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Abstract: Biochar derived from pomegranate peel at different pyrolysis temperatures (450, 600, and
850 ◦C) was synthesized and characterized by BET, XRD, FTIR, and SEM-EDX. Its catalytic efficiency
in the degradation of the antihypertensive losartan (LOS) in the presence of sodium persulfate was
examined. The biochar pyrolyzed at 850 ◦C exhibited higher catalytic activity, which was correlated
with the greater surface area and higher concentration of minerals on its surface. Interestingly,
despite adsorption being favored at alkaline pH, pH 3 showed the highest LOS degradation. LOS
decomposition followed pseudo-first-order kinetics. The addition of persulfate significantly increased
LOS reduction, while the presence of inorganic and organic water matrix constituents such as sodium
chloride, bicarbonate, and humic acid inhibited the oxidation. Experiments conducted with radical
scavengers revealed that both hydroxyl and sulfate radicals, as well as singlet oxygen, participated in
LOS decomposition, with the former being the dominant species. Using a continuous flow reactor, the
system exhibited a satisfactory steady-state performance of 90% LOS removal for 114 h. Afterward,
a moderate decrease in performance was observed, which can be attributed to the alteration of the
catalyst’s surface and mineral dissolution due to acidity.

Keywords: pomegranate peel; pyrolysis temperature; persulfate; pharmaceuticals; continuous
flow reactor

1. Introduction

Growing concerns revolve around pharmaceutical contaminants such as antibiotics,
anti-inflammatories, antihypertensives, and antidepressants, given their frequent presence
in the environment, their ability to contribute to the development of antimicrobial-resistant
bacteria, referred to as antibiotics, and their potential toxicity to aquatic organisms [1–4].
Among the various classes of pharmaceutical compounds, the class of antihypertensive
drugs is one of the most important, considering that since their discovery, health issues
related to heart attacks and strokes caused by high blood pressure have been dramatically
reduced [5–8]. Nevertheless, overuse of drugs targeting hypertension has led to their
appearance in various aquatic environments, including seawater, rivers, surface water,
and hospital wastewater, with concentrations ranging from 0.6 ng/L to 17.7 mg/L [9–16].
Some of the well-known antihypertensive drugs with a high number of prescriptions are
losartan (LOS), valsartan, and propranolol [17]. Although LOS is used to prevent heart
attacks, strokes, and kidney damage [18,19], it has been reported to be toxic to several
organisms, such as Daphnia magna, algae, Desmodesmus subspicatus, and fish [9,20–22]. In
addition, LOS has been measured in effluents with concentrations ranging from 0.0197 to
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2.760 µg/L [18,23], suggesting the incomplete removal of LOS during biological wastewater
treatment [20–22]. Furthermore, in a previous work of our group where Ioannidi et al. [24]
studied the degradation of LOS using the heat-activated persulfate (SPS) system, thermally
activated persulfate was found to be a particularly energy-intensive process, while some
of the identified transformation products of LOS were estimated to be more toxic than
the parent compound. Therefore, it is mandatory to explore alternative approaches for
the effective degradation of antihypertensive drugs in aqueous environments. Advanced
oxidation processes (AOPs) reliant on persulfate activation have gained significant attention
in the scientific community for the remediation of persistent micropollutants in aqueous
solutions [25,26]; because persulfate is a mild oxidant, it is considerably cheaper than other
oxidants such as oxygen peroxide [27], and its activation can be induced through various
means, including heat, UV, or even solar irradiation, transition metals, ultrasound, alkaline
conditions, carbon materials [28–32], while showing synergistic effects with processes such
as photocatalysis [33]. Recently, many researchers have focused on the utilization of biomass
residues to produce useful materials [34,35]. In the category of useful products derived
from waste biomass, biochar stands out, serving as either an adsorbent material [36,37],
a catalyst [38], or a soil improvement agent [39]. The properties of biochar depend on
the physicochemical characteristics of the biomass [39,40]. In addition, the characteristics
of the obtained materials can be tailored to the variation of the production procedure.
Therefore, keeping in mind the perspective of valorization, it is not strange that the number
of studies related to biochar has significantly increased in the last decade [41]. A well-
known agricultural waste is pomegranate peels, the annual global amount of which is
approximately 1.62 million tons [42]; thus, it is considered a potential source to produce
biochar. So far, pomegranate peel has been studied as a potential source to produce biochar
with a high heating value (23.5 MJ/kg) [43], and to be used as an adsorbent material for
crystal violet dye [44]. Only recently, Chen et al. [26] used biochar from pomegranate husk
that was pyrolyzed at 500 ◦C, modified with KOH, ZnCl2, and KHCO3, and continuously
pyrolyzed again at 800 ◦C for peroxymonosulfate (PMS) activation for sulfamethoxazole
(SMX) degradation. Chen et al. [26] reported very promising results, but the researchers
used PMS as an oxidant, which is more expensive than SPS. Moreover, their work focused
on the examination of modified biochar rather than the examination of unmodified biochar,
which is more environmentally friendly and does not require additional chemicals. It is
also unclear if the slight decrease observed during the catalyst reuse was due to alterations
in the catalyst surface. Hadi et al. [45] synthesized magnetic ferric oxide (Fe3O4) biochar
from pomegranate husk for persulfate activation for the oxidation of 4-Chlorophenol.
However, according to the authors, the production of the reactive species was mainly due
to the presence of iron. Moreover, Oymak and Şafak [46] synthesized Fe3O4 biochar with
promising capabilities for the adsorption of sulfadiazine. In addition, Taheri et al. [47] used
zinc chloride (ZnCl2) followed by acid treatment to modify biochar from pomegranate
husk for 2,4-dichlorophenol adsorption from aqueous solutions.

