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Abstract: Direct methanol fuel cells have emerged as highly promising energy conversion devices
in the past few decades. However, some challenges, such as carbon monoxide (CO) poisoning
and unsatisfactory long-term stability, remain for platinum (Pt) as a methanol oxidation reaction
(MOR) catalyst. This review covers recent advances in Pt alloy MOR catalysts and provides some
insights. This review presents MOR catalytic mechanisms based on CO or non-CO pathways. Typical
dimension-based designs of MOR catalysts, such as anisotropic nanowires, metallene, nanoframes,
and corresponding rationales for performance enhancements, are introduced. More importantly,
some key tuning strategies are elaborated, including intermetallic compound synthesis, interface
engineering, and surface facet engineering. High-entropy alloys as an intriguing class of MOR
catalysts with favorable prospects are also discussed. Finally, future directions and opportunities
are outlined.

Keywords: methanol oxidation reaction; Pt alloys; intermetallic; interface engineering; surface
facet engineering

1. Introduction

The overuse of fossil fuels has led to numerous problems, such as a worsening crisis
and severe environmental pollution. Direct methanol fuel cells (DMFCs), an important
type of proton exchange membrane fuel cells, have been extensively studied since they
possess plenty of merits, including low cost, high energy conversion efficiency, convenient
storage/transportation, and low greenhouse emissions [1–5]. The anode’s methanol ox-
idation reaction (MOR) depends on reaction kinetics, and Pt is most commonly used as
an electrocatalyst. However, Pt inevitably faces poisoning due to the strong adsorption
of the intermediate carbon monoxide (CO) reaction, leading to weakened activity and
stability. The development of an anodic catalyst that can resist CO poisoning is of primary
importance. There are two basic solutions: one is to diminish the CO adsorption strength
by modulation of the electronic structure of Pt-based catalysts, and the second is to facilitate
CO electro-oxidation by an oxygenated species, such as OH at a lower potential, both of
which can be attained by doping with diverse elements [2,4,6–8].

Numerous Pt-based alloys have been proposed as highly efficient MOR catalysts [6,9–12].
Pt-based solid solution alloys with foreign elements doped into a Pt lattice provide sufficient
compositional and electronic tuning possibilities. Intermetallic compounds with exceptionally
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negative enthalpies of formation and strong atomic (orbital) interaction endow them with
remarkable activity and anti-corrosion stability [13–15]. Also, the intrinsic catalytic activity of
core–shell structures can be tailored by altering the shell thickness [16–18]. The chemisorption
energy of adsorbates, such as reactants and intermediates, can be engineered by varying
the Pt d-band center associated with the electronic effects [19].

This review first overviews the MOR reaction mechanism, i.e., CO and non-CO path-
ways. The electronic modulation, which plays a vital role in enhancing catalytic activity,
will be presented as fundamentals for MOR catalyst design. Then, MOR catalysts with
dimensions spanning from 1-dimension to 3-dimension are introduced. After that, typical
enhancing strategies are thoroughly discussed, including the application of intermetallic
compounds to MOR catalysis, interface engineering to tune the electronic structure and
surface facet engineering. Last but not least, recent progress with respect to high-entropy
alloys as highly efficient MOR catalysts is highlighted.

2. MOR Catalytic Pathways: CO Pathways and Non-CO Pathways

The catalytic pathways involving various intermediate species are still under debate,
which makes it necessary to unravel the reaction mechanism and add insight into the
enhanced catalytic performances. The incomplete oxidation products of methanol are
formic acid and/or CO, and the complete oxidation outcome is CO2 (through a six-electron
transfer process). This section introduces the MOR catalytic mechanism with the aim of
more precisely tuning the catalyst structure and elevating performance.

Methanol oxidation mainly generates CO2, although plenty of CO* and COOH* species
are also formed during reactions. Generally, the adsorption of methanol, followed by its
dehydrogenation to form CO*, and desorptive oxidation of CO* are commonly considered
critical steps for MOR catalysis. Platinum-based multimetallic catalysts offer an effective
strategy to address CO poisoning at the present stage, wherein the paths for methanol
dissociation and Pt electrode absorption are as follows:

Pt + CH3OH → Pt-(CH3OH)ads → Pt-(CO)ads + 4H+ + 4e− (1)

M + H2O → M-OHads + H+ + e− (2)

Pt-(CO)ads + M-OHads → Pt + M + CO2 + H+ + e− (3)

wherein M denotes a second metal. In step (1), methanol adsorbed on the Pt sites undergoes
C-H and O-H bond splitting to produce COads intermediate. Step (2) involves water
dissociation to generate OHads species, and step (3) is the oxidation of COads by OHads to
produce CO2. The COads formation, a spontaneously favored process with fast kinetics,
results in a poisoning effect and impedes further methanol oxidation.

The incorporation of second elements (Rh, Ru, Sn, etc.) has been widely utilized
to generate oxygenated species at low potentials to mitigate toxic COads species. Sheng
et al. investigated the MOR mechanism by unraveling the role of Rh doped on Pt(111) at
the atomic scale [8]. The CH3OH* → CH2OH* → CHOH* → CHO* → CO* transforma-
tion proceeds on both Rh*/Pt(111) and Rh/Pt*(111) catalysts. The rate-determining step
of methanol dehydrogenation on both catalysts is CH3OH* → CH2OH* with C-H bond
splitting. The existence of Rh sites lowers kinetic barriers of methanol dehydrogenation
considerably relative to Pt sites. At lower potential, Rh sites contribute to the methanol
dehydrogenation due to a small amount of adsorbed OH*. In comparison, at a higher
potential of around 0.6 V, Rh sites serve to activate water for the generation of OH*, con-
sidering Rh sites are substantially covered by OH*. Wang et al. synthesized Rh-reinforced
quatermetallic ultrathin PtCoNiRh nanowires [20]. Rh-decorated Pt-skin Pt3Co0.5Ni0.5(111)
and Pt-skin Pt3Co0.5Ni0.5(111) were constructed to reveal the effect of Rh doping on
the reaction pathway. The MOR pathway of Pt-skin Pt3Co0.5Ni0.5(111) is as follows:
CH3OH → CH3OH* → CH3O* → CH2O* → CHO* → CO* → COOH* → CO2 (Figure 1).
Nevertheless, the thermodynamically favorable reaction path on Rh-decorated Pt-skin
Pt3Co0.5Ni0.5(111) is as follows: CH3OH → CH3OH* → CH2OH* → CHOH* → COH*



