Diffuse Reflectance Infrared Fourier Transform Spectroscopy
(DRIFTS) tests were performed by an infrared spectrometer (Bruker VERTEX 70; Bruker,
Ettlingen, Germany). A single test was performed using 100 mg of 2.07 wt% Pt PSC NiO,
and the test temperature was gradually increased from room temperature to 90 ◦C (data
were collected every 5 ◦C). The reaction gas comprised 1% CO, and the equilibrium gas was
air. The reaction gas was flowed through the reactor at a rate of 50 sccm. Raman spectral
data were obtained using a Raman spectrometer (LabRAMHR, Horiba J. y; Horiba, Paris,
France) equipped with a 50× high-magnification objective.

3.3. Oxidation Reaction

The CO catalyzed reaction was carried out at atmospheric pressure in a tubular quartz
reactor with an inner diameter of 5 mm. A single test was performed using 100 mg of
catalyst, and the test temperature was gradually increased from 30 ◦C to 300 ◦C. The test
was performed at a rate of 3 ◦C min−1. The rate of temperature increase was 3 ◦C min−1,
and a set of data was collected at 20 ◦C intervals. The reaction gas comprised 1% CO, and
the equilibrium gas was air. The reaction gas was flowed through the reactor at a rate of
50 sccm. The tail gas was then connected to a gas chromatograph (GC) for on-line analysis.
The GC system used was equipped with a flame ionization detector (FID) and a thermal
conductivity detector (TCD) (GC-2014; Shimadzu, Kyoto, Japan).

4. Conclusions

In summary, we grew nano tetrahedral NiO single-crystalline samples with good
crystallinity and morphology and prepared PSC NiO loaded with Pt by ALD. NiO is a
typical transition metal complex that has adjustable valence electrons, electron densities,
and a rich variety of valence and valence electron configurations and contains a significant
amount of oxygen vacancies. To construct highly active surfaces, we utilized an ultra-high
specific surface area with the advantages of structural regularity and good connectivity
for remote electron movement in the PSCs to create more oxygen vacancies. Platinum-
loaded nanoparticles activated lattice oxygen in PSC NiO; the proportion of Ov on the
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surface was a critical factor in determining the performance of the reaction. We found that
platinum-modified PSC NiO was able to fully oxidize CO at 65 ◦C, with no performance
degradation even after 300 h of continuous operation. This provides important value
for the design and application of other metal-based materials. This work proposes new
strategies for designing metal-based materials and provides a reference for future research
on inexpensive CO complete oxidation catalysts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal14020130/s1, Figure S1. (a) Raman spectra of PSCs NiO.
(b) Raman spectra of Ni (HCO3)2 precursor, Figure S2. XRD Rietveld refinement patterns of (a) Ni
(HCO3)2; (b) NiO, Figure S3. (a) Thermogravimetric curves of the transformation of Ni (HCO3)2
precursor to NiO. (b) Schematic of the crystal structure model for the transformation of Ni (HCO3)2
to NiO, Figure S4. (a) HS-LEIS spectra of PSC NiO, Figure S5. The integral XPS spectrum (a, d, g);
XPS spectra of the C 1s (b, e, h); XPS spectra of the Ni 2p peaks of PSC NiO, SC NiO and powder NiO
(c, f, i). (a - c) PSC NiO; (d - f) SC NiO; (g – i) powder NiO, Figure S6. (a) H2-TPR profiles of NiO and
Pt/NiO. (b) EXAFS of NiO and Pt/NiO oxygen atoms in the lattice, Figure S7. (a) Cs-HAADF-STEM
images of PSC NiO with 2.07 wt% Pt, and (b-f) the mapping of PSC NiO with 2.07 wt% Pt, Figure S8.
(a-c) N2 adsorption desorption isotherms of (a) NiO powder, (b) NiO SCs, (c) NiO PSCs. (d) BET-
specific surface areas of powder NiO, SC NiO, and PSC NiO, Figure S9. (a) Pore size statistics of TEM
images from PSC NiO, Figure S10. Preparation of PSC NiO precursors by hydrothermal method,
Table S1. Comparison of catalysts for the complete oxidation of CO. References [46–54] are cited in
the supplementary materials.
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