In this work, biochar derived from pomegranate peels was prepared without any
modifications for the first time at three pyrolysis temperatures: 450 ◦C, 650 ◦C, and 850 ◦C.
The relevant temperatures were chosen based on the results provided by the work of Chen
et al. [26] for the synthesis of pomegranate husk, previous results for the preparation of
biochar from other sources [48], and instrumentation limitations.

The biochar was characterized using the Brunauer–Emmett–Teller method (BET)
for the determination of the specific surface area (SSA), X-ray diffraction (XRD), Fourier
transform infrared (FTIR), scanning electron microscopy (SEM), and energy-dispersive
X-ray microanalysis (EDX) techniques. Subsequently, it was investigated for its adsorption
and degradation capabilities for LOS, the latter via activated SPS. Additionally, various
operational parameters, such as initial SPS and LOS concentrations, were tested, along
with the influence of pH, the water matrix, and the degradation pathway, using different
scavengers. Since biochars consist of carbon-based material and the stability of these
systems remains an open question in the literature, a significant novelty of this work is the
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particular emphasis given to determining the catalyst’s activity and stability after prolonged
treatment times. Therefore, a continuous flow reactor was employed to examine, for the
first time, the stability of the pomegranate biochar and to identify factors contributing to the
eventual loss of its catalytic activity. This analysis was conducted using XRD, SEM/EDX,
and FTIR techniques for both the fresh and the used catalytic material.

2. Results and Discussion
2.1. Biochar Characterization

The specific surface area (SSA) of the materials was measured using the BET method
based on data obtained from the adsorption–desorption curves of N2 at the temperature
of liquid nitrogen. All three samples exhibited low SSA values. Specifically, BC450 had a
non-detectable SSA, BC650 had a very low SSA of 0.2 m2/g, and only BC850 had an SSA of
20 m2/g. As expected, the SSA increases with pyrolysis temperature [49]. Higher pyrolysis
temperatures enhance the removal of volatile compounds such as CO, CO2, and lower
hydrocarbons; decompose the raw biomass; and create new pores. These changes result in
increased SSA and porosity of the biochar.

The pores of BC850 are primarily located in the macroporosity region, as shown in
Figure 1. A small portion of the pores have a mean diameter of 11 nm. The absence of
microporosity explains the low SSA of the sample; on the other hand, macroporosity can
be beneficial for water movement through biochar in degradation processes, whether in
batch or flow oxidation systems.
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Figure 1. Pore size distribution of the BC850.

The SEM images of the three samples are presented in Figure 2. No significant differ-
ences are observable in these images. In all cases, the biochar takes the form of curvy flakes,
with only BC850 showing irregular flakes as a result of the higher pyrolysis temperature.

The EDX analysis of the biochars, presented in Table 1, reveals that the main com-
ponents in all three biochars are carbon (C) and oxygen (O), with respective percentages
of 98.3%, 97.9%, and 95.7% for BC450, BC650, and BC850. It is observed that the higher
pyrolysis temperature primarily decreases the oxygen content due to the release of a higher
amount of volatile species and increases the mineral content in the biochar. These minerals
are present in forms such as oxides, hydroxides, or carbonates, indicated by their high
basicity. Potassium (K) is the main inorganic component, doubling its content in BC850.
Furthermore, it can be deduced that the oxygen content in the carbonaceous phase is
lowest in BC850. This can be calculated from the total oxygen content minus the oxygen in
minerals. The corrected oxygen contents are 14.9% for BC450, 12.0% for BC650, and 10.1%
for BC850. These differences can affect the hydrophilicity of the samples. It should be noted
that Na and S were not detected in any of the three biochars.



Catalysts 2024, 14, 127 4 of 19Catalysts 2024, 14, x FOR PEER REVIEW 4 of 20 
 

 

BC450 

 

BC650 

 

BC850 

 

Figure 2. SEM images of the three biochars produced under different pyrolysis temperatures. 