Catalysts 2024, 14, 60 3 of 22

→ CO* → COOH* → CO2. On the surface of Rh-decorated Pt-skin Pt3Co0.5Ni0.5(111),
CH3OH* is inclined to form CH2OH* by dissociating the C-H bond rather than the O-H
bond in the initial dehydrogenation. Moreover, the Rh-decorated catalyst is more prone
to break the C-H bond of CHOH* to generate stable COH* rather than CHO* owing to
the more negative free energy change of CHOH* → COH* transformation. Of note is that
the formation of COOH* (CO* + OH* → COOH*) is a rate-limiting step for both catalysts.
The Rh-decorated catalyst with the lower COOH* formation energy (0.76 eV) relative to
the non-Rh counterpart (0.91 eV) corresponds to easier surface OH* generation and CO*
oxidation. Then, the generated COOH* adsorbs on the Rh site to release H+ to form CO2.

Catalysts 2024, 14, x  3 of 24 
 

 

pathway. The MOR pathway of Pt-skin Pt3Co0.5Ni0.5(111) is as follows: CH3OH → CH3OH* 

→ CH3O* → CH2O* → CHO* → CO* → COOH* → CO2 (Figure 1). Nevertheless, the ther-

modynamically favorable reaction path on Rh-decorated Pt-skin Pt3Co0.5Ni0.5(111) is as fol-

lows: CH3OH → CH3OH* → CH2OH* → CHOH* → COH* → CO* → COOH* → CO2. On 

the surface of Rh-decorated Pt-skin Pt3Co0.5Ni0.5(111), CH3OH* is inclined to form CH2OH* 

by dissociating the C-H bond rather than the O-H bond in the initial dehydrogenation. 

Moreover, the Rh-decorated catalyst is more prone to break the C-H bond of CHOH* to 

generate stable COH* rather than CHO* owing to the more negative free energy change 

of CHOH* → COH* transformation. Of note is that the formation of COOH* (CO* + OH* 

→ COOH*) is a rate-limiting step for both catalysts. The Rh-decorated catalyst with the 

lower COOH* formation energy (0.76 eV) relative to the non-Rh counterpart (0.91 eV) cor-

responds to easier surface OH* generation and CO* oxidation. Then, the generated 

COOH* adsorbs on the Rh site to release H+ to form CO2. 

 
Figure 1. Free energy diagrams and optimized structures of MOR intermediates on (a) Rh-free Pt-

skin Pt3Co0.5Ni0.5(111) surfaces and (b) Rh-decorated Pt-skin Pt3Co0.5Ni0.5(111) surfaces. Reprinted 

with permission from Ref. [20]. Copyright 2020, Elsevier Ltd. 

On the other hand, some provide experimental and theoretical demonstrations of the 

non-CO-generation pathway during MOR catalysis. The evolution of key intermediates 

can usually be revealed by in situ Fourier-transform infrared (FTIR) spectroscopy analysis 

[21–23]. Qi et al. prepared 3.2 nm-PtZn intermetallic nanoparticles grown on multiwalled 

carbon nanotube (MWNT) via chemical etching of PtZn/MWNT confined by a mesopo-

rous SiO2 shell [24]. The theoretical calculations of the small-sized PtZn intermetallic na-

noparticles demonstrate the thermodynamically favorable non-CO pathway of CH3OH* 

→ CH2OH* → CH2O*→ H2COOH* → HCOOH* → HCOO* → CO2, while the large ther-

modynamic sink of CO formation on Pt makes it quite difficult to a�ain CO* → COOH* 

conversion. Wang et al. synthesized Pt92Bi8 surface alloy with a Pt-rich core [25]. The in 

situ a�enuated total reflection surface-enhanced infrared absorption (ATR-SEIRA) spectra 

reveal that contrary to the co-existence of CO and formate (HCOO−) pathways for MOR 

on Pt nanoparticles, the incorporation of Bi inhibits CO formation thermodynamically and 

kinetically. The CO2 on Pt92Bi8 stems from a formate, especially at high potentials (>0.5 V), 

due to the presence of abundant OHad. Similarly, our research on Pt64Fe20Ir16 and Pt65Fe22Ir13 

jagged nanowires shows that the formate peak intensity of in situ FTIR spectra increases 

concomitantly with the a�enuated CO peak as potential increases (Figure 2a–c) [26]. In 

contrast, the absence of an HCOOads peak and an undiminished COL peak prove the 

strong inclination toward the CO pathway on Pt/C. Zhao et al. synthesized a Cu-doped 

PtBi alloy catalyst with Cu atoms highly interspersed within the nanoparticles [22]. The 

in situ FTIR studies reveal the non-CO pathway by Pt69.2Bi29.6Cu1.2 and Pt3Bi alloy and the 

Figure 1. Free energy diagrams and optimized structures of MOR intermediates on (a) Rh-free Pt-skin
Pt3Co0.5Ni0.5(111) surfaces and (b) Rh-decorated Pt-skin Pt3Co0.5Ni0.5(111) surfaces. Reprinted with
permission from Ref. [20]. Copyright 2020, Elsevier Ltd.

