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Abstract: Environmental organo bentonite synthesis using curcumin-derived chemicals is used
as catalyst support for zinc with a Zn-pillaring structure (Zn@CU/BEN). The obtained composite
was assessed as an affordable, highly effective, and multifunctional photocatalyst for enhanced
oxidation of ibuprofen (IBU) residuals in water supplies. The Zn@CU/BEN composite (0.4 g/L)
displayed significant catalytic activities, resulting in the complete oxidation of IBU (25 mg/L) after
80 min. Then, the complete mineralization based on the full elimination of TOC content was
recognized after 160 min, with significant indications about the formed intermediates. The identified
intermediates, together with the identification of hydroxyl radicals as the essential oxidizing agent,
declared an oxidation pathway of IBU over Zn@CU/BEN that involved three steps: hydroxylation,
decarboxylation/demethylation, and ring-opening processes. The toxic properties of raw pollutants
as well as the oxidizing product at different durations were assessed based on the cell viability
results of kidney (HEK293T) and liver (HepG2) cell lines. The partially oxidized sample in the
initial duration displayed a higher toxicity impact than the raw IBU. However, the treated sample
after 160 min reflected high biosafety and non-toxic properties (cell viability > 97%). The synergetic
impact of bentonite and bentonite organo-modified by curcumin extract reflects enhancements in the
adsorption as well as the oxidation performance of pillared zinc as a catalyst.

Keywords: bentonite; curcumin; zinc metal; ibuprofen; oxidation; toxicity

1. Introduction

A broad range of medication residues, together with their metabolic byproducts, have
been recorded to have shown up extensively in a variety of natural environments, including
sewage water, surface water, groundwater, and drinking water [1,2]. The pollution of
vital drinking water supplies with these chemicals correlates with the discharging of
waste effluents from hospitals, drug industries, and healthcare institutes in addition to
human excrement [1,3]. Ibuprofen (IBU) is a frequently utilized non-steroidal medicine
with antipyretic, anti-inflammatory, and analgesic properties. It has been extensively
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identified as an organic contaminant or pharmaceutical residue in water bodies [4,5]. IBU
possesses an extremely high yearly consumption of approximately 15,000 tons per year
and has been described as one of the top 50 medications with the greatest environmental
hazards [6,7]. The leftovers of IBU encountered in water bodies were categorized as
hazardous, non-biodegradable, and chemically resistant pollutants [5,8]. The presence of
IBU, including its metabolic byproducts, within the water resources, regardless of minimal
levels, has a detrimental effect on the endocrine system’s functioning in humans and
the reproductive abilities of aquatic organisms [8–10]. The IBU-soluble molecules exhibit
bioaccumulation characteristics in fish and other aquatic life and have adverse influences
on existing freshwater plants and animals [11]. Furthermore, the IBU molecules undergo
frequent conversion into types of secondary compounds such as 4-isobutylacetophenone,
which exist widely within the freshwater supplies and are more hazardous than the original
compounds [11]. Moreover, long-term exposure to IBU has detrimental impacts on both
human liver cells and kidney cells, regardless of whether the contact is brief [12].

Due to its classification as a hazardous contaminant, significant endeavors have been
launched by environmental and scientific organizations to eliminate IBU from water [1,8].
In recent times, the implementation of adsorption alongside advanced oxidation as effective
methods for removing organic chemicals from water has been highly promoted [13,14].
Advanced oxidation techniques, including photocatalytic, electrochemical, sonochemical,
and photo-Fenton decomposition, were recently classified as highly successful approaches
for decontaminating organic compounds [15–17]. The advanced methods of oxidation
result in extensive degrading and mineralization of organic compounds, leading to the
formation of environmentally safe compounds [18,19]. In this regard, a variety of individual
and combined nano/microstructures were evaluated for their capacity to photocatalytically
oxidize and photo-Fenton oxidize IBU residues within water [3,9]. Selecting a suitable
catalyst to provide promising oxidation effects is determined by several factors, spanning
both environmental and commercial aspects, including recycling potential, biodegradability,
bandgap energy, recovery, thermal stability, recombination speeds, security, production
cost, and efficiency of adsorption [20,21]. With these in mind, it was strongly recommended
that efforts should go toward developing inventive structures, employing naturally existing
precursors, which exhibit improved adsorption and oxidizing abilities [22].

Several inorganic materials, including semi-conductive metals as well as metal oxides,
were explored as possible photocatalysts. These materials were assessed either as pure
in nature or blends with other components [22–24]. The latest studies focused on investi-
gating multifunctional materials that exhibit enhanced optical and retention properties,
with the goal being to to develop enhanced photocatalysts [9,24]. Zinc-based nano- and mi-
crostructures were extensively analyzed as potential photocatalysts to trigger the oxidative
decomposition of organic compounds [22,25]. Overall, this material exhibits outstanding
properties such as excellent durability, non-toxicity, biocompatibility, a substantial surface
area, sufficient resistance against photo-corrosion, and noteworthy oxidation capacities.
Additionally, it possesses considerable potential for free excitation energy [26–28]. The
utilization of Zn or ZnO as a photocatalyst can be improved by incorporating them into
composite materials, supplementing their structures with rare metals, and embedding their
particulates inside appropriate carriers. This approach has been suggested as a straight-
forward method that can improve the photocatalytic effectiveness, including regeneration,
recombination rate, exciting effectiveness, and adsorption capacity [22,29].

However, studies that have been conducted in this area reveal notable impacts of
factors such as crystal structure, morphological characteristics, synthesizing techniques,
mechanical strength, crystallite dimensions, hybridization, and surface-modifying proce-
dures on the qualities and applications of zinc-based materials [26,30,31]. Elsewhere, in
research evaluating zinc-based hybrids with various types of biopolymers produced using
naturally occurring phytochemicals derived from plant-based extracts led to the produc-
tion of environmentally friendly products with improved technical characteristics [27,32].
Thus, it seems that when employing solutions extracted from edible plants that are en-
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riched in various types of widely recognized phytochemicals, the production of zinc-based
nanostructures based on these extracts as a green synthesis method may yield materials
with improved physicochemical and environmental characteristics. This approach was
highly praised for the development of non-agglomerated nanostructures. The resulting
nanoparticles have been identified to have affordable manufacturing costs, require effort-
less fabrication processes, and boast non-toxicity, a reactive functionalized surface, and
safety [27,33]. Additionally, the nanoparticles that were produced were thoroughly coated
with films of phytochemicals, including phenolic chemicals, alkaloids, amino acids, and
proteins, forming types of metal/phytochemical complexes. These phytochemical coatings
enhance the exterior properties of the resulting particles, facilitating the adsorption of
organic molecules on their surfaces [27].