The EDX analysis of the biochars, presented in Table 1, reveals that the main compo-

nents in all three biochars are carbon (C) and oxygen (O), with respective percentages of 

98.3%, 97.9%, and 95.7% for BC450, BC650, and BC850. It is observed that the higher py-

rolysis temperature primarily decreases the oxygen content due to the release of a higher 

amount of volatile species and increases the mineral content in the biochar. These minerals 

are present in forms such as oxides, hydroxides, or carbonates, indicated by their high 

basicity. Potassium (K) is the main inorganic component, doubling its content in BC850. 

Furthermore, it can be deduced that the oxygen content in the carbonaceous phase is low-

est in BC850. This can be calculated from the total oxygen content minus the oxygen in 

minerals. The corrected oxygen contents are 14.9% for BC450, 12.0% for BC650, and 10.1% 

for BC850. These differences can affect the hydrophilicity of the samples. It should be 

noted that Na and S were not detected in any of the three biochars. 

Table 1. The % atomic composition of the three biochars determined with EDX. 

Element BC450 BC650 BC850 

C 82.5 84.7 83.4 

O 15.8 13.2 12.3 

Mg 0.1 0.1 0.1 

P 0.1 0.1 0.1 

Cl 0.1 0.2 0.4 

K 1.2 1.5 3.3 

Ca 0.2 0.3 0.4 

Figure 2. SEM images of the three biochars produced under different pyrolysis temperatures.

Table 1. The % atomic composition of the three biochars determined with EDX.

Element BC450 BC650 BC850

C 82.5 84.7 83.4
O 15.8 13.2 12.3

Mg 0.1 0.1 0.1
P 0.1 0.1 0.1
Cl 0.1 0.2 0.4
K 1.2 1.5 3.3
Ca 0.2 0.3 0.4

The X-ray diffraction (XRD) peaks of the three biochars are presented in Figure 3.
The three prepared biochars exhibit some intense, sharp peaks in their XRD patterns.

These peaks are attributable to the minerals in the biochar, corresponding to various mixed
phases of oxides, phosphates, and carbonates. A significant amount of KCl is detectable
from the peak at 29.5◦ [50,51]. Previous reports [52] have indicated that increasing the
pyrolysis temperature alters the distribution of minerals in the biochar. Specifically, new
peaks were detected, while the intensity of peaks formed at lower temperatures decreased,
indicating the decomposition of minerals and the formation of new phases. The broad peaks
at approximately 23◦ and 43◦ are due to the carbon phase, with the first peak corresponding
to the (002) plane of graphitic carbon and the second peak at 43.5◦ corresponding to sp2

carbon species (100) [53–55].
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Figure 3. XRD patterns of the three biochar (BC450, BC650, BC850).

The FTIR spectra of the catalysts are presented in Figure 4. It is evident that the
three biochars prepared at different pyrolysis temperatures display almost identical peaks,
though differences in intensity exist. For instance, the broad peak centered at 3431 cm−1

becomes less intense as the pyrolysis temperature increases. This peak represents the –OH
bond, and its intensity corresponds with the oxygen content of the samples, as shown in
Table 1.
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Figure 4. Fourier transform infrared spectra of the studied samples.

The peak at 1580 cm−1 is attributed to C=C bonds with conjugation of π electrons [56,57]
by functional groups with high electronegativity. This peak shifts to higher wavenumbers
with increasing pyrolysis temperatures due to the release of volatile compounds and the
graphitization process, which enhances the aromatic character of the biochar [58]. The main
peak of the spectrum, located at 1383 cm−1, is associated with carbonate species [59].
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2.2. Catalytic Results
2.2.1. Estimation of the Catalytic Activity of Biochars

To investigate the effect of pyrolysis temperatures on the catalytic performance of
biochar from pomegranate peel, 500 mg/L of BC450, BC650, and BC850 were used for the
degradation of 500 µg/L LOS with 500 mg/L persulfate (SPS) in ultrapure water (UPW)
and inherent pH (5.5).

As shown in Figure 5, the degradation rate of LOS increases with the pyrolysis tem-
perature. Removal efficiencies of 65%, 68%, and 95% for LOS were achieved at 180 min for
BC450, BC650, and BC850, respectively.
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mental conditions: [Biochar] = 500 mg/L, [SPS] = 500 mg/L, and [LOS] = 500 µg/L in UPW.

This behavior is likely due to the increased specific surface area and the higher per-
centage of minerals on the surface of the biochar as the pyrolysis temperature increases, as
discussed in Section 2.1. Additionally, adsorption experiments were conducted to assess
the adsorption capacity of each biochar (Figure 5).