On the other hand, some provide experimental and theoretical demonstrations of
the non-CO-generation pathway during MOR catalysis. The evolution of key interme-
diates can usually be revealed by in situ Fourier-transform infrared (FTIR) spectroscopy
analysis [21–23]. Qi et al. prepared 3.2 nm-PtZn intermetallic nanoparticles grown on
multiwalled carbon nanotube (MWNT) via chemical etching of PtZn/MWNT confined
by a mesoporous SiO2 shell [24]. The theoretical calculations of the small-sized PtZn in-
termetallic nanoparticles demonstrate the thermodynamically favorable non-CO pathway
of CH3OH* → CH2OH* → CH2O*→ H2COOH* → HCOOH* → HCOO* → CO2, while
the large thermodynamic sink of CO formation on Pt makes it quite difficult to attain
CO* → COOH* conversion. Wang et al. synthesized Pt92Bi8 surface alloy with a Pt-rich
core [25]. The in situ attenuated total reflection surface-enhanced infrared absorption
(ATR-SEIRA) spectra reveal that contrary to the co-existence of CO and formate (HCOO−)
pathways for MOR on Pt nanoparticles, the incorporation of Bi inhibits CO formation
thermodynamically and kinetically. The CO2 on Pt92Bi8 stems from a formate, especially
at high potentials (>0.5 V), due to the presence of abundant OHad. Similarly, our research
on Pt64Fe20Ir16 and Pt65Fe22Ir13 jagged nanowires shows that the formate peak intensity
of in situ FTIR spectra increases concomitantly with the attenuated CO peak as potential
increases (Figure 2a–c) [26]. In contrast, the absence of an HCOOads peak and an undimin-
ished COL peak prove the strong inclination toward the CO pathway on Pt/C. Zhao et al.
synthesized a Cu-doped PtBi alloy catalyst with Cu atoms highly interspersed within the
nanoparticles [22]. The in situ FTIR studies reveal the non-CO pathway by Pt69.2Bi29.6Cu1.2
and Pt3Bi alloy and the CO pathway for Pt black (Figure 2d–f). The attenuation of HCOO−

intensity for Pt69.2Bi29.6Cu1.2 after 0.1 V indicates faster kinetics of HCOO− → CO2 relative
to Pt3Bi and Pt black. Moreover, the diminished intensity of the CO2 peak and the increased
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intensity of the CO3
2−/HCO3

− peak for Pt69.2Bi29.6Cu1.2 demonstrate weakened adsorp-
tion of CO2 and faster CO2 → CO3

2−/HCO3
− conversion, which are probable reasons why

Pt69.2Bi29.6Cu1.2 outperforms the Pt3Bi alloy and Pt black.
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Figure 2. (a) Transmission electron microscopy (TEM) image of Pt64Fe20Ir16 jagged nanowires.
Potential-resolved in situ FTIR spectra of CO2, COL, and HCOOads as a function of the potential on
(b) Pt64Fe20Ir16 jagged nanowires and (c) Pt/C. Reprinted with permission from Ref. [26]. Copyright
2023, Elsevier Ltd. In situ FTIR spectra of (d) Pt69.2Bi29.6Cu1.2 nanoalloy and (e) intermetallic Pt3Bi
nanocrystals ranging from −0.8 V to 0.2 V at the potential step of 0.1 V. (f) Enlarged picture between
2200 cm−1 and 1800 cm−1. Reprinted with permission from Ref. [22]. Copyright 2020, Royal Society
of Chemistry.

Differential electrochemical mass spectrometry (DEMS) is an effective tool in terms
of the detection of MOR intermediate species. Zeng et al. demonstrated MOR catalytic
mechanisms for PtFeCu ternary intermetallic catalysts via DEMS [27]. Initial C-H bond
cleavage gives rise to CH2OHad, which is further dehydrogenated to HCOad. At a low
potential of <0.7 V, the adsorption of H2O by HCOad gives rise to CH(OH)2 and finally to
HCOOH since COad species derived from HCOad is highly stable. In contrast, at a high
potential for COads oxidative desorption, HCOOH can be converted to CO2 directly or indi-
rectly via a COad intermediate. By DEMS examination, the HCOOCH3 formation efficiency,
as a measure of HCOOH formation, is the highest for PtFe0.5Cu0.5 as Cu is continuously
incorporated into PtFe. The lattice contraction due to Cu incorporation leads to stabilized
adsorption of intermediates like CH(OH)2, which favors the CH(OH)2 → HCOOH → CO2
direct pathway. Combining recent representative reports of the dual-pathway mechanisms
via in situ FTIR and DEMS characterization, a whole picture is provided in Scheme 1.
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3. Electronic Effects on Catalytic Performance

The electronic effect is typically manifested by the variation of the Pt d-band center
owing to the electron transfer between constituent elements with different electronegativity.
Several reports show that introducing a foreign metal suppresses the Pt d-band center
with a relieved overbinding effect toward reaction intermediates such as CO [28–30]. The
downshift of the Pt d-band center occurs concomitantly with increased d states being pulled
below the Fermi level [17,31,32]. The d-band center variation is commonly demonstrated
by the negative shift of binding energy in Pt XPS spectra. Moreover, the high electron
density of foreign metals near the Fermi level facilitates the charge transfer from catalyst
to adsorbate molecules. Meanwhile, foreign metals with broad orbital ranges across the
Fermi level usually play a pivotal role in protecting Pt sites’ robust and stable electronic
structure while accelerating site-to-site charge transfer on the catalyst surface [33–35].