Against that background, this work entailed a thorough analysis of the implementa-
tion of a bentonite multilayered structure as an efficient substrate or carrier of green-formed
Zn metal, curcumin-derived phytochemicals, and complexes of Zn/curcumin-based phyto-
chemicals as an improved environmentally friendly catalytic agent. Curcumin is a naturally
occurring pigment with a diphenolic β-diketone structure that is obtained directly from the
rhizome of Curcuma longa L., frequently referred to as turmeric. It is extensively utilized
as a spice and a medicinal ingredient [34]. The extremely symmetrical arrangement of
delocalized π electrons within curcumin along with its derived compounds gives rise to
remarkable electrical together with optical abilities [34,35]. Recently, it has been established
as a photosensitive agent for use in photodynamic treatment, demonstrating antibacterial
and anticancer properties. The formulation of a curcumin-based complex containing zinc
has already been employed for various environmentally friendly uses, including the elim-
ination of arsenite, fluoranthene, perylene, and chrysene [35]. Curcumin has the ability
to reduce the level of organic compounds when paired with metal oxide nanoparticles.
Consequently, its combination with zinc oxide might augment its capacity to adsorb and
boost its photocatalytic activity [35].

Bentonite (BEN) is a versatile type of clay mineral that is frequently employed in
various environmental sectors. It has distinctive characteristics that enable it to be utilized
as an adsorbent alongside being a support material for metals and metal-oxide-based
catalysts [36–38]. BEN is distinguished by its abundant availability, excessive ion exchange
potential, reactive surface, large surface area, non-toxic qualities, biocompatibility, and
ability to adsorb and absorb chemicals. These qualities make it a valuable carrier for
certain metals, as it assists in enhancing both the physical and chemical characteristics
of the catalyst [36,39]. In this study, the incorporation of zinc into the bentonite layers
has been accomplished by pillaring the metal together with curcumin, which served as
both the reduction and capping reagents. This process resulted in the formation of a
zinc-capped curcumin or zinc/curcumin complex as pillared units between the bentonite
layers, forming a hybrid structure denoted as Zn@CU/BEN. The incorporation of curcumin-
derived phytochemicals proceeded through a conventional organic intercalation procedure,
and we utilized its extract to produce a specific type of safe organo-modified bentonite.

The synthetic catalyst was assessed experimentally as a potential and effective pho-
tocatalyst for enhanced degradation of IBU residuals from water supplies in the presence
of a visible light source. The catalytic activity was monitored based on the degradation
percentages in terms of the affected experimental variables, the TOC content and miner-
alization degree, the formed intermediate compounds and suggested pathway, and the
kinetic properties. Moreover, our study involved a detailed toxicological investigation of
the treated sample after different oxidation intervals, to follow the toxicity of the intermedi-
ate compound and the safety limitations of the applied photocatalytic degradation system
of IBU based on the Zn@CU/BEN catalyst.
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2. Results and Discussion
2.1. Characterization of the Catalyst

The structural impact of synthesis, including the crystallized phases, was evaluated
based on XRD patterns (Figure 1). The employed BEN precursor exhibits the distinc-
tive peaks of montmorillonite (5.78◦ (001) as well as 6.95◦ (002)), which are its primary
constituents, together with specific impurities like kaolinite and quartz (ref. card no.
000-003-0010) (Figure 1A). The estimated crystallite size and d-spacing values of the mont-
morillonite component are 12.9 nm and 12.71 Å, respectively. The acid treatment of BEN
caused significant modifications with respect to the crystalline structure of montmorillonite.
The key peaks exhibited a significant shift towards lower levels (5.05◦ and 6.6◦), accom-
panied by a notable decrease in their magnitudes (Figure 1B). These reflect the partially
destroying effect of the acid on the BEN lattice structure, which is often accompanied
by improvements in the reactivity, textural properties, and physicochemical behaviors of
the modified product [40,41]. The XRD pattern of Zn@CU/BEN confirmed the different
integration and modification steps, including the intercalation of the curcumin-related
organic phytochemicals and the Zn-pillaring step (Line c in Figure 1). The intercalation
step resulted in a marked exfoliation impact on the bentonite layered units, which was
reflected in the notable amorphization or destruction of its structure and the significant
intensification of the d-spacing to 26.3 Å (Line c in Figure 1). The intercalated curcumin
was confirmed by three corresponding detectable peaks at 12.2◦, 14.42◦, and 19.5◦ (Line c
in Figure 1). Also, the pillaring of Zn metals with 10.8 nm crystallite size was confirmed by
the reduced peaks within the area from 30◦ to 80◦ (36.41◦ (002), 39.0◦ (100), 43.30◦ (101),
54.41◦ (102), and 36.40◦ (101)) (Figure 1B) (JCPDS 36–1451; JCPDS 00-004-0784).
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Concerning morphology, the employed bentonite substrate could be distinguished as
having prominent aggregation consisting of packed and compressed flake-like particulates
(Figure 2A). The distinct cornflake shape of montmorillonite was readily apparent in the
high-resolution photos, where the montmorillonite platelets displayed bent and curved
shapes (Figure 2B). The HRTEM photo of BEN particulates exhibited an obvious and
substantial multilayered interior framework, showcasing the distinctive lattice figures
typical of montmorillonite (Figure 2C). Following the addition of curcumin-derived extract,
the layered units of BEN expanded and separated notably (Figure 2D). The HRTEM photos
also revealed the interplay of the clay sheets with tiny coatings of polymeric organic
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molecules, which could potentially be associated with the derived chemical from curcumin
(Figure 2). The filamentous forms were clearly visible and had a darker gray color relative to
the silicate sheets of BEN (Figure 2E). The synthesized Zn@CU/BEN particulates had highly
decorative exfoliated layers that were capped with many spherically shaped granules of
the synthesized pillared zinc metal (Figure 2F). The development and dispersion of the
aforementioned pillared metallic zinc nanoparticles frequently resulted in interconnecting
nanopores, which had a substantial beneficial impact on the surface area (Figure 2G,H). The
HRTEM scans revealed an array of synthesized zinc nanoparticles distributed inside the
BEN layers, confirming their development as pillared nanostructures and surficial-coated
sheets (Figure 2I).
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Figure 2. SEM image of raw BEN (A,H), high-magnification SEM image of BEN surface (B), HRTEM
images of BEN (C), SEM image of CU/BEN (D), HRTEM image of CU/BEN (E), SEM images
of ZN@CU/BEN (F–H), and HRTEM image of Zn@CU/BEN (I) (the red arrow refer to the Zinc
oxide particulates).