Despite BC850 having a higher SSA compared to BC650 and BC450, the removal of
LOS through adsorption at inherent pH was negligible in all cases. Similar results have
been reported by Duan et al. [32] and Chen et al. [26], who studied the effect of the pyrolysis
temperature to produce soybean straw biochar and pomegranate husk biochar treated
with KOH, respectively, to activate persulfate for the degradation of pharmaceuticals.
Furthermore, an experiment with 500 mg/L SPS and 500 µg/L LOS was performed, with
the results also displayed in Figure 5. It appears that SPS alone is capable of oxidizing a
significant portion of LOS, achieving 60% removal after 180 min.

The synergy index, S, is often used in similar catalytic studies to examine if true
synergy exists, i.e., whether the simultaneous use of biochar and persulfate exhibits higher
efficiency than the sum of the individual biochar (adsorption) and oxidant (persulfate)
efficiencies. S can be calculated according to the following equation:

S =
kBC/SPS

kBC + kSPS
(1)

where kBC/SPS refers to the apparent kinetic constant for the simultaneous use of biochar
and persulfate, kBC refers to the observed kinetic constant in adsorption experiments, and
kSPS refers to the apparent kinetic constant in the absence of biochar. Furthermore, true



Catalysts 2024, 14, 127 7 of 19

synergy occurs when S > 1. Interestingly, when applying Equation (1) to the experiments
conducted with the various obtained biochars, as depicted in Figure 5, the synergy was
calculated to be 1.69, 2.15, and 2.53 for BC450, BC650, and BC850, respectively. These results
align with the measured values of persulfate consumption, which decreased from 9% after
10 min of reaction with BC850 to less than 5% for BC450 and BC650, justifying the higher
LOS removal observed with BC850.

2.2.2. Effect of Persulfate, Losartan Initial Concentration, pH Solution, and Scavenger Agents

Parameters such as oxidizing agent concentration, persistent pollutant concentration,
pH of the solution, and the type of reactive species potentially formed affect the performance
of the process and should always be considered.

Figure 6A demonstrates that increasing the SPS concentration enhances the oxidation
of LOS. Specifically, LOS removal rates of 62%, 88%, and 99% were achieved in 90 min
of reaction with 250, 500, and 750 mg/L SPS, respectively. The apparent rate constant
(kapp) increased 1.8-fold and 5-fold as the SPS concentration was raised from 250 mg/L to
500 mg/L and to 750 mg/L, respectively.
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Figure 6. Effect of (A) initial concentration of persulfate on 500 µg/L LOS degradation with 500 mg/L
BC850, (B) initial concentration of LOS on its degradation with 500 mg/L BC850 and 500 mg/L SPS,
and (C) initial pH solution on 500 µg/L LOS adsorption and degradation with 500 mg/L BC850
and 500 mg/L SPS in UPW. (D) Effect of reactive species scavengers on 500 µg/L LOS degradation
with 500 mg/L BC850 and 500 mg/L SPS in UPW. Experiments were performed in batch mode
of operation.
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Although a significant increase in the LOS degradation rate was observed with
750 mg/L of SPS, 500 mg/L of SPS was selected for further investigation based on consid-
erations of (i) potential environmental consequences of sulfate anions in the water, (ii) the
process performance, and (iii) the cost of the oxidizing agent [60].

Consequently, the effect of the initial concentration of LOS was tested in the range
of 250–3000 µg/L. Figure 6B shows the apparent rate constant (kapp) for various initial
concentrations of LOS. For LOS concentrations of 250 and 500 µg/L, the degradation rate
of LOS follows first-order kinetics. However, concentrations higher than 500 µg/L of
LOS resulted in lower kapp, indicating that the degradation rate of LOS followed pseudo-
first-order kinetics. Specifically, kapp decreased from 0.0178 min−1 at 250 µg/L LOS to
0.0109 min−1 at 3000 µg/L LOS. A similar behavior has been observed in other types of
AOPs, such as photocatalysis [61], where for low concentrations of emerging contaminants,
kapp, remains constant [61–63].

Subsequent experiments were conducted under acidic and basic conditions to study
the effect of solution pH on the LOS degradation rate. Figure 6C displays concentration-
time profiles at pH values of 3, 5.5, and 9 for both adsorption and degradation of LOS.
As shown in Figure 6C, LOS oxidation is more effective in acidic conditions, achieving
complete LOS removal within 120 min. However, the degradation rate diminishes with
increasing pH; 90% and 82% LOS removal were achieved at pH 5.5 and 9, respectively,
after 120 min of treatment, with the kapp value decreasing 2.7 times as the pH rose from 3
to 9. In contrast to oxidation, LOS adsorption is favored at pH 9; there is a decrease in LOS
adsorption at pH 3, while at the inherent pH, adsorption was almost completely inhibited.
This strange behavior can be explained by the fact that LOS contains one acidic and one
basic center. The pK values of these groups indicate that there is not a well-separated
dissociation of the protonated basic center and the acidic center, leading to equilibria
between the positive, neutral, and negative forms of the drug. The cationic form exists at
pH values lower than 3.5, while the anionic form can be formed in significant amounts
at pH values higher than 5.5. The neutral form of the drug is present in a pH-dependent
concentration over the pH range of 1.0 to 6.2, with the maximum concentration located
at pH 5. Additionally, the lipophilicity of LOS is maximized in this pH region, showing a
peak around pH 5 [64].