Using a PtBiZn nanoplate as an archetype of electronic effect, Tian et al. demonstrated
that the CO* → COOH* free energy change reduces from 0.37 eV of PtBi to 0.28 eV of PtBiZn-1,
suggestive of weakened CO adsorption and mitigated CO poisoning (Figure 3) [2]. This is
closely correlated to the downshift of the d-band center from −2.71 eV of PtBi to −2.95 eV
of PtBiZn-1. The CO adsorption energy drops from −1.96 eV of PtBi surface to −1.73 eV of
PtBiZn-1 surface. Zhang et al. demonstrated that for PtNiRh ultrathin nanowires, the d–d
charge transfer of delocalized Ni 3d and electron-rich Rh 4d orbitals synergistically pinned
Pt 5d center at a position close to the Fermi level with a balance between the noticeably
suppressed CO adsorption due to limited orbital overlap and reduced reaction barrier of
methanol oxidation [4]. Luo et al. utilized electron-spin engineering for MOR catalysis using
PdFePt nanomeshes [36]. The moderate incorporation of Fe with a high electron occupancy
in the eg orbital promotes its overlap with the O pz orbital, which facilitates the adsorption
of oxygenated intermediates (OHads). Flexible electronic modulations with multiple orbital
hybridization help to attain the optimal binding strength of reactants and intermediate species.
The coordination environment also influences catalytic activity via variation in the d-band
center. The empirical rule is that the d-band center shifts downward with larger d-band width
(stronger orbital hybridization) as a result of the increased coordination number [29].
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(c) CO* → COOH* adsorption configurations on the PtBi and PtBiZn-1 surface. (d) D-orbital density
of states. (e) D-band centers. (f) CO adsorption energies. Reprinted with permission from Ref. [2].
Copyright 2022, Elsevier Ltd.

4. Dimensional Engineering of Pt-Based Alloys for MOR

Ultrathin nanowires with a diameter of less than 2 nm are usually considered promis-
ing MOR catalysts since surface active sites can be better exposed. Li et al. synthesized 22%
YOx/MoOx-Pt ultrathin nanowires with superb MOR mass activity (2.10 A mgPt

−1) and
specific activity (3.25 mA cm−2) (Figure 4) [1]. The decoupling mechanism was proposed
between COads and COOHads, wherein COOHads intermediate is adsorbed on the catalyst
surface with C bound to Pt and O bound to oxophilic Y. The energy change for COads
oxidation to COOHads (0.20 eV) is, therefore, considerably reduced compared to pure
Pt (0.98 eV). The 22% YOx/MoOx–Pt ultrathin nanowires follow the reaction pathway
CH3OH → CH2OH* → CH2O* → CHO* → CO* → COOH* → CO2. Zhang et al. demon-
strated the remarkable advantage of surface defects featured by void structures at the grain
boundaries of Pd4Sn wavy nanowires toward the MOR catalysis [37]. The high density
of surface defects available in Pd4Sn wavy nanowires provides more channels for the
adsorption of small molecules. Thermodynamically, the surface void structure facilitates
MOR catalysis in the HCOOH (HCOOads) pathway rather than the CO formation pathway.
Moreover, the synergistic effect that occurs as noticeable structural distortion around Sn
sites is balanced by local relaxations at Pd sites.

In recent years, noble metal-based metallenes have emerged as a highly efficient class
of two-dimensional electrocatalysts owing to their considerably high atomic utilization,
specific surface area, and exposure to active sites [38–48]. The optimized contact of the
electrocatalysts with supports is also guaranteed through the construction of such two-
dimensional materials. On the other hand, their crimped structure, which is suggestive of
electronic modulation and the inner strain effect, may play a crucial role in enhancing the
tolerance toward poisoning species (such as COads) due to weakened adsorption strength.
Wu et al. combined PdMo bimetallene with hydride by considering that Mo introduction
improves hydrogen binding [49]. At 180 ◦C, high coverage of CO derived from Mo(CO)6
hinders hydrogen penetration into the PdMo lattice, whereas PdMoH bimetallene can
be formed with decreased CO concentration on PdMo surfaces at 220 ◦C. The PdMoH
bimetallene possesses mass activity and specific activity of 3.56 A mg−1 and 6.06 mA cm−2,
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far outperforming those of PdMo bimetallene. Tian et al. introduced various third metals
(Co, Ni, Cu, Zn, Sn) into PtBi nanoplates for noticeably enhanced MOR catalytic activities [2].
It turned out that Zn-incorporated Pt3Bi3Zn nanoplates display the highest mass activity
of 3.29 A mgPt

−1. The Zn incorporation leads to the downshift of the d-band center from
−2.71 eV (PtBi) to −2.95 eV. The CO adsorption energy, therefore, becomes attenuated from
−1.96 eV to −1.73 eV.
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Moreover, morphologically anisotropic superstructures have recently been reported to
be beneficial for methanol oxidation catalysis [50–58]. The distorted Pt superstructures were
prepared by electrochemical Te removal via 500 voltammetric cycles of PtTex superstruc-
tures with tubular-like layered assembly structure in an acidic solution [50]. The flexible
nanosheets with abundant nanopores, together with significant exposure of Pt catalytic sites
due to massive Te leaching, contribute to an enhanced MOR activity of 2.89 A mgPt

−1 with
a 5.7-fold improvement relative to Pt/C. Their work also shows that as Te content increases
from PtTe1.0 to PtTe1.5 to PtTe2.0, the MOR activities of etched Pt superstructures follow
the same increasing trend. The PtPdCu hollow sponges with hierarchically fractal pores
were synthesized by Xiao et al. The mass activity and specific activity of 1.34 A mgPt

−1

and 3.24 mA cm−2 were attained by PtPdCu hollow sponges as opposed to 0.34 A mgPt
−1

and 0.44 mA cm−2 of Pt/C [56]. The hierarchically fractal pores of PtPdCu assist in the
directed mass transfer from subpores to main pores and directed electron transfer from the
thicker walls of the large-sized pores to the thinner walls of the small-sized pores, the latter
of which promotes the favorable adsorption of methanol molecules. Moreover, the superior
anti-CO poisoning capability, as manifested by the significantly lower CO oxidation onset
potential (0.767 V of PtPdCu hollow sponges vs. 0.851 V of Pt/C), can be attributed to the
dominant (111) facets.