The morphological impacts caused substantial modifications in the texture of the
hybridized structure, particularly in terms of its porosity and surface area. The mea-
sured surface areas of BEN (91.2 m2/g), A.BEN (98.7 m2/g), Cu/BEN (106.3 m2/g), and
Zn@CU/BEN (156.7 m2/g) demonstrated significant enhancement in terms of the different
modification phases. The significant increase in surface area resulting from the intercala-
tion procedure with the curcumin-derived extracted solutions may be attributed to the
expanding and exfoliating effect caused by these elongated organic molecules between
the layered units. Additionally, the pillared nanoparticles of zinc metal that grow within
the layers of BEN give the structure a very porous feature that significantly increases
the surface area. Furthermore, the documented microscopic characteristics of the capped
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zinc coating on the exterior of the dispersed BEN sheets are composed of tiny spherical
nanoparticles containing large numbers of interstitial nanopores that significantly increase
the surface area.

FT-IR spectra were employed to track the chemical functional groups throughout
the several transformation operations. The spectrum of the implemented BEN partic-
ulates confirmed the presence of the key BEN chemical groups, including coordinated
forms of -OH (3400 cm−1) with the structural octahedral ions (AlMg(OH), Al2OH, and
AlFe3+(OH)), Si-O (1000 cm−1), interlayer water (1640 cm−1), and Al-O (918 cm−1). The
spectral bands ranging from 1000 cm−1 to 400 cm−1 correspond to the structural bonds of
Si-O-Al, Si-O-Mg, Mg-Fe-OH, and Si-O-Si [42,43] (Figure 3A). The spectrum of A.BEN did
not show any noticeable appearance of newly formed bands or disappearance of existing
bands (Figure 3B). The fundamental impact of the process was demonstrated by the signifi-
cantly shifted absorption bands, along with the notable enhancement in the magnitude of
the distinct bands of the interlayered water and coordinated OH. These changes were a
consequence of the hydration influence of the acid washing step (Figure 3B).
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The spectrum retrieved for the curcumin powder that was utilized in this study showed
the characteristic bands of its principal chemical structure. These include –OH of the phenolic
chemicals (3506 cm−1), aromatic C-H (2943–2965 cm−1), C-H of olefin (1432 cm−1), aromatic
C-H (1162 and 812 cm−1), cis-CH (716 cm−1), benzoatetrans-CH (963 cm−1), aromatic C-
O (1278 cm−1), C=O (1507 cm−1), C-O-C (1023 cm−1), C=C (1626 cm−1), and a benzene
ring (1604 cm−1) [37,44]. The CU/BEN spectrum illustrates the effective integration of the
inorganic framework of BEN with the organic constituents of the curcumin-derived extract
(Figure 3C). The interaction impact is illustrated by the notable displacement of identifying
bands representing the crucial chemical groups with respect to the initial materials (Figure 3D).
The groups identified in BEN were Si-O (1008 cm−1), Al-O (934 cm−1), Si-O-Si (473.2 cm−1),
and Si-O-Al (534 cm−1), while the detectable groups related to curcumin were aromatic C-O
(1284 cm−1), benzoatetrans-CH (921 cm−1), C=O (1509 cm−1), olefin C-H (1440 cm−1), and
benzene rings (1612 cm−1) (Figure 3D). The established FT-IR spectrum of the synthesized
Zn@CU/BEN composite also revealed alterations in the functioning chemical structures
(Figure 3E). The organic groups that exist in curcumin-derived phytochemicals, besides the
inorganic aluminosilicate-related groups that exist in BEN, were easily detected. The bands
revealed significant deviations, indicating the effect of the zinc-pillaring steps (Figure 3E).
Furthermore, the weakened bands at 602.7 and 462 cm−1 reflected the existence of Zn-O
bonds (Figure 3E) [32,33]. This was in good alignment with the -EDX results and validated
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the detection of Si and Al representing the inorganic BEN host, C represents the organic
compounds of the derived extract, and Zn representing the pillared and coated metal.

2.2. Photocatalytic Degradation Results
2.2.1. Effect of Oxidation Parameters
Effect of pH

Our investigation examined the performance of Zn@CU/BEN as a hybrid catalyst in
terms of degrading IBU, with particular emphasis on the influence of pH values ranging
from pH 3 to 8. The essential variables were consistently kept at certain values during
the experiments. These levels were as follows: dosage of 0.25 g/L, volume of 100 mL,
duration of 60 min, concentration of 25 mg/L, and temperature of 20 ◦C. The described
oxidizing measurements demonstrated substantial enhancement when raising the pH
towards alkaline conditions, particularly up to a pH of 6. The observed elimination
percentage increased from 6.9% at pH 2 to 52.6% at pH 6 (Figure 4A). This tendency
may be attributed to the insolubility of IBU within acidic environments and its poor
retention characteristics during its molecular state [3,45]. Raising the pH level triggers the
hydrophilic characteristics of IBU chemicals, leading to enhanced dissolution and retention
of their structure [46]. The binding affinities of Zn@CU/BEN for soluble IBU are negatively
affected or may be reversed when the pH is set above 6 (Figure 4A). The observed de-
protonation of the existing carboxylate groups within IBU structures may be explained
by the repelling interactions between these groups and the dominant negative charges
throughout Zn@CU/BEN within alkaline environments [47]. Furthermore, the observed
impact caused by elevated pH values on the generation of OH groups—which act as key
intermediaries to feed the creation of principal hydroxyl radicals, which constitute the most
potent oxidizing species—may also contribute to the improved elimination characteristics
with regard to pH [48].
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Effects of IBU Concentrations at Different Degradation Durations

The catalytic properties of Zn@CU/BEN were investigated with respect to the pe-
riod of oxidation (10–240 min) along with the concentrations of IBU (25–75 mg/L). The
crucial variables, such as the dosage of 0.25 g/L, overall volume of 100 mL, pH level of
6, and temperature of 20 ◦C, were unchanged over the duration of the experiments. The
Zn@CU/BEN structure exhibited significant oxidative properties throughout the photo-
catalytic degrading activities of IBU, leading to effective remediation (Figure 4B). The
reduction percentages measured for the tested levels of IBU immediately after a period
of 240 min were 96.7% (25 mg/L), 85.2% (50 mg/L), and 72.3% (75 mg/L) (Figure 4B).
The reduction in the degrading efficiency of Zn@CU/BEN as the content of IBU rises can
potentially be credited to the massive formation of thick adsorbed layers of IBU over its
surface. The development of extensive coating layers of the adsorbed IBU, in conjunction
with the reduced ability of light to penetrate through high IBU levels, ultimately leads to
decreased interaction effectiveness between the outer surface of Zn@CU/BEN and incom-
ing light rays [49]. Therefore, the generation of powerful oxidative free radicals is hindered,
resulting in an overall decline in the successful completion of the degradation steps. The
drop in decomposition rates is particularly notable as the oxidizing time frame is prolonged
until reaching a level near the point of equilibrium, around which the degradation system
shows a minimal or steady decomposition rate. The observed degradation behavior could
potentially be owing to the steady reduction in the quantities of oxidized species generated
throughout the IBU disintegration procedures. This decline persists until the complete
depletion of these effective species is completed within a particular time frame [48].