The above speciation of LOS suggests that the charge of the species has a significant
influence on the adsorption process, and the existence of a charge, either positive or
negative, is necessary for adsorption on the biochar surface, despite the biochar’s high
point of zero charge. This implies that the adsorption is not due to π-π interactions but
rather due to electrostatic attractions with the surface hydroxyl groups of the biochar. The
limited non-electrostatic interactions are attributed to the low specific surface area of the
biochar. On the other hand, the high oxidation of LOS suggests the significant role of the
carbonaceous phase in the degradation process. Indeed, the activation of SPS, and thus
the oxidation of LOS, is high across all pH ranges. Moreover, the adsorption of SPS on the
biochar can influence the total surface charge and, thus, the adsorption of LOS. Therefore,
the high oxidation yield in acidic conditions is likely due to the increased adsorption of
SPS on the surface of BC850, resulting in the production of more reactive species such as
sulfate and hydroxyl radicals [65,66].

To estimate the contributions of sulfate radicals (SO•−
4 ), hydroxyl radicals (HO•), and

singlet oxygen (1O2), 9.24 mM of MeOH and t-BuOH, and 1.54 mM NaN3 were used
as scavenger agents, respectively [31,49,67–69]. It should be noted that although NaN3
is a well-known scavenger for 1O2, it can react with nearly the same kinetic constant
with HO• [70,71]. As shown in Figure 6D, the addition of each scavenger reduced the
performance of the BC850/SPS process, with both t-BuOH and NaN3 exhibiting the greatest
and equal reduction in performance, where the kapp value decreased sevenfold. Conversely,
the kapp value decreased only 1.35 times with the addition of MeOH. These results indicate
that all reactive species studied (i.e., hydroxyl radicals, sulfate radicals, and singlet oxygen)
contribute to the oxidation of LOS, with HO• being the dominant species. Similar results
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have also been reported by Chen et al. [26], Lykoudi et al. [72], Ho et al. [73], and Avramiotis
et al. [49], who studied the activation of persulfates (PMS or SPS) using biochar for the
degradation of pharmaceuticals. The high inhibition of degradation observed with the
addition of NaN3 also provides evidence that the interactions between biochar, LOS, and
SPS are due to the surface C-OH groups. These groups have been found to be active in the
oxidation process [74]. Furthermore, the partial oxidation of these groups by SPS leads to
the deactivation of the biochar [74].

2.2.3. Effect of Water Matrix

Figure 7 illustrates the impact of adding 10 mg/L humic acid (HA) or 250 mg/L
of NaNO3, NaCl, and NaHCO3, respectively, as well as the effect of real matrices such
as bottled water (BW) and wastewater (WW). Regarding the synthetic water matrices,
an inhibition in LOS degradation was observed, except in the presence of NaNO3; the
presence of NO3

− did not significantly affect the LOS degradation rate when using the
biochar from pomegranate and SPS. The negligible effect of NO3

− has also been reported
by Ho et al. [73], who used N-doped graphitic biochar from C-phycocyanin to activate
persulfate for sulfamethoxazole (SMX) removal.
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In this study, LOS removal rates of 89.7%, 90%, 84%, 55%, and 25% were achieved after
120 min of treatment, and the apparent rate constant was calculated to be 0.0177 min−1,
0.0172 min−1, 0.0148 min−1, 0.0067 min−1, and 0.0017 min−1 for UPW, NaNO3, NaCl,
NaHCO3, and HA, respectively.

Considering the results from the effect of pH and scavengers, it was concluded that
the main degradation pathway is radical-based, and LOS degradation decreased in alkaline
conditions but not LOS adsorption. The obstructive action of NaCl, NaHCO3, and HA
arises from the competition that develops between these substances and LOS for the active
centers on the biochar surface and the reactive species generated (SO•−

4 , HO•) [72]. Cl−

and HCO3
− react with SO•−

4 and HO•, leading to the formation of radicals with lower
redox potential, as illustrated by Equations (2)–(6) [67,75–77].

SO•−
4 + HCO−

3 → SO2−
4 + HCO•

3 (2)

HO• + HCO−
3 → H2O + CO•−

3 (3)
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SO•−
4 + Cl− → SO2−

4 + Cl• (4)

Cl− + HO• → HOCl•− (5)

Cl− + HO• → HO− + Cl• (6)

Similar results have been reported by Chen et al. [26], who studied the activation
of PMS for the degradation of sulfamethoxazole (SMX) using KOH-treated biochar from
pomegranate. They reported that the presence of both HCO3

− and Cl− inhibits SMX
decomposition, with Cl− showing the greatest decrease in SMX oxidation [26].

