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Abstract: 2—(1H-1,2,4-Triazol-3—yl)phenol (CAT-1) was used as an organocatalyst for the coupling
reaction of CO, and epoxides at an ambient temperature and atmospheric CO, pressure (1 bar).
This compound has a structure in which a hydrogen bond donor, a hydrogen bond acceptor, and
another hydrogen bond donor are adjacent in sequence in a molecule. The binary catalytic system of
CAT-1/1nBuyNI showed TON = 19.2 and TOF = 1.60 h—! under 1 bar CO, at room temperature within
12 h using 2-butyloxirane. Surprisingly, the activity of CAT-1, in which phenol and 1H-1,2,4—triazole
are chemically linked, showed a much greater synergistic effect than when simply mixing the same
amount of phenol and 1H-1,2,4-triazole under the same reaction conditions. In addition, our system
showed a broad terminal and internal epoxide substrate scope.

Keywords: organocatalysts; ambient conditions; cyclic carbonates; carbon dioxide; epoxides

1. Introduction

The cycloaddition of CO, and epoxides yielding cyclic carbonates, which are used
as aprotic polar solvents, electrolytes for lithium—ion batteries, monomers for polymer-
ization, and pharmaceutical intermediates, is one of the most important reactions, along-
side the transformation of CO, as a C1 feedstock due to its atom economy and broad
applicability [1,2]. To date, numerous catalytic systems for the synthesis of CO,-based
cyclic carbonates, including various types of metal- and organic-based catalysts, have been
reported in the literature [3-5]. Although organocatalysts have many advantages in terms
of cost, toxicity, eco-friendliness, and accessibility, they generally require high reaction
temperatures (>100 °C), high CO, pressures (>10 bar), and high catalyst loadings (>5 mol%)
for efficient conversion, and also these reaction conditions are more stringent than those
required by metal-based catalysts. To date, several active organocatalysts for this coupling
reaction under mild conditions have been reported in the literature [6-8]; however, the
development of efficient organocatalysts capable of operating at an ambient temperature
and atmospheric CO, pressure is quite difficult, and only a few examples are known [9-16].

Pairs of hydrogen-bond donors (HBDs) as organocatalysts and nucleophiles as cocat-
alysts are well-known catalytic systems for the synthesis of CO,-based cyclic carbonates
under mild conditions [17-19]. Phenol and its derivatives are among the most exten-
sively investigated examples of HBDs because they can easily be modified to include
substituents that have steric and electronic effects on the other five carbon atoms in the
phenyl ring [20-25]. In addition, HBDs with more than two vicinal -OH groups, which can
interact synergistically with the O atom of the epoxide through H-bonds, exhibit higher
activities than HBDs with non-vicinal -OH groups or only one —-OH group [21-25]. To
the best of our knowledge, HBDs with two different vicinal groups, specifically -OH and
-NH groups, have never been used as catalysts for CO, /epoxide coupling reactions, even
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though organocatalysts with two vicinal NH groups have recently been reported [26,27].
Furthermore, pyridine-like N atoms in the catalyst can activate CO, to afford carbamate
intermediates during the catalytic cycle [15]. Thus, designing simple organocatalysts with
cooperative H-bond sites and multiple CO;-activating sites located close to or adjacent
to each other within a single molecule is highly desirable. As shown in Figure 1, we
demonstrate that 2—(1H-1,2,4-triazol-3—yl)phenol (CAT-1) with cooperative H-bonds from
the vicinal -OH group and -NH group and with pyridine-like N atoms that can activate
CO; in a single molecule can be a practical alternative to metal catalysts for the synthesis of
COs-based cyclic carbonates at an ambient temperature and atmospheric CO, pressure.

e — O
epoxide binding stes

multiple CO, activating sites

Figure 1. 2-(1H-1,2 4-Triazol-3-yl)phenol as a catalyst for the fixation of CO, under ambient conditions.