Effect of Catalyst Dosage at Different Degradation Durations

The decomposition rates of IBU were evaluated in terms of the implemented dosages
of the catalyst within the range of 0.25 g/L to 0.4 g/L of Zn@CU/BEN dosages. This vari-
able is critical for determining the effectiveness of the photocatalytic oxidation reaction at a
particular concentration of IBU. The duration of oxidation periods varied between 5 min
and 240 min (Figure 4C). The important parameters were maintained at specific values
(IBU concentration: 25 mg/L; volume: 100 mL; temperature: 20 ◦C; pH: 6) throughout
testing. Utilizing elevated quantities of Zn@CU/BEN led to a dramatic enhancement in the
speed of IBU oxidation, causing a remarkable decrease in the period required to completely
degrade the evaluated levels of IBU (Figure 4C). Utilizing Zn@CU/BEN at varying levels
(0.3 g/L, 0.35 g/L, and 0.4 g/L) resulted in the complete degradation of 25 mg/L of IBU
during particular time periods (160 min, 100 min, and 80 min, respectively) (Figure 4C).
The aforementioned behavior has been well-reported in the scientific literature and sig-
nifies a notable augmentation in the quantity of operative catalytic sites and the reacting
surface area. The previously described investigations revealed that the implementation of
Zn@CU/BEN improves the interaction interface involving IBU molecules and its external
surface. Furthermore, it results in an increase in the efficiency of the oxidizing agents within
the overall system [29,42].

Recyclability of Zn@CU/BEN

Throughout six recycling rounds (RN), the potential of Zn@CU/BEN to be regenerated
in numerous cycles of IBU adsorption and degradation was investigated. Following the
completion of the tests, the used Zn@CU/BEN portions were filtered and thoroughly rinsed
using distilled water for 15 min. Subsequently, they were set aside in a drying furnace at
a temperature of 60 ◦C for a period of 12 h. The potential for recycling of Zn@CU/BEN
throughout the oxidation activities of IBU (25 mg/L) was evaluated under identical testing
situations corresponding to the oxidizing tests, with a dose of 0.4 g/L and a duration of
100 min at pH 6 (Figure 4D). The findings demonstrated significant sustainability of the
Zn@CU/BEN hybrid throughout the oxidization reactions of the IBU medication. The
photocatalytic degradation recyclability tests resulted in IBU oxidation levels of 100% (RN1),
100% (RN2), 98.5% (RN3), 96.3% (RN4), 93.7% (RN5), and 89.3% (RN6) (Figure 4D). This
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reveals the commercial significance of Zn@CU/BEN, since it could potentially be recycled
effectively to eliminate the remaining IBU contaminants in wastewater.

2.2.2. Kinetic and Quantum Yield Studies

The kinetics of the photocatalytic removal reactions of IBU over Zn@CU/BEN were
studied using the ideas of first-order (Figure 5A,B) and second-order (Figure 5C,D) models.
We adopted regression fitting approaches with the linear formulations in Equations (1)
and (2), respectively [22]:

ln
Co

Ct
= −kt (1)

1
Ct

=
1

C0
+ k2t (2)
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The results derived from both of the models revealed agreement with the first-order
concept for all Zn@CU/BEN dosages (that varied between 0.25 and 0.4 g/L) and IBU
concentrations (that ranged between 25 mg/L and 75 mg/L) (Figure 5; Table 1). The
outcomes of this investigation suggest that the performances of the reactions are affected
by only the dose of Zn@CU/BEN or by the duration of degradation, rather than both of
these factors at the same time. The notable situations that exhibited contemporaneous
compliance with both kinetic assumptions indicate the probable collaboration of various
degrading processes or the participation of various generated oxidative radicals. The
kinetic rate constants estimated for the evaluated models exhibited considerable rise and
reduction, respectively, as a consequence of the escalation of Zn@CU/BEN dosages and
IBU concentrations (Table 1). The aforementioned outcomes were mostly consistent with
the results of experimentation.
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Table 1. The kinetic models’ fitting criteria and quantum yields.

First Order Second Order Quantum
Yield (Φ)R2 K1 R2 K2

Concentration
25 mg/L 0.986 0.015 0.964 0.0042 7.96 × 10−6

50 mg/L 0.981 0.0089 0.974 5.3 × 10−4 4.72 × 10−6

75 mg/L 0.982 0.0060 0.980 1.6 × 10−4 3.18 × 10−6

Dosage

0.25 g/L 0.98 0.015 0.96 0.0042 7.96 × 10−6

0.3 g/L 0.95 0.031 0.86 0.0073 1.64 × 10−6

0.35 g/L 0.93 0.057 0.84 0.0187 3.02 × 10−5

0.4 g/L 0.89 0.075 0.87 0.0196 3.98 × 10−5

The quantum yields (Φ) are crucial metrics for assessing the efficiency of the studied
photocatalytic fragmentation process employing Zn@CU/BEN. The theoretical concept of
quantum yield throughout the oxidation processes signifies the amount of charge carriers
sufficient to accomplish successful decomposition of organic structures by ingested light
photons [33,48]. Therefore, the computed values acquired can potentially be employed as
indications of the effectiveness displayed by the oxidization systems being studied with
respect to the parameters being examined. The determination of apparent quantum yields
was performed by calculating the ratio of spent carriers of charges to the total number
of photons that entered throughout the experimental environment (Equation (3)) [50,51].
The relevant values of Φ could be calculated by applying Equation (4), which relies on the
approximated kinetic rate constants determined according to the first-order model [50–52].

Φ =
Number o f LVOX molecules
Number o f absorbed photons

(3)

Φ =
K1

2.303× Io,λ ×
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(cm) denote the ki-
netic rate constants, molar absorption, intensity of incident light with a specific wavelength
λ, and dimension of the used quartz cell, respectively. The corresponding Φ values for
the performed tests utilizing different doses of Zn@CU/BEN and IBU levels are displayed
in Table 1. The quantum yields during oxidative reactions displayed augmentation with
larger doses of Zn@CU/BEN; however, they indicated a decline with rising levels of IBU.
The values that were obtained closely aligned with the results of the experiments and the
kinetic significance, demonstrating the increasing influence of the Zn@CU/BEN dosages
on the photocatalytic oxidative process of IBU (Table 1).

2.2.3. Synergetic Studies

The impact of the various components, such as the BEN substrate, CU/BEN composite,
ZnO, and Zn-pillared BEN (Zn@BEN), on the efficacy of the studied Zn@CU/BEN blend
as both an adsorbent and photocatalyst was evaluated using the following parameters:

• BEN, CU/BEN, ZnO, Zn@BEN, and Zn@CU/BEN without light source;
• Visible light source without catalyst;
• Visible light source + catalyst (BEN, CU/BEN, ZnO, Zn@BEN, and Zn@CU/BEN).