In the presence of real water matrices, LOS removal of 60% and 40% was achieved
after 180 min in BW and WW, respectively. The decrease in performance in real matrices is
primarily attributed to the presence of HCO3

− and organic matter, as detailed in Table 2.
This finding is consistent with results reported by Xu et al. [78] and Chen et al. [26]. It
can be concluded that when the major degradation pathway is through radicals, which
exhibit lower selectivity than the reactive species formed through a non-radical degradation
pathway, a decrease in degradation performance is observed in real water matrices. This
conclusion is supported by multiple studies. [1,26,29,32,49,56,66,73,78–80].

Table 2. Physicochemical characteristics of the water matrices used in this work.

Parameter Wastewater (WW) Bottled Water (BW)

pH 8.5 7.8
Conductivity (20 ◦C), [µS/cm] - 580.2

Total dissolved solids (TDS), [mg/L] - 380
Total suspended solids (TSS), [mg/L] 22 -

Volatile suspended solids (VSS), [mg/L] - -
Total hardness (CaCO3), [mg/L] - 267

Chemical oxygen demand [mg/L] 48.5 -
Total organic carbon [mg/L] 4.7 -

Chlorides (Cl−), [mg/L] 262 26.1
Bicarbonates

(
HCO−

3 ), [mg/L] 278 308
Sulfates

(
SO2−

4 ) [mg/L] - 14.7

Phosphates
(
PO−

4 ) [mg/L] 14.98 -
Nitrates

(
NO−

3 ) [mg/L] 12.4
Bromides (Br−), [mg/L] 165.64 -

Ca+2 [mg/L] 112 95.5
Mg+2 [mg/L] - 8.5

K+ [mg/L] - 1.02
Na+ [mg/L] - 30

It is important to emphasize that the primary objective of this study was to examine
the impact of different operating parameters on the BC850/SPS process rather than to
enhance system optimization, and no modification was made to the biochar surface.

2.2.4. Continuous Flow Reactor

To examine the stability of BC850, a continuous flow reactor was constructed, as
depicted in Scheme 1. Initially, the reactor was supplied solely with 500 µg/L LOS at a
flow rate (Q) of 0.36 mL/min until BC850 reached saturation. The residence time was
6.87 min. The required time for BC850 to saturate and for the LOS concentration at the
reactor outlet to match that of the feed was 54 h (Figure 8). At 54 h, the feed was changed
to feed1 = 1000 mg/L SPS and feed2 = 1000 µg/L LOS with Qin,1 and Qin,2 at 0.18 mL/min
each, achieving a 1:1 dilution and Qout at 0.36 mL/min. As seen in Figure 8, 90% LOS
removal was achieved after 3 h of reaction time, and the steady-state performance was
maintained for 114 h. Afterward, a small reduction in the degradation yield was noticed.
Specifically, a gradual increase in the residual LOS concentration was observed over the
next 54 h, reaching 140 µg/L at 168 h.
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Additionally, the pH of the solution at the outlet of the reactor decreased from 8 at
54 h to 3.08 at 168 h. To further investigate how the surface of BC850 was affected and to
explore potential reasons for the decreased degradation performance, the used BC850 was
analyzed using XRD, FTIR, SEM, and EDX (Figure 9 and Table 3). As shown in Figure 9A,
the XRD pattern of the used sample differed; the sharp peaks were missing, and the two
peaks of the carbon species were now more intense and visible, likely due to the oxidation
process. The activation of persulfates results in lower pH values, either because the pH
was regulated at low values or due to the production of HSO4

−, a moderately strong acid,
as a side product. The acidic environment dissolved the minerals and released them into
the solution. These minerals, primarily K, Ca, and Mg ions, which are not harmful to the
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environment, have a basic character and readily react with acids. The dissolution of the
minerals was also observed in other studies [74,81], where biochar was treated with an
acidic solution.
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Table 3. The % atomic composition of used biochar determined with EDX.

Element BC850

C 90.8
O 7.7

Mg 0.1
P 0.1
Cl 0.1
K 0.5
Ca 0.1
S 0.3

Na 0.3

The FTIR spectrum of the used BC850 (Figure 9B) shows significant differences. The
peak at 1383 cm−1 is lower, suggesting that the carbonate species were affected by the
process, as also indicated by the XRD results. The acidity of the solution interacts with the
carbonates, dissolving them and resulting in a lower peak. Another peak at 1732 cm−1, due
to C=O species formed on the biochar after SPS oxidation, emerged [82,83]. SPS oxidizes
the surface, increasing the C=O content, as proven in previous work using XPS analysis [74],
where it was also found that these groups slightly inhibit the catalyst’s activity. The broad
peak at 3431 cm−1 shifted to 3376 cm−1 due to the oxidation of C-OH groups.