2. Results

As mentioned in the Introduction section, we investigated whether the proposed
CAT-1 [28] could actually interact with CO; and epoxides. First, peak assignment in the
'H and '3C NMR spectra was performed through COSY, HSQC, and HMBC experiments
(see Supplementary Materials). To determine whether CO, can effectively bind to CAT-1,
CAT-1 (20 pmol) in 0.5 mL of D,O was bubbled with 1 bar CO, (balloon) at room temper-
ature. As shown in Figure 2a, all 'H NMR peaks were shifted to downfield. In addition,
a newly observed peak appeared at 166 ppm in 1*C NMR, as shown in Figure 2b, and is
known to be a typical carbamate carbon peak [29]. 'H and '3C NMR data show that CAT-1
could readily bind with CO; to form an adduct even at room temperature.
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Figure 2. (a) 'H NMR spectrum of CAT-1 before (bottom) and after (top) bubbling CO, in D,0;
(b) 3C NMR spectrum of CAT-1 before (bottom) and after (top) bubbling CO, in D,O.

Next, the binding pattern of CAT-1 and epoxides should be investigated. CAT-1
(20 umol) was mixed with 1a (40 pmol) in 0.5 mL of CDCl3 at room temperature. The O-H
and N-H peaks of CAT-1 in the 'H NMR spectrum shifted to downfield from 11.2 ppm
to 11.4 ppm (see Supplementary Materials). The same trend for the methine proton and
methylene protons on the three-membered ring carbons in 1a was observed. Like CO,, we
found that adducts of CAT-1 and epoxide could be easily made at room temperature.

Prior to the coupling reaction of CO, with epoxides using CAT-1, we synthesized
five organocatalysts such as 2—(1H-pyrazol-3-yl)phenol (CAT-2) [30], 2—(1H-tetrazol-
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5-yl)pyridine (CAT-3) [30], 2-(2-methyl-2H-tetrazol-5-yl)phenol (CAT-4) [31], 2—-(1-
phenyl-1H-imidazol-5-yl)phenol (CAT-5) [32], and 2—(2-benzyl-2H-tetrazol-5-yl)phenol
(CAT-6), as shown in Figure 3, to compare the catalytic activity with CAT-1.
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Figure 3. Organocatalysts synthesized and investigated in this study.

The logic of catalyst synthesis is as follows. It is necessary to examine the effect of
differences in the number of nitrogen atoms, which act as CO,-activating sites, on catalytic
acidity. Thus, CAT-2 has one less nitrogen atom in the five-membered ring than CAT-1. In
CAT-3, a pyridine group was introduced instead of a phenol group to investigate the role of
phenol in CAT-1. Interestingly, the only epoxide-activating site in CAT-3 is the N-H group,
which is known to have weaker HBDs than the O-H group. To investigate the importance
of the N-H group present in the five-membered ring of CAT-1, we synthesized CAT-4,
CAT-5, and CAT-6. They lack N-H groups and have one less HBD than CAT-1 and CAT-2.
All compounds were characterized by 'H and '*C NMR spectroscopy (See Supplementary
Materials), and single-crystal X-ray diffraction methods were used to confirm the structure
of CAT-6.

Initially, the coupling of CO, with 2-butyloxirane (1a) as a substrate as well as a
solvent was performed using the organocatalysts given in Figure 3 in the presence of the
nucleophilic cocatalyst nBuyNI. The coupling reaction conditions were fixed at 5.0 mol%
organocatalyst and 5.0 mol% nBusNI loadings, a reaction temperature of 25 °C, 1 bar CO,
(balloon), and a reaction time of 12 h, and the results are summarized in Table 1. As expected,
phenol in the presence of nBuyNI showed no catalytic activity for the synthesis of 4-butyl-
1,3—-dioxolan—2-one (2a) (Table 1, entry 1). Binary system 1H-1,2,4-triazole /nBuyNI (Table 1,
entry 2) and ternary system 1H-1,2,4—triazole/phenol/nBuyNI (Table 1, entry 3) showed
catalytic activities of 24% and 26%, respectively. This result means that 1H-1,2,4-triazole
could have much more contribution to the increase in the catalytic activity than phenol.
Surprisingly, even at atmospheric CO, pressure and ambient temperature, organocatalyst
CAT-1/nBuyNI easily converted 1a into 2a, with a high activity of 96% under the same
reaction condition (Table 1, entry 4). The dramatic increase in the catalytic activity for
CAT-1, a simple form connected between 1H-1,2,4-triazole and phenol by a single bond,
may originate from the synergistic effect of the sequential existence of a phenol-based
strong HBD site, vicinal hydrogen bond acceptor (HBA) site and N-H-based HBD site
for epoxide activation, and their vicinal five-membered N-heterocycle for CO, activation
in a single molecule. As shown in entries 5 and 6 of Table 1, CAT-2, which has one less
nitrogen atom in the five-membered ring, showed similar activity to CAT-1; however, the
activity of CAT-3, which does not contain the -OH group, was found to decrease rapidly.
CAT-4, CAT-5, and CAT-6, without N-H groups in the five-membered ring, showed little
activity (Table 1, entries 7-9). These data demonstrate that compounds such as CAT-1, in
which HBD, HBA, and other HBDs are adjacent in order within the molecule, can be used
as efficient organocatalysts for the synthesis of cyclic carbonates under ambient conditions.
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Table 1. Screening of various catalysts for the coupling of CO, to 2-butyloxirane (1a) under ambient
conditions in the presence of nBuyNI