In particular, nanoframes, a class of three-dimensional open and interconnected structures
created through the spatial segregation of compositional elements, have garnered research
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attention in recent years [59–64]. Composition segregation, also known as composition
anisotropy, is the migration or rearrangement of different elements toward different regions.
The overall Gibbs free energy must be minimized, with elements with a larger surface energy
migrating towards the apex, edge, or corner to release the internal strain and elements with
a lower surface energy prone to form the facet of the final nanocrystals [64]. Chen et al.
synthesized PtCo rhombic dodecahedra with Pt located on the edges and Co uniformly
located on the nanocrystals [62]. Nitric acid corrosion gives rise to the PtCo nanoframes. The
powder X-ray diffraction pattern substantiates the formation of the PtCo nanoframe via the
evolution from Pt-rich and Co-rich dual phases in Pt23Co77 to a Pt-rich single phase in Pt82Co18.
The MOR catalysis by PtCo nanoframes exhibits 8.56 mA cm−2 with 5-fold enhancements
relative to Pt/C in 1 M KOH + 1 M methanol. Similarly, Ding et al. synthesized composition-
separated tetrahexahedral PtNi nanocrystals (THH PtNi NCs) and rhombic dodecahedral PtNi
nanocrystals (RDH PtNi NCs) simply by adjusting oleylamine/oleic acid ratio, both of which
are featured by homogeneous distribution of Ni across the whole facet and segregated location
of Pt on the edges (Figure 5) [63]. The former product can be indexed to face-centered cubic
(fcc) PtNi/PtNi3 crystalline phases, while the latter is a combination of fcc PtNi2/PtNi5 phases.
The acetic acid treatment of THH PtNi NCs and RDH PtNi NCs gives rise to tetrahexahedral
PtNi nanoframes (THH PtNi NFs) and rhombic dodecahedral PtNi nanoframes (RDH PtNi
NFs) with a pure alloy phase of fcc pattern. The THH PtNi NFs and RDH PtNi NFs exhibit
exceptional specific activities of 2.19 mA cm−2 and 1.90 mA cm−2, respectively. This is
3.91-fold and 3.39-fold higher than that of commercial Pt/C (0.56 mA cm−2). Shang et al.
reported the preparation of PtRuNi nanoframes surrounded by ultrathin Ru nanodendrites
(PtRuNi FDs) [53]. The structure evolves into PtRuNi nanodendrites when increasing the
amount of Ni precursor. The PtRuNi FDs exhibit a 2.9-fold improvement of MOR activity
compared to Pt/C (1.49 A mgPt

−1 vs. 0.52 A mgPt
−1).
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5. Strategies to Enhance Activity and Stability

This section focuses on strategies to heighten catalyst activity and stability by mod-
ulating the internal ordering arrangement of atoms, interfacial modulation of electronic
structure, and surface facet regulation in MOR catalysis. At the beginning of the section, it
should be pointed out that core–shell structured catalysts are usually constructed to enhance
electrocatalytic activity. Core–shell catalysts are mostly synthesized by electrochemical deal-
loying/leaching, adsorbate/thermal-induced segregation, galvanic displacement of under-
potentially deposited Cu monolayer, and a one-step co-reduction approach [16–18,65–68].
The shell thickness of the core–shell structure can be engineered for optimal binding
strength of adsorbates. The electronic effects generally lessen and vanish for the shell’s
three or more atomic layers. In comparison, lattice strain resulting from the difference in
core and shell lattice parameters becomes attenuated or more than five atomic layers [69,70].

5.1. Intermetallic Compounds

Before delving into the section on intermetallic compounds as MOR catalysts, it is
necessary to differentiate between random alloys and intermetallic compounds. In this
context, “alloy” refers to random alloys and intermetallic compounds. The former, which
can also be referred to as “solid solution”, refers to the random or disordered mixing of
“solute elements” (such as Fe, Co, Cu, etc.) into the lattice structure of “solvent elements”
(such as Pt in our case). Constituent elements are, as the name suggests, in random
stoichiometric ratios. For instance, the abovementioned quatermetallic ultrathin PtCoNiRh
nanowires with Pt:Co:Ni:Rh atomic ratio of 64:11:12:13 exhibit a typical Pt fcc structure
and a positive shift of diffraction peaks relative to Pt, the latter of which stems from
the compressed lattice due to the incorporation of Co, Ni, and Rh with smaller lattice
parameters [20].

Intermetallics with unique electronic structures have attracted extensive attention for
their high catalytic performance [24,27,71–85]. Owing to their ordered atomic arrangement
and evenly distributed active sites, they possess intrinsic stability compared to their solid
solution alloy counterparts, making them highly active and reliable as versatile catalysts in
energy conversion devices. Therefore, unveiling and modulating their electronic effects
has become a notable topic for catalyst researchers. Qin et al. fabricated PtBi/Pt core–
shell nanoplates composed of an intermetallic PtBi core with a hexagonal close-packed
(hcp) phase, P63/mmc space group, and fcc Pt shell [80]. The product achieves a mass
activity of 1.1 A mgPt

−1 and a specific activity of 3.18 mA cm−2, 3.7-fold and 7.4-fold higher
than Pt/C, respectively. Zhu et al. prepared a class of PtFexCu1-x intermetallic catalysts
for efficient methanol oxidation [82]. The PtFe with disordered fcc structure annealed at
500 ◦C (PtFe-500). It evolved into PtFe0.9Cu0.1 with an ordered body-centered tetragonal
(bct) structure after the incorporation of a tiny amount of Cu into the lattice. The PtFe
annealed at 700 ◦C with an ordered bct phase (PtFe-700) retains a higher current density
than its fcc-structured PtFe-500 counterpart after chronoamperometric measurement at
0.8 V for 3000 s. Furthermore, the PtFe0.7Cu0.3-700 catalyst with a robust bct ordered
structure further inhibits Fe dissolution as compared to PtFe-700. The optimal Cu doping
content in the PtFe0.7Cu0.3 catalyst improves considerably with only 11% Fe loss, in
contrast to around 22% Fe loss for PtFe0.9Cu0.1 and PtFe.