Furthermore, the SEM image of the used sample (Figure 9C) resembles that of fresh
biochar (Figure 2), with the only difference being the reduced presence of minerals. This
supports the hypothesis that minerals are dissolved during the oxidation process due to
the increased acidity following persulfate activation. HSO4

−, a moderate acid produced as
a side product, lowers the solution pH. The higher acidity and H3O+ concentration react
with basic minerals like metal oxides, hydroxides, or carbonates, dissolving them. The
oxidation process clearly changes the elemental composition of the biochar. As indicated
by the values in Tables 1 and 3, the sample is enriched in carbon, while metals, especially
K, are significantly reduced, indicating the dissolution of these minerals during oxidation.
Interestingly, S and Na, the elements in Na2S2O8, are also detected, resulting from the
interaction of the biochar surface with persulfate ions. The O content is lower, likely
due to the dissolution of minerals rather than the oxidation of C-O groups in the biochar.
The dissolution of minerals affects the pH of the interfacial region, thereby altering the
speciation of LOS. As a result, the surface becomes less basic, and the LOS speciation shifts
towards the neutral form, which is not favored for degradation. On the other hand, the
partial oxidation of surface groups hinders the degradation process, as was demonstrated
in previous studies [74]. Thus, the decreased yield of the BC850/SPS process is likely due
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to the dissolution of minerals present on the BC850 surface and the oxidation of the surface,
forming C=O bonds.

3. Materials and Methods
3.1. Materials

Sodium nitrate (NaNO3 ≥ 99.0%, CAS: 7631-99-4), sodium persulfate (SPS ≥ 99.5%),
losartan potassium (LOS), humic acid (HA, technical grade), tert-butyl alcohol (t-BuOH),
sodium azide (NaN3), sodium bicarbonate (NaHCO3), ortho-phosphoric acid (H3PO4 ≥ 85%),
and sulfuric acid (H2SO4) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Further
details for the above reagents and LOS can be found in the work of Ioannidi et al. [65].
Sodium hydroxide (NaOH, CAS: 1310-73-2) and sodium chloride (NaCl ≥ 99.5%, CAS:
16610-31000) were purchased from Penta (Radiová, Prague, Czechia). Methanol (MeOH,
hplc-grade, CAS: 67-56-1) was purchased from Fischer Chemicals (Riesbachstrasse, Zürich,
Switzerland). All chemicals were used without any further purification.

Most experiments were performed in ultrapure water (UPW, 18.2 MΩ·cm and pH ≈ 5.5),
while commercial BW and secondary effluent from the University of Patras campus wastew-
ater treatment plant (WW) were also used. Details about water matrices can be found in
Table 2.

3.2. Preparation of Biochar

A total of 100 g of dry pomegranate peel was washed with ultrapure water (UPW) and
dried at 50 ◦C for 24 h. To examine the effect of pyrolysis temperature, 1 g of pomegranate
peel was calcined at 450 ◦C, 650 ◦C, and 850 ◦C for 3 h in N2 atmosphere. The prepared
biochars were named BC450, BC50, and B850, respectively.

3.3. Procedure of Degradation Experiments

A typical degradation experiment was carried out in batch mode using 500 µg/L LOS
solution at room temperature and atmospheric pressure. The reaction started after the
simultaneous dispersion of 500 mg/L biochar and 500 mg/L SPS in 60 mL of aqueous LOS
solution without pH adjustment.

During the course of the experiment, 1.2 mL of the reactor contents was withdrawn
periodically. The obtained samples were promptly treated by adding 300 µL of methanol
and then filtered through a 0.22 µm PVDF syringe filter. Additionally, to estimate the
stability of the biochar, a continuous flow reactor (Scheme 1) was used with a flow rate
of 0.36 mL/min. In detail, a cylinder reactor from polypropylene was used with inner
diameter of 1.5 cm and outer diameter of 1.7 cm. The mass of BC850 was 900 mg, and
the height of the cylinder reactor was 12 cm, while the height of the working reactor
was 1.4 cm. To achieve the desired flow rates, a Watson-Marlow—205S (Watson-Marlow
Fluid Technology Group, Marlow, UK) peristaltic pump was used. During the experiment,
samples (1.2 mL) were taken and analyzed using the previously outlined procedure.

3.4. Analytical Methods

The concentration of LOS was monitored by high-performance liquid chromatography
(HPLC, waters alliance 2695). Details of the analytical method can be obtained in the work
of Ioannidi et al. [24].