(e}
0] Catalyst / nBuyNI
AN + CO, Y h o)ko
nBu room temperature, 12 h \ {
1 bar nBu
1a (balloon) 2a
Entry ! Catalyst Conversion (%) 2 Yield (%)3  TON* TOF (h-1) 5

1 Phenol 0 0 0 0
2 1H-1,2,4-triazole 24 19 4.80 0.40
3 Phenol+1H-1,2,4-triazole 26 23 5.20 0.43
4 CAT-1 96 93 19.2 1.60
5 CAT-2 88 87 17.6 1.47
6 CAT-3 38 34 7.60 0.63
7 CAT-4 3 1 0.60 0.05
8 CAT-5 4 2 0.80 0.07
9 CAT-6 4 3 0.80 0.07

1 1a (10 mmol), catalyst (0.5 mmol, 5.0 mol%), nBugNI (0.5 mmol, 5.0 mol%), 25 °C, 1 bar CO, (balloon), 12 h, no
solvent used. 2 Conversion determined by TH NMR spectroscopy (see the Supplementary Materials). 3 Isolated
yield. * TON, turnover number. 3 TOF, turnover frequency (TOF = TON/reaction time (h)).

We then screened a series of nucleophilic cocatalysts, such as nBuyNI,
bis(triphenylphosphine)iminium chloride (PPNCI), nBusNBr, nBuyNCl, DMAP, and KI, in
the coupling of 1a and CO, with CAT-1 (Table 2, entries 1-6). The highest activity was
achieved when using CAT-1 in combination with nBuyNI (Table 2, entry 1). Sterically
hindered phosphonium salts were not as effective as nBuyNI (Table 2, entry 2). The catalytic
activity decreased in the order I > Br > Cl for tetrabutylammonium salts at 25 °C and
1 bar CO; (Table 2, entries 1, 3, and 4). DMAP and KI did not show any catalytic activity
(Table 2, entries 5 and 6). Because nBuyNI in conjunction with CAT-1 showed the highest
activity, this was selected as the optimal catalytic system for further investigations and
epoxide screening.

Table 2. Screening of various cocatalysts for the coupling of CO, to 1a under ambient conditions
using CAT-1.

0]
0 CAT-1/ cocatalyst
L\ + CO, OAO
nBu room temperature, 12 h \ <
1 bar nBu
1a (balloon) 2a
Entry ! Cocatalyst Conversion (%) 2 Yield (%) 3 TON 4 TOF (h-1)5

1 nBugNI 96 93 19.2 1.60
2 PPNCl 8 7 1.60 0.13
3 nBuyNBr 66 61 13.2 1.10
4 nBuyNC1 17 16 3.40 0.28
5 DMAP 0 0 0 0
6 KI 1 1 0.20 0.02

1 1a (10 mmol), CAT-1 (0.5 mmol, 5.0 mol%), cocatalyst (0.5 mmol, 5.0 mol%), 25 °C, 1 bar CO; (balloon), 12 h, no
solvent used. 2 Conversion determined by TH NMR spectroscopy (see the Supplementary Materials). 3 Isolated
yield. * TON, turnover number. 3 TOF, turnover frequency (TOF = TON/reaction time (h)).