The strain effect is usually manifested in Pt-based intermetallic catalysts with core-
shell structures. Bu et al. synthesized a PtPb/Pt core/shell nanoplate catalyst with a PtPb
intermetallic-phased nanoplate core that is 4.5 nm thick and a Pt shell that is 4~6 atomic
layers thick [86]. Under biaxial strains of tensile strain along [001] direction and compres-
sive strain along [110] direction, the low-coordinated bridge sites along [110] direction on
the top and edge of the Pt surfaces serve as active sites due to weakened binding strength
toward oxygenated species. This unique characteristic endows the catalyst with ORR
and MOR-specific activities of 7.8 and 2.7 mA cm−2, respectively. Li et al. prepared an
L10-CoPtAu ternary intermetallic catalyst with an L10-PtCo core with Co stabilization
and a two-atomic-layer AuPt shell as a result of Au enrichment on the surface [87]. The
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surface compressive strain exerted on the AuPt shell, due to the smaller lattice parameter
of PtCo core, mitigates the poisoning of carbonaceous species such as COads due to the
lowered d-band center of surface Pt. Unlike the A1-CoPtAu catalyst with Au embedded
in the solid solution structure that undergoes acid etching of Co, the L10-CoPtAu inter-
metallic catalyst exhibits a mass activity of around 1.49 A/mgPt. Chen et al. examined
the effect of annealing time on the MOR activity of L12-phased Pt3Mn@Pt-skin. As the
annealing time increases from 1 min to 24 h, the ordering degree increases, and the lat-
tice parameter of the Pt3Mn intermetallic core decreases (Figure 6) [73]. The Pt skin is,
therefore, subject to increasing compressive strain induced by the Pt3Mn core, wherein
the nearest-neighboring Pt–Pt distance decreases continuously. The product obtained by
24 h-annealing is the most efficient catalyst in terms of MOR specific (2.71 mA cm−2) and
mass activity (1.98 A mgPt

−1). Further theoretical calculations demonstrate that compres-
sive strain rather than ligand effect leads to improvement in the MOR activity of Pt3Mn@Pt
catalysts. Feng et al. synthesized an intermetallic Pt3Ga catalyst with pure Pt of two to three
atomic layers as a shell (AL-Pt/Pt3Ga) [76]. The surface AL-Pt undergoes a tensile strain
of 3.2% along the [100] direction and negligible strain along the [100] and [010] direction.
The strong OHads adsorption AL-Pt owing to the upshift of the Pt d-band center indicates
preferable water dissociation to remove poisonous COads species. Every step of the conver-
sion of CH3OHads → CH2OHads → CHOHads → COHads → COads → COads + OHads is
energetically favorable on tensile strained Pt layers relative to pure Pt. The AL-Pt/Pt3Ga
exhibits a mass activity and specific activity of 1.094 A mgPt

−1 and 7.195 mA cm−2, which
are 1.9-fold and 8.5-fold higher than commercial Pt/C, respectively.
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Pt-lanthanide metal intermetallics have been studied as alternative electrocatalysts
to commercial Pt/C due to their noticeably negative heat of formation, which improves
resistance to activity loss during stability tests [88–90]. Escudero-Escribano et al. introduced
volcano-like relations between nearest-neighbor Pt–Pt distance (dPt-Pt) and H adsorption
strength and ORR activity for a series of Pt5M (M = lanthanide metal, i.e., Pt5La, Pt5Ce,
Pt5Sm, Pt5Gd, Pt5Tb, Pt5Tm) catalysts [88]. As the dPt-Pt or lattice parameter decreases,
H adsorption becomes weakened and reaches the maximum destabilization of adsorbed
H for Pt5Tb. Decreasing dPt-Pt, such as Pt5Tm, forms a more relaxed Pt overlayer toward
more stabilized or strengthened H binding. In recent reports, the catalytic application of
Pt-lanthanide metal intermetallics was extended to MOR catalysis. Zhang et al. examined
Pt5La, Pt5Ce, Pt5Pr, and Pt5Nd intermetallics of hexagonal phase with P6/mmm space
group show exceptional activities and stabilities in alkaline electrolyte [89]. In particular,
the mass activity of Pt5Ce (9.13 A/mgPt) exhibits a 7.4-fold enhancement relative to Pt/C
(1.24 A/mgPt). After 1000 continuous potential cycles, Pt5Ce shows a slight activity degra-
dation of 8.4% in stark contrast to 73.8% loss for Pt/C. The electron-rich nature enables
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faster electron transfer within Pt5Ce with adequate Pt 5d-Ce 4f coupling to modulate the
Pt electronic structure. Moreover, the Pt d-band center at a lower position away from the
Fermi level leads to attenuated CO binding strength and superior CO tolerance.