The experiments were carried out implementing particular settings for the parameters
under consideration, including the catalyst dosage (0.4 g/L), entire volume (100 mL),
oxidizing time (120 min), temperature (20 ◦C), and IBU content (25 mg/L) (Figure 6). In
the absence of an illumination source, the incorporation of BEN, CU/BEN, ZnO, Zn@BEN,
and Zn@CU/BEN resulted in removal levels of 26.5%, 38.3%, 13.8%, 47.5%, and 63.5%
through adsorption, respectively (Figure 6A). This highlights the importance of the blending
processes involving those with respect to the adsorption properties of IBU, whether through
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the incorporation of extra-functional chemical groups as reactive binding spots or via
increasing the surface area.
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The IBU compound demonstrated a negligible response to the incident visible light
photons, leading to a mere 0.88% reduction in the IBU content. However, employing ZnO,
Zn@BEN, and Zn@CU/BEN led to notable catalytic activity and oxidizing impacts on the
IBU (Figure 6B), even though the incorporation of BEN and CU/BEN in the context of an
illumination source did not demonstrate any significant photocatalytic relevance. The IBU-
eliminating percentages obtained with ZnO, Zn@BEN, and Zn@CU/BEN were determined
to be 31.7%, 88.6%, and 100%, respectively (Figure 6B). The levels were established after the
equilibrium phases of adsorption and desorption. The increase in effectiveness could be
attributed to several reasons. Firstly, there was a confirmed increase in the uptake affinity,
which is a crucial prerequisite for the effective degradation of pollutants. Furthermore, there
was also a rise in the surface area, resulting in an improved interacting interface between
the catalytic sites. Furthermore, the consistent dispersion of Zn in the form of pillared
nanostructures inside the layers of bentonite promoted the accessibility of the catalytic
sites and their interaction with incoming photons. Therefore, it is strongly advised that
Zn@CU/BEN should be employed as a cost-effective catalyst when using photocatalytic
degradation technology for the remediation of soluble IBU residuals instead of employing
the separate constituents BEN, CU/BEN, ZnO, and Zn@BEN.

2.2.4. Mechanism and Pathway
The Affected Oxidizing Species

Determination of the most vital oxidative species that controlled the degradation mecha-
nism of IBU over the Zn@CU/BEN catalyst was performed based on the experimental results
of reactive radical entrapping investigations (Figure 7A). Three reagents were employed as
entrapping agents to trap the reacting oxidizing species: electron–hole pairs (EDTA-2Na),
hydroxyl (Isopropanol (I-P)), and superoxide (1,4-benzoquinone (B-Q)). The tests were con-
ducted with the following adaptations: the Zn@CU/BEN dosage was established at 0.4 g/L,
pH at 6, IBU concentration at 25 mg/L, water volume at 100 mL, temperature at 20 ◦C,
duration at 120 min, and volume of trapping chemicals at 1 mmol. The experimental results
revealed that the degradation performance or catalytic effectiveness levels of Zn@CU/BEN
for IBU dropped to 10.2% (I-P), 90.8% (EDTA-Na), and 65.7% (B-Q) (Figure 7A). Therefore,
it seems the oxidative degradation pathway of IBU using Zn@CU/BEN is mainly controlled
by the released hydroxyl radicals (OH•) generated through photochemical processes, which
are followed by the superoxide species.
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Photoluminescence (PL) Detection of the Produced Hydroxyl Radicals

The photoluminescence (PL) method was used to track the presence of OH•, em-
ploying the probe molecule methodology (Figure 7B). The test involved mixing 20 mL of
terephthalic acid (TA) at a concentration of 5× 10−4 M with a homogenous mixture contain-
ing NaOH at a concentration of 2 × 10−3 M and Zn@CU/BEN particulates weighing 0.5 g.
The main result of the chemical reactions involving OH• and terephthalic acid was the
generation of hydroxyterephthalic acid, which displayed a significant photoluminescent
signal. The increase in the intensity of the photoluminescent (PL) signal could potentially be
ascribed to the simultaneous increase in the release of OH• provided by the Zn@CU/BEN
hybridized form. The photoluminescent (PL) signal was quantified while the oxidation
process was underway, by implementing a visible light source positioned at an elevation of
about 10 cm distant from the processes. In addition, a 420 nm wavelength cutoff lens was
used. The measurement was performed by employing a fluorescence spectrophotometer
with a particular wavelength of 425 nm for measurement and an excitation wavelength
of 315 nm. The photoluminescence (PL) spectrum of Zn@CU/BEN showed a consistent
pattern whenever tested without an illuminating source, suggesting the absence of pho-
tocatalytic characteristics. Therefore, it could be stated that no hydroxyl radicals (OH•)
were produced during the conditions tested. Whenever the hydroxyterephthalic acid was
subjected to the light source, it produced a photoluminescence spectrum that was easily
observable (Figure 7B). Moreover, the intensity of the spectrum consistently increased
when the duration of the test was prolonged (Figure 7B). The increase in the strength of the
photoluminescence (PL) spectrum might be ascribed to a higher amount of OH• generated
by the Zn@CU/BEN components.

The General Oxidation Mechanism

The starting stage in the photocatalytic oxidation of IBU using Zn@CU/BEN as the
applied catalyst is the effective uptake of the soluble IBU molecules over the surface of the
composite, especially close contact with the active catalytic sites and the released oxidizing
radicals. Simultaneously, the excitation of electrons across the outermost layers of pillared
Zn metals results in the establishment of electron–hole pairs owing to the significant
absorption of the incident radiation [22]. Some of the excited electrons frequently interact
with the oxygen ions throughout the degradation circuit, resulting in the emission of
superoxide oxidative radicals (O2

•−) [33]. Furthermore, the occurrence of an electron–hole
pair (h+) exerts a disruptive effect on the water molecules, resulting in the emission of
hydroxyl oxidative radicals [52]. Afterwards, the oxidative radicals generated, especially
the OH• radicals, react immediately with the soluble IBU compounds, causing oxidation
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and degradation of their organic structures. The continuous interactions result in a sequence
of oxidizing steps, leading to the establishment of intermediate compounds. Following a
period of complete oxidation, these molecules completely transform into carbon dioxide
(CO2) and water (H2O), as shown by Equations (5)–(11) and Figure 8 [53,54].