We next investigated the substrate scope using 5.0 mol% CAT-1 and 5.0 mol% nBuyNI load-
ing at 25 °C and 1 bar CO, for 24 h, and the results are shown in Figure 3. The tested substrates
included eight epoxides, namely, 2-butyloxirane (1a), 2-methyloxirane (1b), 2—ethyloxirane (1c),
2-phenyloxirane (1d), 2—(chloromethyl)oxirane (1e), 2—(methoxymethyl)oxirane (1f), 2—(tert—
butoxymethyl)oxirane (1g), and 2—(phenoxymethyl)oxirane (1h). Generally, the reactivity of
epoxides with CO, for the synthesis of cyclic carbonates is highly dependent upon the structure
of the epoxide. As shown in Figure 4, very high activity for the synthesis of 2a—c was obtained,
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Conversion (%)
Yield (%)

TON

TOF (h™)

regardless of the type of alkyl chain of epoxides. In addition to this fact, the lower activity of
1d and 1e than 1la—c appears to be due to electronic effects rather than the steric hindrance of
the pendant groups on the epoxides. Compared with 2a-c, CAT-1/nBusNI showed noticeably
lower catalytic activities for 2f-h because of the presence of heteroatoms in the substituents on
the epoxide, and these atoms can compete for the formation of H-bonds with CAT-1. Steric
hindrance (OtBu > OMe) and the electronic effect (OtBu > OPh) also influence the activity of
epoxides 1f-1h. 2h gave the lowest yield because the phenyl in Th may cause iodide attack at
the benzylic site, resulting in some yield loss.

5 mol% CAT—1 i
5 mol% nBuyNI
ﬁ\ +  CO, — Q 9
1,12 h \—<
R‘l
1 bar (balloon) R!
1a-1Il 2a-21
o) o) o] o) o) o
A (e}
o] o)ko O&Z) o\)_io o)ko o)ko o)ko OAO
nBu \ Et Ph \—K-'Cl \—K-'OMe \—K—'OtBu \—K_,OPh

2a 2b 2c 2d 2e 2f 2g 2h
96 96 95 71 87 90 81 62
93 94 91 70 82 89 77 59
19.2 19.2 19.0 14.2 17.4 18.0 16.2 12.4
1.60 1.60 1.58 1.18 1.45 1.50 1.35 1.03

Figure 4. Terminal epoxide scope [33-37].

As shown in Figure 5, we also investigated the synthesis of more challenging cyclic car-
bonates using 1,2—disubstituted trans-2,3—dimethyloxirane (trans-1i),
cis—3,6—dioxabicyclo[3.1.0]hexane (cis-1j), cis—6—oxabicyclo[3.1.0]hexane (cis-1k), and cis—7—
oxabicyclo[4.1.0]heptane (cis—11). Due to the low reactivities of 1i-1, a high temperature of
70 °C and a high CO, pressure of 10 bar were applied. Due to the strain associated with bicyclic
epoxides, 1j-1 showed slightly lower reactivity compared with the 1,2-disubstituted epoxide 1i.
The yields of bicyclic carbonates 2k and 21 were affected by the ring size of the bicyclic epoxides;
11, with a six-membered ring, exhibited lower activity than the five-membered (1k) system. All
diastereochemically pure epoxides 1i-1 produced the corresponding 2i-1 that maintained their
stereochemistry. In addition, no polymeric side products were observed. Thus, the stereochemi-
cal retention of cyclic carbonates obtained from the corresponding epoxides indicated that two
consecutive Sy2 reactions occurred. This means that there are two inversions of stereochemistry
at the carbon atom of the epoxides during the reaction.

5 mol% CAT-1 Q
o) 5 mol% nBuyNI )k
+ COop —— O 0
70°C, 12 h H
R R? 10 bar
R! R?
111 2i-2|
X i X
(e}
S o o o)ko o0
20 0 0
Vo 5
trans-2i cis-2j cis-2k cis-21
Conversion (%) 76 47 67 46
Yield (%) 69 44 62 40
TON 15.2 9.4 13.4 9.2
TOF (h™) 1.27 0.78 112 0.77
cis:trans >1:99 >99:1 >99:1 > 99:1