The majority of Pt-based ordered intermetallic catalysts are synthesized under high
temperatures, which inevitably leads to particle agglomeration and/or Ostwald ripening.
Cui et al. synthesized structurally ordered Pt3Ti and Pt3V nanoparticles via a surfactant-
free KCl-matrix approach with potassium triethylborohydride (KEt3BH) as the strong
reducing agent under air-free and aprotic-solvent (tetrahydrofuran) conditions [91]. The
use of KEt3BH is efficient in reducing the precursors of extremely oxophilic early-3d
transition metals in a very fast process. KCl, generated as a by-product and insoluble
in tetrahydrofuran, encapsulates the resultant intermetallic nanoparticles to suppress
agglomeration during thermal annealing (Figure 7). The mass activities of Pt3V/C and
Pt3Ti/C at 0.5 V in 0.1 M HClO4 + 1 M CH3OH are 149.4 and 200.2 mA mgPt

−1, respectively,
significantly higher than Pt/C (53.6 mA mgPt

−1). The loss in current density at 0.5 V after
1000 potential cycles is 27.2% for Pt3Ti and 23.4% for Pt3V compared to 40.7% for Pt/C.
This KCl-stabilization strategy was extended to the synthesis of other Pt-based ordered
intermetallic catalysts. In recent years, face-centered tetragonal (fct) L10-phased PtCo and
PtFe-ordered intermetallic catalysts with alternating Pt and Co/Fe atomic layers have
become the topic of considerable research [92,93]. MgO was used to coat Pt-CoO or PtFe-
Fe3O4 nanoparticles as an inert protective layer to keep them from aggregating during the
annealing process.
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It should be noted that in some cases, disordered alloys outperform ordered inter-
metallics in terms of MOR catalysis. Chen et al. conducted acetic acid and thermal treatment
of the preformed ordered Pt3Sn nanocubes to obtain well-retained ordered and disordered
Pt-Sn nanocubes, respectively [71]. A higher proportion of Sn4+ is formed after thermal
treatment because the higher mobility of Sn atoms in the thermally treated disordered
nanocubes drives Sn atoms to migrate to the surface and to be oxidized. The formation of
OHads due to water dissociation is promoted on Sn4+ sites, which facilitates CO oxidation
to CO2 on Pt sites at less positive potentials. They also demonstrated that for disordered
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Pt-Sn nanocubes that undergo electrochemical activation in an alkaline electrolyte followed
by MOR test by 10 cycles in an acidic electrolyte, both Sn4+-to-Pt ratio and MOR-specific
activity could reach the level attained by the disordered Pt-Sn nanocubes subject to electro-
chemical activation in an acidic electrolyte. At the same time, these properties cannot be
recovered for ordered counterparts subjected to the same treatment.

5.2. Interface Engineering

The interface-driven enhancement of catalytic performances via preparing heterostruc-
tured catalysts has also been a topic of extensive research [94–98]. The interface electron
transfer and redistribution is utilized to tailor the adsorption energy of reaction molecules
and intermediates. By electrochemical chronoamperometric treatment of Pt2Bi with a mixed
chain-like and plate-like structure, Wang et al. synthesized a purely chain-like structure
with BiOx(OH)y-Pt inverse interface [94]. The inverse interface structure is formed due
to the partial leaching of Bi atoms together with anodic oxidation to Bi3+ in the form of
BiOx(OH)y. The structural reconstruction endows the catalyst with superior CO tolerance,
as evidenced by the electron deficiency of Pt, to weaken CO binding strength and to form
an enhanced adsorption interaction with strongly electronegative O atoms of OH species
to remove CO (Figure 8). By conjugating PtFeNi ultrathin nanowires with imidazolium-
salt-based ionic liquids (ILs), Li et al. take advantage of the electronic interaction between
organic coating and metallic catalysts [98]. The flexible coverage of IL layers as a shielding
modulates the electronic properties of surface Pt sites via the observable eg-t2g orbital
splitting of the Fe 3d band due to the crystal-field effect and moving of Ni 3d orbital closer
to the Fermi level (−1.4 eV). The resultant IL/PtFeNi conjugation nanowires possess a
mass activity of 1.43 A/mgPt, markedly higher than the 0.75 A/mgPt of PtFeNi nanowires
and 0.36 A/mgPt of Pt/C. Tao et al. synthesized Pt/CeO2-P by Ar plasma treatment and Pt
deposition for an efficient MOR catalysis [97]. The plasma irradiation of CeO2 generates a
high density of oxygen vacancies. When coupled with small Pt particle size, it promotes the
transfer of surplus electrons of Pt to CeO2 support and conversion of Ce4+ to Ce3+. Mean-
while, the eg-t2g splitting induced by the crystal field effect serves to lower the Ce 5d band
in energy for the Pt/CeO2-P catalyst. The beneficial plasma treatment and strong electronic
interaction at the interface endow the hybrid catalyst with a remarkable specific activity of
8.06 mA/cm2 relative to that of Pt/CeO2 (2.36 mA/cm2) and Pt/C (1.72 mA/cm2). Simi-
larly, Chen et al. synthesized Pd nanowires decorated with crystalline CuOx nanoparticles
(Pd NW@cCuOx) by fast air plasma treatment of Pd nanowires covered with amorphous
CuOx nanolayers (Pd NW@aCuOx) [96]. The electron-deficient Pdδ+ active sites with high
valence states generated due to the strong Pd-O-Cu interaction at the Pd-cCuOx inter-
face play a key role in enhancing stability and anti-poisoning properties. With the stable
Pd active sites with predominant oxidation states, the loss in MOR-specific activity after
600 potential cycles is only 20.1% for the Pd NW@cCuOx catalyst. In contrast, the specific
activity drops by 43.0% and 53.8% for Pd NW@aCuOx and Pd NW catalysts, respectively.