Zn@CU/BEN + hv→ Zn@CU/BEN
(
e−CB, h+

VB
)

(5)

Zn@CU/BEN
(
e−

)
+ O2 → Zn@CU/BEN + O•−2 (6)

(Zn@CU/BEN)e− + IBU→ (Zn@CU/BEN)e− + IBU+• (7)

IBU+• + O•−2 → Oxidized product (8)

Zn@CU/BEN
(
h+)+ H2O→ Zn@CU/BEN + H+ ↑ +OH• (9)

Zn@CU/BEN
(
h+)+ IBU→ Oxidized product (10)

IBU + OH• → Oxidized product→ CO2 + H2O (11)
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Mineralization and Oxidation Pathway

TOC Content
The total organic carbon (TOC) concentration in the oxidized IBU-contaminated water

samples was monitored to assess the mineralization effectiveness of the degraded IBU
compounds and to detect any potential development of intermediate chemicals. The
oxidative degradation experiment involved introducing a dose of 0.4 g/L of Zn@CU/BEN.
According to the observed curves, there was a significant reduction in the content of total
organic carbon (TOC) whenever the oxidation durations increased (Figure 9). Observable
disparities existed in the oxidization rates attained for IBU and the TOC elimination
percentages established. The observed rates and percentages of TOC elimination in the
same situations were significantly lower than the already-established rates and percentages
of degradation (Figure 9). The results suggest that the IBU chemicals underwent partial
oxidative degradation, which might lead to the formation of secondary intermediate or
transitional organic chemicals through modifications or decomposition of the medication’s
chemical structures. After a period of 160 min, it was established that the photocatalytic
treatment, using Zn@CU/BEN as the catalyst, of IBU as a soluble contaminant had led it to
become completely degraded, and the TOC content was also removed from the solutions
(Figure 9). We can take from this that the Zn@CU/BEN oxidation system of IBU displaced
the complete mineralization or decomposition state, producing the final environmentally
safe products of CO2 and H2O.
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Figure 9. The elimination of the TOC content during the oxidation of IBU by Zn@CU/BEN at
different intervals.

Intermediate Compounds and Oxidation Pathway

Several aromatic chemicals were identified in the oxidation of contaminated water
samples with IBU, which were treated over the Zn@CU/BEN hybrid material in the pres-
ence of visible light (Figure S1, in the Supplementary Materials). These chemicals, which
were intermediates or secondary byproducts, included 2-hydroxy-2-(4-isobutyl phenyl)
propanoic acid, 1-(4-ethyl phenyl)-2-methyl propan-1-ol, 2-(4-(1-hydroxy-2-methyl propyl)
phenyl) propanoic acid, 4-isobutylacetophenone, 2-methyl-butyl benzene, isobutylbenzene,
and 4-ethylbenzaldehyde (Figure S1, in the Supplementary Materials). These chemicals or
intermediates highlighted the potential oxidation pathways of IBU compounds over the
catalytic sites of Zn@CU/BEN. The essential degradation pathway comprises three pro-
cesses: (1) hydroxylation, (2) decarboxylation/demethylation, and (3) ring-opening phases
(Figure 10) [55,56]. The hydroxylation process of the IBU parent chemical structure led to
the development of hydroxy-ibuprofen-modified structures, particularly 2-(4-(1-hydroxy-
2-methyl propyl) phenyl) propanoic acid and 2-hydroxy-2-(4-isobutyl phenyl) propanoic
acid (Figure 10). Subsequently, decarboxylation and demethylation mechanisms occurred,
leading to extra oxidation of the intermediates generated. This ultimately resultws in the
formation of isobutylbenzene, 1-(4-ethyl phenyl)-2-methyl propan-1-ol, and benzaldehyde,
along with various intermediates or secondary chemicals with a small aromatic backbone
(Figure 10). The subsequently occurring reaction among the free OH radicals and the ring
structures of benzene within the previously generated smaller compounds triggered the
formation of different types of carboxylic acids (Figure 10). These carboxylic acids undergo
several oxidizing steps, leading to the entire mineralization of IBU into water (H2O) and
carbon dioxide (CO2) [45].
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2.2.5. Comparison Study

A comparative analysis was conducted to evaluate the efficacy of the synthesized
Zn@CU/BEN photocatalyst in eliminating IBU compounds. The analysis considered the
oxidizing parameters and the levels of IBU evaluated, and it compared the effectiveness
of Zn@CU/BEN with previously studied catalytic structures mentioned in the published
literature. The results given demonstrate that the established material has a better level
of performance as a photocatalyst for the oxidation of IBU contaminants under visible
light. The Zn@CU/BEN catalyst exhibited superior efficacy compared to some synthesized
catalysts over brief oxidizing periods, and its application was only necessary in small
quantities (Table 2). Consequently, we can surmise that the combination of bentonite and
curcumin, along with the incorporation of Zn metal as pillars, allowed us to develop an
environmentally friendly blended material with notable enhanced catalytic activities. The
resulting material can be implemented effectively for the rapid removal of IBU molecules,
which are hazardous medication residues in water.

Table 2. Comparison between the oxidation performance of IBU by Zn@CU/BEN and other investi-
gated catalysts in the literature.

Catalyst Dosage Conc. Light Source Degradation
Performance Reference

C-N/TiO2 0.50 g/L 20 mg/L 150 W LED lamp 360 min, ca. 98% [57]
Bi–TiO2 2.00 g/L 10 mg/L 250 W UV lamp 360 min, ca. 89% [58]

Ag/AgCl@MIL-88A(Fe) 0.40 g/L 10 mg/L 500 W Xe lamp 120 min, ca. 81% [59]
GQD/AgVO3 0.20 g/L 10 mg/L 350 W Xe lamp 120 min, ca. 91% [60]

g-C3N4/MIL-68(In)-NH2 0.15 g/L 20 mg/L 300 W Xe lamp 120 min, ca. 93% [45]
g-C3N4/ZnFeMMO 0.20 g/L 5 mg/L 500 W Xe lamp 240 min, ca. 92% [61]
Fe3O4@MIL-53(Fe) 0.4 g/L 10 mg/L 500 W Xenon lamp 60 min, ca. 99% [56]

TiO2-rGO/SOFs 1.00 g/L 5 mg/L 160 W UV lamp 180 min, ca. 81% [62]
Biochar-ZnAl2O4 1 g/L 20 mg/L 125 W UV lamp 120 min, ca. 100% [63]

MIL-53(Fe) 0.1 g/L 10 mg/L 500 W Xe lamp 60 min, ca. 99% [9]
Zn@CU/BEN 0.4 g/L 25 mg/L 400 W metal halide lamp 80 min, ca. 100% This study
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2.2.6. Toxicological Properties