Figure 5. Internal epoxide scope [38-41].
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As shown in Figure 6, a plausible mechanism for the synthesis of cyclic carbonates
from epoxides and CO,; using CAT-1 in the presence of the cocatalyst nBuyNI was pro-
posed. This mechanism is similar to that previously proposed for the synthesis of cyclic
carbonates using other HBD-based organocatalysts [14]. The epoxide interacts with CAT-1
via H-bonding to generate intermediate I. The insertion of CO, into intermediate I and the
simultaneous nucleophilic ring opening of the epoxide with the iodide anion of the cocata-
lyst generate carbamate intermediate II. The displacement of the iodide in intermediate
IT by the carboxylate anion generates intermediate III, followed by the alkoxide attack of
the carbamate carbon with concomitant triazole departure. Finally, cyclic carbonates are
produced as final products, and intermediate I is regenerated.
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Figure 6. A plausible mechanism for the synthesis of cyclic carbonates from epoxides and CO, by
using CAT-1 in the presence of nBuyNIL

3. Materials and Methods

All chemicals were purchased from commercial sources (purity > 95%) and were used
as received unless otherwise indicated. Diethyl ether was purified by a Grubbs solvent
purification system under a nitrogen atmosphere and stored over activated molecular sieves
(4 A) [42]. Carbon dioxide (99.999%) was used as received without further purification. All
epoxides were purified via treatment with calcium hydride to remove residual water. The
'H NMR and '3C NMR spectra were recorded at ambient temperature with a Bruker DPX~
500 MHz NMR spectrometer with standard parameters. All chemical shifts are reported
in 6 units with regard to the residual CDCl3 (6 7.24 for 'H NMR; 6 77.00 for 13C NMR),
DMSO-dg (6 2.50 for 'H NMR; § 39.52 for '*C NMR) or D,O (6 4.79 for 'H NMR). High-
resolution mass spectrometry (HRMS) data were acquired using a high-resolution Q-TOF
mass spectrometer (ionization mode: ESI).

3.1. Synthesis of Known Compounds

2—(1H-1,2,4-Triazol-3-yl)phenol (CAT-1) [28], 2(1H—pyrazol-3—yl)phenol (CAT-2) [30],
2—(1H—tetrazol-5-yl)pyridine (CAT-3) [30], 2-(2-methyl-2H-tetrazol-5-yl)phenol (CAT-4) [31],
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2—(1-phenyl-1H-imidazol-5-yl)phenol (CAT-5) [32] were prepared according to previously
published procedures.

3.2. Synthesis of 2—(2—Benzyl-2H—tetrazol-5—yl)phenol (CAT-6)

Benzyl bromide (1.71 g, 10 mmol) was added to a stirred solution of 2—(1H-tetrazol-5-
yl)phenol [43] (1.62 g, 10 mmol) in diethyl ether (30 mL). The reaction mixture was stirred
at room temperature for 2 h. All volatiles were removed in vacuo, and then the residue
was purified via column chromatography using a 1:2 mixture of diethyl ether and hexane
as the eluent. CAT-6 was obtained as a colorless powder with 44% yield (1.1 g). 'H NMR
(CDCl3): 6 9.84 (s, 1H, -OH), 8.18 (m, 1H), 7.55 (m, 6H), 7.17 (m, 1H), 7.08 (m, 1H), 5.96 (s,
2H, -CH,Ph). 13C NMR (CDCly): 6 164.3, 156.3,132.7, 132.2, 129.2, 129.1, 128.4, 127.4, 120.0,
117.5,111.1, 57.11. HRMS m/z calcd for [C14H12N4O + H] 253.1089. Found: 253.1084.

3.3. Representative Procedure for the Coupling of Terminal Epoxide and CO; at Ambient Condition

Terminal epoxides 1a-h (10 mmol), CAT-1 (80.6 mg, 0.5 mmol), and nBuyNI (184.7 mg,
0.5 mmol) were charged in a 20 mL round-bottomed flask with a magnetic stirring bar in
a glovebox. A rubber balloon containing approximately 2 L of CO, was connected to the
flask, and then the reaction vessel was well sealed. The reaction vessel was stirred at 25 °C
for 12 h. After 12 h, an aliquot of the reaction mixture was transferred to an NMR tube, and
the conversion was determined by 'H NMR spectroscopy. Synthesized cyclic carbonates
2a-h were purified using column chromatography.