For the analysis of bottled water and wastewater, a TOC-LCSH analyzer (Kyoto,
Japan) was used to measure the total organic carbon (TOC); the chemical oxygen demand
was (COD) measured by the dichromate method using the COD cuvette test—ISO 15705
(0–150 mg/L O2), COD digester (Model LT200, Hach-Lange, Loveland, CO, USA), and
Hach Lange DR5000 UV/VIS spectrophotometer [84], while the determinations of ions
were achieved using a Dionex ICS-1500 (Sunnyvale, CA, USA) ion chromatography system
equipped with an ASRS Ultra II suppressor and an IonPac AS9-HC. The flow rate of
the mobile phase was 1 mL/min and consisted of 9 mM carbonate diluted in ultrapure
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water [84]. Finally, the determination of bicarbonate was carried out experimentally by
titration method using phenolphthalein as indicator [85].

3.5. Biochar Characterization

The produced biochars were characterized with various physicochemical techniques
like XRD to identify the possible crystal structures on the biochar, FTIR was used to de-
tect the groups presented on biochar, and the N2 adsorption—desorption method was
used for the determination of specific surface area with BET method. The morphology
of the samples was determined using scanning electron microscopy, while the composi-
tion of the samples was determined with EDX analysis. Specifically, nitrogen adsorption
isotherms were recorded at liquid N2 temperature using a Micromeritics apparatus (Tristar
3000 porosimeter) (Micromeritics, Norcross, GA, USA). The specific surface area (SSA)
of the biochar was determined using the Brunauer–Emmett–Teller (BET) method. X-ray
diffraction (XRD) patterns were recorded in a Bruker D8 Advance diffractometer (Bruker,
Billerica, MA, USA) equipped with a nickel-filtered CuKa (1.5418 Å) radiation source. The
step size and the time per step were, respectively, fixed at 0.02◦ and 0.5 s in the range of
10◦ ≤ 2 θ ≤ 80◦. Fourier transform infrared (FTIR) spectroscopy was performed using a
Perkin Elmer Spectrum RX FTIR system (Perkin Elmer, Waltham, MA, USA). The measure-
ment range was 4000–400 cm−1. Biochar (about 1%) and KBr were sieved and pressured
to produce a homogeneous disk. The morphology of the biochar was examined using a
scanning electron microscope (SEM) (JEOL, JSM-6300) (JEOL, Tokyo, Japan) operating at
20 kV, equipped with an X-ray energy-dispersive spectrometer (EDX) (Oxford, UK). Surface
analysis measurements were performed in a UHV chamber (P~5 × 10−10 mbar) equipped
with a SPECS Phoibos 100-1D-DLD hemispherical electron analyzer (SPECS Surface Nano
Analysis GmbH, Berlin, Germany) and a non-monochromatized dual-anode Mg/Al X-ray
source. Analytical details about the experimental procedure for these techniques can be
found in Ntoufra et al. [74], Giannakopoulos et al. [86], and Avramiotis et al. [87].

3.6. Data Analysis

LOS oxidation follows a pseudo-first-order kinetic rate with R2 > 0.95 in every instance.
The apparent rate constants (kapp, min −1) were computed using Equation (7):

rate = −dC
dt

= kappC→ ln
(

C
Co

)
= −kappt (7)

where Co, and C refer to LOS quantity at time zero and t, respectively.
Residence time was calculated using Equation (8) [88].

t =
V
Q

=
πd2L
4Q

(8)

4. Conclusions

This work investigated the synthesis and characterization of biochar from pomegranate
peel at different pyrolysis temperatures. The as-prepared biochars, without any modifi-
cations, were used to (i) remove LOS by adsorption and (ii) oxidize LOS by the reactive
species formed through the activation of SPS. Particular emphasis was given to examin-
ing the catalyst’s stability and the performance of the system under continuous flow. In
summary, the main conclusions of the study are as follows:

• Among the different temperatures examined (450, 650, 850 ◦C), the highest (850 ◦C) ex-
hibited greater catalytic efficiency due to the enhanced (i) surface area and (ii) presence
of minerals on its surface;

• The oxidation followed pseudo-first-order kinetics, and the apparent kinetic constant
decreased with increasing concentration;

• As expected, the reaction rate was elevated with increased SPS loading;
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• Despite a basic pH being favorable for adsorption, the catalytic activity was enhanced
in acidic conditions due to the enhanced role of the SPS in the oxidation process;

• Both hydroxyl and sulfate radicals, as well as singlet oxygen, participated in the LOS
destruction, with the former serving as the dominant species;

• The system’s efficiency was reduced in the presence of carbonates, chlorides, and hu-
mic acid due to the scavenging of the reactive species, indicating a radical mechanism,
but efficiency remained unchanged in the presence of nitrates;

• The system exhibited high stability using a continuous flow reactor, retaining a
90% LOS removal for more than 114 h. The moderate drop in system efficiency
observed over longer treatment times was attributed to the alteration of the catalyst’s
surface and mineral dissolution due to acidity.
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