Standardizing in vitro proliferation tests were conducted on two human cell lines:
HEK293T, derived from the kidney, and HepG2, derived from the liver (Figure 11). The
cell lines were subjected to varying doses (50 µM, 150 µM, and 250 µM) of IBU and its
oxidized intermediates in water at varied oxidizing durations individually. After 20 min, the
intermediate product of IBU’s oxidation had a significant inhibiting impact (p < 0.05) on the
growth of HEK293T cells (Figure 11A). This detrimental effect was observed throughout all
the assessed dosages. Remarkably, the oxidized sample after 20 min, at a concentration of
250 µM, resulted in reduction in the cell viability of HEK293T cells by 22.4% (Figure 11A).
This demonstrates a greater inhibiting impact in contrast to the original IBU medication.
Furthermore, the sample that underwent oxidation for 60 min had a greater toxic effect,
resulting in cell viability of 11.8%. This effect was more pronounced in comparison with
IBU at a dose of 250 µM. However, the photodegraded sample after 100 min had little
detrimental effect on the proliferation of HEK293T cells as compared to the initial treated
samples, resulting in 36% cell viability using the highest dosage (250 µM) (Figure 11A).
However, the original form of IBU did not exhibit any noteworthy (p > 0.05) inhibiting
impact on the HEK293T cell line in any of the doses examined. After 160 min, the treated
sample showed no inhibitory impact on the examined cell lines, indicating that the com-
pletely mineralized material is safe. This was confirmed by the thorough decomposition
of IBU into end products. Several studies have demonstrated the toxic impact of IBU on
the human kidney [64,65]. However, in this investigation, IBU did not show any cytotoxic
effects, most likely because the quantities utilized were low.
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HEK293T (A) and HEPG2 (B) cell lines in the presence of fresh cells as the control and phenylarsine
oxide (PAO) as the positive control.
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Notably, HEPG2 cells exhibited a comparable effect to the HEK293T cell line (Figure 11B).
The growth of HEPG2 cells was inhibited in a dose-dependent way by all the investigated
doses collected after 20 min. Remarkably, a dose of 250 µM of the IBU oxidized water sample
exhibited a substantially greater inhibition influence on the HEPG2 cell strain in comparison
to IBU, resulting in cell viability of 38.8% of the cells (Figure 11B). Moreover, the oxidized
sample exhibited a substantial reduction in cell viability at all three doses evaluated after
60 min. Additionally, it had a greater level of inhibition versus IBU at a dosage of 250 µM,
resulting in a 17.4% cell viability. The viability of HepG2 cells was not significantly affected
by IBU or the completely mineralized IBU-polluted water sample after 160 min, even at the
maximum dosage.

In general, the above in vitro experiments established that the photocatalytic degrada-
tion byproducts of IBU residuals in the water supply may cause substantial harm to human
liver cells and human kidney cells in comparison to the original chemical. Owing to the
biological accumulation of such chemicals within human cells and their transfer via food
chains, the prolonged consumption of partially oxidized IBU-derived products has the
potential to adversely affect liver and kidney functions in humans. Hence, it is necessary
to continue the oxidation of IBU using the recommended catalyst for a duration of up to
160 min to be able to accomplish the full mineralization of IBU into a safe end product and
prevent the toxic effects of the intermediate compounds.

3. Experimental Work
3.1. Materials and Chemicals

The naturally occurring bentonite sample was collected from a quarry located in the
Western Desert of Egypt. The composition of the sample was as follows: 54.82% SiO2,
2.6% Na2O, 1.45% TiO2, 17.56% Al2O3, 2.4% CaO, 2.5% MgO, 9.5% Fe2O3, and 9.2% LOI
(loss on ignition). The hybrid synthesis techniques involved the use of curcumin (>94.99%;
its chemical structure is presented in Figure S2, in the Supplementary Materials), sulfuric
acid (99%), pure ethanol, zinc nitrate hexahydrate salt (98%), and hydrazine solution
(35 wt%), all of which were acquired from Sigma-Aldrich, Cairo, Egypt. For adsorption
and oxidation experiments, clinical-grade ibuprofen (98%) was supplied by Sigma-Aldrich,
Cairo, Egypt.

3.2. Synthesis of the Catalyst
3.2.1. Acid Activation of Bentonite

To eliminate the existing carbonate and metal impurities, the bentonite fractions were
activated using acid. We mixed 10 g of bentonite powdered sample with 100 mL of a dilute
(20%) sulfuric acid and mixed them using a magnetic stirrer (650 rpm) over 12 h at 100 ◦C.
Following that, the acid-leached powder was filtered out and then carefully rinsed utilizing
distilled water before being dried at room temperature for 48 h (40.3 ◦C) and stored within
specialized containers for subsequent synthesis stages.

3.2.2. Intercalation of Bentonite by Curcumin (CU/BEN)

The bentonite sheets were intercalated using curcumin-extracted organic phytochemi-
cals employing a simple chemical integration process. For this experiment, the curcumin-
extracting compounds were obtained by dissolving the curcumin powders (3.7 g) in ethanol
(60%) for around 15 min in a sealed vessel at 50 ◦C and blending the resulting mixture
via stirring (1500 rpm). Following this, the resulting mixture was subjected to ultrasound
treatment (20 min; 240 W) to increase homogeneity and the yield of the crucial organic phy-
tochemicals. About 50 mL of the resultant extract was homogeneously combined with 4.4 g
of BEN as a colloidal solution or suspension in 50 mL of distilled water. To stimulate the
diffusion effectiveness of the soluble organic phytochemicals inside the multiple layers of
bentonite, the resultant mixture was maintained under rapid stirring (1500 rpm) over 12 h
plus ultrasonication over an extra 5 h (240 W). The obtained product after the intercalation
(CU/BEN) was subsequently filtrated out of the remaining solution, rinsed carefully for



Catalysts 2024, 14, 129 18 of 23

approximately five runs (10 min), and slowly dried at 50 ◦C for 12 h before being employed
in the following stage (Figure 1).

3.2.3. Synthesis of Zn-Pillared CU/BEN Composite (Zn@CU/BEN)

The synthesis methods commenced by producing green extract solution of curcumin,
which functions as a crucial green reagent. This extract was implemented as both a
reduction agent and a capping agent. Conversely, the BEN/zinc nitrate combination was
developed by thoroughly mixing the CU/BEN portions (4.4 g) with 100 mL of an aqueous
solution containing zinc nitrate salt (2.2 g). The blending of the two constituents was
carried out over a duration of 10 h by employing a magnetic stirrer operating at a speed
of 650 rpm, followed by a further 2 h of sonication utilizing a source with a power output
of 240 watts. Subsequently, the curcumin-derived extract (100 mL) was combined with
the BEN/zinc nitrate blend while stirring vigorously at a constant rate of 1500 rpm till
a noticeable reddish precipitate formed. Following that, rapid introduction of 50 mL of
hydrazine was performed to verify the effective transformation of previously generated
oxides along with hydroxides towards metallic zinc. The process was extended for a
further 24 h with intermittent ultrasound treatments (20 min each) to promote adequate
mixing among the reactants and maintain uniform dispersion of the pillared metal as well
as the immobilized phytochemicals. Subsequently, the Zn-pillared Cu/BEN composite,
in the form of solid particulates (Zn@CU/BEN), was successfully separated via filtering
with Whitman filter paper. The filtered product underwent five rounds of washing using
distilled water, with each successive washing cycle lasting for 10 min. Subsequently, the
rinsed product was dried for 12 h at a temperature of 50 ◦C.