3.4. Representative Procedure for the Coupling of Internal Epoxide and CO; at Ambient Condition

Internal epoxides trans-1i, cis-1j, cis-1k and cis-11 (10 mmol), CAT-1 (80.6 mg,
0.5 mmol), and nBuyNI (184.7 mg, 0.5 mmol) were charged into a 20 mL stainless steel
autoclave with a magnetic stirring bar in a glovebox. The autoclave was pressurized to
10 bar of CO, and was heated to 70 °C. After 12 h, the reactor was cooled and vented.
An aliquot of the reaction mixture was transferred to an NMR tube, and the conversion
and stereochemistry of trans—1i into trans—2i was determined via 'H NMR spectroscopy.
Synthesized cyclic carbonates 2i-1 were purified using column chromatography.

3.5. X-ray Crystallographic Structure Determination

The crystallographic measurement was performed at 293(2) K for CAT-6 using a
Bruker Apex II diffractometer with Mo K, (A = 0.71073 A) radiation. Specimens of suit-
able quality and size were selected, mounted, and centered on the X-ray beam using a
video camera. The structures were solved via direct methods and refined by full-matrix
least-squares methods using the SHELXTL program package with anisotropic thermal
parameters for all non-hydrogen atoms, resulting in the X-ray crystallographic data of
CAT-6 being obtained in CIF format. Final refinement based on the reflections (I > 20(I))
converged at Ry = 0.0491, wR;, = 0.11193, and GOF = 1.010 for CAT-6. Further details are
given in Table S1 (see the Supplementary Materials). CCDC 1900793 (CAT-6) contains the
supplementary crystallographic data for this paper. These data can be obtained free of
charge from the Cambridge Crystallographic Data Centre.

4. Conclusions

We developed one of the most effective organocatalysts reported to date for the gen-
eration of cyclic carbonates via the coupling of epoxides and CO, under an ambient tem-
perature and CO, pressure. Among our six rationally designed organocatalysts, the solid-
state structure for 2—(2-benzyl-2H-tetrazol-5-yl)phenol was determined by single-crystal
X-ray diffraction analysis. Among the organocatalysts, 2-(1H-1,2,4-triazol-3-yl)phenol,
which has vicinal -OH and -NH groups as cooperative hydrogen-bond donors and a
triazolyl group providing multiple CO,-activating sites, showed the best catalytic activ-
ity for the synthesis of cyclic carbonates in the presence of nBusNI as a cocatalyst. The
2—(1H-1,2,4-Triazol-3—yl)phenol /nBuyNI catalytic system was highly effective in the for-
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mation of cyclic carbonates from a wide range of terminal epoxides under ambient condi-
tions. This system could convert the internal epoxides at 70 °C and 10 bar CO; pressure
within 12 h. The cyclic carbonates obtained from the 1,2-disubstituted epoxides showed
stereochemical retention due to two consecutive Sy2 reactions.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/catal14010090/s1, Table S1: List of known compounds [28,30-41];
Table S2: Crystallographic data for CAT-6; Figure S1: X-ray structure for 2-(2-benzyl-2H-tetrazol-
5-yl)phenol(CAT-6); Figure S2: 'H NMR spectrum of 2-(1H-1,2,4-triazol-3-yl)phenol (CAT-1) in
CDCl3; Figure S3: 'H NMR spectrum of 2-(1H-1,2,4-triazol-3-yl)phenol (CAT-1) in D,O; Figure S4:
13C NMR spectrum of 2—(1H-1,2,4-triazol-3-yl)phenol (CAT-1) in D,O; Figure S5: HR-MS spectrum
of 2-(1H-1,2,4—triazol-3—yl)phenol (CAT-1); Figure S6: COSY spectrum of 2-(1H-1,2,4-triazol-3—
yl)phenol (CAT-1) in D,O; Figure S7: HSQC spectrum of 2—(1H-1,2,4-triazol-3-yl)phenol (CAT-1)
in D,O; Figure S8: HMBC spectrum of 2—(1H-1,2,4-triazol-3-yl)phenol (CAT-1) in D,O; Figure S9:
IH NMR spectrum of CAT-1 before (bottom) and after (top) bubbling CO, in D,O; Figure S10: 1B¢c
NMR spectrum of CAT-1 before (bottom) and after (top) bubbling CO, in D,O; Figure S11: IH NMR
spectrum of CAT-1 (bottom), 1a (middle), and a mixture of CAT-1 and 1a (top) in CDCl3. (a) O-H
and N-H peaks in the TH NMR spectrum of CAT-1 before (bottom) and after (top) adding 1a in
CDCl3; (b) The methine proton and methylene protons on the three-membered ring carbons in the 'H
NMR spectrum of 1a before (bottom) and after (top) adding CAT-1 in CDClj; Figure 512: O-H and
N-H peaks in the 'H NMR spectrum of CAT-1 before (bottom) and after (top) adding 1a in CDClj;
Figure S13: The methine proton and methylene protons on the three-membered ring carbons in the
IH NMR spectrum of 1a before (bottom) and after (top) adding CAT-1 in CDCl3; Figure S14: H
NMR spectrum of 2-(1H-pyrazol-3-yl)phenol (CAT-2) in CDCls; Figure S15: 13C NMR spectrum of
2-(1H-pyrazol-3-yl)phenol (CAT-2) in CDCl3; Figure S16: 'H NMR spectrum of 2~(1H-tetrazol-5-
yl)pyridine (CAT-3) in DMSO-dg; Figure S17: 13C NMR spectrum of 2-(1H-tetrazol-5-yl)pyridine
(CAT-3) in DMSO-dg; Figure S18: H NMR spectrum of 2—(2-methyl-2H-tetrazol-5-yl)phenol
(CAT—4) in CDCl3; Figure S19: 13C NMR spectrum of 2-(2-methyl-2H-tetrazol-5-yl)phenol (CAT-
4) in CDCl3; Figure S20: TH NMR spectrum of 2—(1-phenyl-1H-imidazol-5-yl)phenol (CAT-5)
in CDCly; Figure S21: 3C NMR spectrum of 2—(1-phenyl-1H-imidazol-5-yl)phenol (CAT-5) in
CDCls; Figure S22: 1H NMR spectrum of 2—-(2-benzyl-2H-tetrazol-5-yl)phenol (CAT-6) in CDCl3;
Figure S23: 13C NMR spectrum of 2-(2-benzyl-2H-tetrazol-5-yl)phenol (CAT-6) in CDCls;
Figure S24: HR-MS spectrum of 2-(2-benzyl-2H-tetrazol-5-yl)phenol (CAT-6); Figure S25: 'H NMR
spectrum for an aliquot of the reaction mixture after reaction in Table 1, entry 1;
Figure S26: 1H NMR spectrum for an aliquot of the reaction mixture after reaction in Table 1, entry 2;
Figure S27: 1H NMR spectrum for an aliquot of the reaction mixture after reaction in Table 1, entry 3;
Figure S28: 'H NMR spectrum for an aliquot of the reaction mixture after reaction in Table 1, entry 4;
Figure S29: 'H NMR spectrum for an aliquot of the reaction mixture after reaction in Table 1, entry 5;
Figure S30: 'H NMR spectrum for an aliquot of the reaction mixture after reaction in Table 1, entry 6;