3.3. Characterization Techniques

The effects of the modifying and combining operations on the crystal structure of
BEN were evaluated by analyzing the X-ray diffraction patterns of the different produced
materials, achieved by employing a PANalytical-Empyrean X-ray diffractometer (Malvern
Panalytical B.V. Co.; Almelo, The Netherlands). The detection span of the diffractometer
extended from 5 to 80 degrees. The effects of the modifying chemical processes and
the effective insertion of the active ingredient groups of curcumin-related components
and ZnO were monitored using the FT-IR spectra. These spectra were obtained using a
Fourier transform infrared spectrometer (FTIR-8400S; Shimadzu Co., Kyoto, Japan) over
a frequency spectrum of 400 cm−1 to 4000 cm−1. A scanning electron microscope (Zeiss
Ultra 55; Carl Zeiss AG Co.; Oberkochen, Baden-Württemberg, Germany) was used to
examine the exterior morphology, while a transmission electron microscope (JEM-2100,
JEOL Ltd. Co.; Tokyo, Japan) was used to analyze the interior characteristics. A surface area
analyzer (SA3100, Beckman Coulter Co.; Brea, CA, USA) was used to track the influence of
integration processes on the textural qualities and surface area.

3.4. Advanced Oxidation of IBU

The catalytic efficiency of Zn@CU/BEN in oxidizing IBU was assessed after attending
to the equilibrium of adsorption as well as desorption inside a Pyrex cylindrical vessel
with a diameter equal to 7 cm and an overall length equal to 15 cm. The cell was coupled
with a fully embedded visible light bulb positioned 3.5 cm away from the outside surface
of the cell. The source of illumination utilized throughout the experiments was a com-
mercially available metal halide bulb with a power output of 400 W and a wavelength of
approximately 490 nm. The average incoming illumination intensity was measured to be
18.7 mW/cm2. Advanced oxidation experiments were conducted using IBU levels of 25,
50, and 75 mg/L, Zn@CU/BEN doses ranging from 0.25 g/L to 0.4 g/L, and oxidizing
periods ranging from 10 min to 240 min. The experiments were carried out under constant
pH (pH 6), volume (100 mL), and temperature (20 ◦C) conditions. The overall oxidation
performance of IBU was monitored by measuring its concentration within the addressed
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solutions. The evaluations were performed three times, and the mean for all three findings
exhibited a standard deviation of no more than 4.5%.

The residual IBU levels post adsorption and photocatalytic oxidation experiments,
including the secondary byproducts resulting from partial oxidation, were quantified
by employing liquid chromatography–mass spectrometry (LC-MS). The LC-MS appara-
tus was outfitted with a mass analyzer, a 3000 HPLC, and a Thermo Fisher Scientific
(Waltham, MA, USA) column. The fluid phase associated with the system consisted of a
blend of methanol and water, in addition to formic acid (1%). Throughout the analysis,
the eluent was dispensed at a velocity of 0.35 mL/min with an injection capacity of 5 µL,
and the column itself was kept at 30 ◦C. The compounds’ mass spectra were measured by
employing m/z scanning within a 20–400 range, with the nebulizer pressure, temperature,
ESI voltage, and nitrogen flow velocity set to 35 psi, 350 ◦C, 4 kV, and 10 L/min, respec-
tively. The total organic carbon (TOC) contents inside the samples that were oxidized were
measured using TOC-VCPH (Shimadzu, Kyoto, Japan) in order to assess the mineralization
effectiveness of the oxidation processes.

3.5. Toxicological Properties

The toxicological effects of the oxidized intermediates of IBU on the human body
were assessed by examining their impacts on the kidney (HEK293T cell lines) and liver
(HepG2 cell lines), using cell lines derived from the American Type Cultural Collection
(ATCC). The selected cell lines were grown in DMEMs combined with 10% fetal bovine
serum in a humidified atmosphere containing 5% CO2 at 37 ◦C. Afterwards, the cells were
cultivated and seeded in 96-well plates with a density of 4000 cells per well and incubated
overnight. Following that, they were subjected to varied concentrations (250 µM, 150 µM,
and 50 µM) of IBU and oxidized IBU-contaminated water within a fresh medium before an
extra incubation period of 48 h. Phenylarsine oxide (PAO) served as the positive control,
while 0.5% dimethyl sulfoxide (DMSO) served as the negative reference. Following a 48 h
incubation period, 20 µL of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) reagent with a concentration of 5 mg/mL was introduced into each of the wells.
The cells thereafter underwent incubation at a temperature of 37 ◦C for a duration of 2 h.
Following this, the fluids were removed, and 100 µL of DMSO (100%) was injected into
each well. Consequently, the absorbance was determined at a wavelength of 570 nm using
a microplate reader. The data, described as mean ± standard deviation (%), were reported
as the ratio of treated samples to control samples (i.e., IBU or its oxidized products/DMSO).
The experiments were conducted in at least three repetitions, with each performed at
least three times. The observed data were immediately used to compute the cell viability
percentage using Equation (12).

Cell viability(%) =
Mean OD

Control OD
× 100 (12)

4. Conclusions

The Zn@CU/BEN composite was synthesized using simple, environmentally friendly
approaches for effective catalytic oxidation of IBU into safe end products under visible
light. About 25 mg/L of IBU was completely degraded after 80 min using Zn@CU/BEN at
0.4 g/L and pH 6, reflecting higher activity as compared to several study materials. The
synergetic influence of BEN and CU/BEN explains the markedly enhanced properties,
achieved by inducing the surface area, adsorption capacity, and interactive interface of
the catalytic sites of the pillared Zn. The complete elimination of TOC after 160 min
demonstrated complete mineralization and the formation of intermediates. The identified
intermediates, in addition to the detection of hydroxyl radicals as the effective oxidizing
species, validated the degradation of IBU over Zn@CU/BEN through three progressive
processes (hydroxylation, decarboxylation/demethylation, and ring opening). The cell
viability of kidney (HEK293T) and liver (HEPG2) cell lines after their treatment with the
oxidized samples for 160 min revealed high biosafety, with cell viability greater than 97%.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal14020129/s1, Figure S1. HPLC-MS spectra of the starting IBU
drug (A) and its photo-oxidized intermediate products (B and C); Figure S2. The chemical structure
of curcumin.
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