Figure S31: 'H NMR spectrum for an aliquot of the reaction mixture after reaction in Table 1, entry 7;
Figure S32: 'H NMR spectrum for an aliquot of the reaction mixture after reaction in Table 1, entry 8;
Figure S33: 'H NMR spectrum for an aliquot of the reaction mixture after reaction in Table 1, entry 9;
Figure S34: ITH NMR spectrum for an aliquot of the reaction mixture after reaction in Table 2, entry 2;
Figure $35: 'H NMR spectrum for an aliquot of the reaction mixture after reaction in Table 2, entry
3; Figure S36: 'H NMR spectrum for an aliquot of the reaction mixture after reaction in Table 2,
entry 4; Figure S37: 'H NMR spectrum for an aliquot of the reaction mixture after reaction in Table 2,
entry 5; Figure S38: 'H NMR spectrum for an aliquot of the reaction mixture after reaction in Table 2,
entry 6; Figure S39: 'H NMR spectrum for an aliquot containing mixtures after reaction for 2b in
Figure 3; Figure S40: 'H NMR spectrum for an aliquot containing mixtures after reaction for 2c in
Figure 3; Figure S41: 'H NMR spectrum for an aliquot containing mixtures after reaction for 2d
in Figure 3; Figure S42: I'H NMR spectrum for an aliquot containing mixtures after reaction for
2e in Figure 3; Figure S43: 'H NMR spectrum for an aliquot containing mixtures after reaction for
2f in Figure 3; Figure S44: TH NMR spectrum for an aliquot containing mixtures after reaction for
2g in Figure 3; Figure S45: "H NMR spectrum for an aliquot containing mixtures after reaction for
2h in Figure 3; Figure S46: 'H NMR spectrum for an aliquot containing mixtures after reaction
for trans-2i in Figure 4; Figure S47: 'H NMR spectrum for an aliquot containing mixtures after
reaction for cis-2j in Figure 4; Figure $48: 'H NMR spectrum for an aliquot containing mixtures after
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reaction for cis-2k in Figure 4; Figure 549: 'H NMR spectrum for an aliquot containing mixtures
after reaction for cis-21 in Figure 4; Figure S50: 'H NMR spectrum of purified 4-butyl-1,3-dioxolan—
2-one (2a) in CDCls; Figure S51: 13C NMR spectrum of purified 4-butyl-1,3-dioxolan—2-one (2a)
in CDClj3; Figure S52: 'H NMR spectrum of purified 4-methyl-1,3—dioxolan-2-one (2b) in CDCl3;
Figure S53: 13C NMR spectrum of purified 4-methyl-1,3-dioxolan-2-one (2b) in CDCl3; Figure
S54: TH NMR spectrum of purified 4—ethyl-1,3-dioxolan—2-one(2c) in CDCl3; Figure S55: 13¢C
NMR spectrum of purified 4-ethyl-1,3—dioxolan—2-one(2c) in CDCl3; Figure S56: 'H NMR spec-
trum of purified 4-phenyl-1,3-dioxolan-2-one(2d) in CDCls; Figure S57: 13C NMR spectrum of
purified 4-phenyl-1,3-dioxolan-2-one(2d) in CDCls; Figure S58: 'H NMR spectrum of purified
4—(chloromethyl)-1,3-dioxolan-2-one(2e) in CDCl3; Figure S59: 13C NMR spectrum of purified
4—(chloromethyl)-1,3—dioxolan—-2-one(2e) in CDCl;3; Figure S60: TH NMR spectrum of purified
4—(methoxymethyl)-1,3-dioxolan—-2-one(2f) in CDCl3; Figure S61: 13C NMR spectrum of purified
4—(methoxymethyl)-1,3-dioxolan—2—-one(2f) in CDClj3; Figure 562: TH NMR spectrum of purified
4-[(1,1-dimethylethoxy)methyl]-1,3-dioxolan-2-one(2g) in CDCl; Figure S63: 13C NMR spectrum
of purified 4-[(1,1-dimethylethoxy)methyl]-1,3—dioxolan-2-one(2g) in CDCl3; Figure S64: TH NMR
spectrum of purified 4-(phenoxymethyl)-1,3-dioxolan-2-one(2h) in CDCls; Figure $65: 1*C NMR
spectrum of purified 4—(phenoxymethyl)-1,3-dioxolan-2-one(2h) in CDCls; Figure S66: 'H NMR
spectrum of purified trans—4,5-dimethyl-1,3-dioxolan—2-one(trans-2i) in CDCls; Figure S67: 13C
NMR spectrum of purified trans—4,5-dimethyl-1,3—-dioxolan—2-one(trans-2i) in CDCl3; Figure S68:
H NMR spectrum of purified cis-tetrahydrofuro[3,4-d][1,3]dioxol-2-one(cis-2j) in CDCI3; Figure
569: 13C NMR spectrum of purified cis—tetrahydrofuro[3,4—d][1,3]dioxol-2-one (cis-2j) in CDCI3;
Figure S70: 1TH NMR spectrum of purified cis-tetrahydro—4H-cyclopenta[d][1,3]dioxol-2-one (cis—2k)
in CDCI3; Figure S71: 13C NMR spectrum of purified cis-tetrahydro—4H-cyclopenta[d][1,3]dioxol-2—-
one(cis—2k) in CDCI3; Figure S72: 1H NMR spectrum of purified cis-hexahydrobenzo[d][1,3]dioxol-2—-
one (cis-21) in CDCI3; Figure S73: 13C NMR spectrum of purified cis-hexahydrobenzo[d][1,3]dioxol-
2—-one(cis-2l) in CDCI3.
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