5.3. Surface Facet Engineering

The selective exposure of (111) facets has been proven beneficial toward MOR catalysis
with high CO tolerance because of the weakened binding strength of poisoning species
such as COads relative to other facets such as (100) [56,99–101]. Li et al. demonstrated
CuNi@PtCu octahedra with (111)-terminated facets exhibit superior MOR catalytic activi-
ties compared to CuNi@PtCu polyhedra counterpart (7.49 mA cm−2 and 0.99 A mgPt

−1

vs. 5.57 mA cm−2 and 0.66 A mgPt
−1) [101]. The CuNi octahedra enclosed by (111) facets

were performed, followed by Pt coating and segregation, wherein galvanic replacement
between Pt and core Ni occurs to form a PtCu shell. The higher CO tolerance of CuNi@PtCu
octahedra is manifested by the lower onset and peak potential of CO stripping peaks. Also,
Huang et al. substantiated the (111) facet-induced advantage by preparing ultrathin PtRu
nanowires enclosed by (111) facets and PtRu nanocubes enclosed by (100) facet [99].
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Due to the presence of high-density steps and lower atomic coordination numbers,
Pt-based nanocrystals bounded with high-index facets (HIFs), characteristic of tetrahex-
ahedron, trapezohedron, and trisoctahedron, possess remarkable MOR catalytic activity
(Figure 9). Shen et al. showed that for an L10-Pt1Co1 ordered tetragonal structure, a
growing portion of Bi modification can significantly reduce the specific surface energies
of HIFs while increasing the specific surface energies of low-index facets (LIFs), thereby
facilitating the formation of HIFs-enclosed THH alloys [102,103]. Based on this concept,
A1-Pt1Co1 and A1-Pt3Co1 THH nanoparticles with the phase of solid solution were pre-
pared via annealing at 900 ◦C, and L10-Pt1Co1 and L12-Pt3Co1 THH ordered intermetallic
nanoparticles were obtained via subsequent annealing of the A1-phase alloy nanoparticles
at 700 ◦C. Concerning the Pt3Fe1 system, the 900 ◦C annealing yields L12-phased THH
intermetallic nanoparticles instead of an A1-phased solid solution. However, the incor-
poration of a third element, Ni, serves to realize L12-phased Pt3Fe0.6Ni0.4 intermetallic
nanoparticles while retaining the THH structure characteristic of HIFs after annealing at a
lower temperature of 600 ◦C. Also, their group utilized Bi shape-regulation to synthesize
bimetallic, trimetallic, and tetrametallic THH alloys with heterodimer structures [104].
For instance, Pd domains and Rh domains in PdRh THH heterodimers are enclosed by
high-index facets. The immiscibility between Rh and Au leads to the preferred alloying of
Rh with Pt and, therefore, the formation of PtRh domains bounded by high-index facets
and Au-alone domains bounded by low-index facets as Rh is incorporated into PtAu het-
erodimers. By using the seed-mediated approach, Song et al. synthesized hyperbranched
trisoctahedral core–shell (HTCS) Au@PdPt catalysts based on preformed trisoctahedral
Au cores bounded by (331) facets [105]. The conformal growth of the outermost PdPt shell
retains the trisoctahedral morphology. The HTCS Au@PdPt catalysts show mass activity
and specific activity of 0.64 A mgPt

−1 and 1.16 mA cm−2, respectively, enhanced relative
to Au@PdPt catalysts with spherical Au cores (0.36 A mgPt

−1 and 0.71 mA cm−2) and
octahedral cores (0.42 A mgPt

−1 and 0.80 mA cm−2).
A concave nanocube formed from kinetically controlled growth represents a classic

form of nanocrystal enclosed by HIFs. The identification of these facets with {hk0} ori-
entation involves measuring the angle between {hk0} and {100} facets observed in the
corresponding high-resolution transmission electron microscopy images [106]. Li et al.
investigated the effect of Sn doping into Pt3Mn concave nanocubes with HIFs [107]. The
Sn doping gives rise to surface alloying of the three constituent elements without destroy-
ing the HIFs-bounded structure. More importantly, Sn doping provides stabilization to
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the surface structure with negligible morphological change after 2000 potential cycles of
stability test. The retention of MOR activities after 2000 cycles reach as high as 65.7%
for 0.5%/Pt3Mn relative to 42.3% for undoped Pt3Mn and 5.5% for Pt/C. Apart from
doping-induced stabilization, some reports demonstrated anisotropic nanowires that serve
to relieve the high surface energy intrinsic to HIFs while guaranteeing intimate contact
with carbon supports. Luo et al. synthesized a zigzag-like PtFe anisotropic nanowire with
a two-atomic-layer Pt skin [108]. The product exhibits a mass activity of 3.34 A/mgPt
with substantial improvement relative to Pt/C (0.70 A/mgPt). The current density reten-
tion of 35.7% after the chronoamperometric test of 5000s is also much higher than that of
Pt/C (9.6%).
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6. The Use of High-Entropy Alloys in Electrocatalysis

High-entropy alloys (HEAs), a unique class of multimetallic alloys with five or more
elemental components, have become a hot research topic in the past few years. The
varied elemental composition enables the infinite tuning possibility of adsorption energies
toward intermediate species, thereby promoting electrocatalytic activity, selectivity, and
stability. A growing portion of reports are being focused on the electrocatalytic application
of HEAs on oxygen reduction reaction, methanol oxidation reaction, hydrogen evolution
reaction, oxygen evolution reaction, etc. [34,83,110–114]. The mixed configuration entropy
(S) reaches more than 1.5 R (wherein R denotes molar gas constant) at a homogeneous
atomic percentage of 5~35% for each element [115,116]. In addition to the high-entropy
effect, the lattice distortion effect due to the variation of the atomic size of each elemental
component in HEAs and the sluggish diffusion effect due to the high diffusion energy
barrier of elemental components contribute to modulating the electronic structure and
enhancing thermal stability.

Chen et al. synthesized PtRhBiSnSb high-entropy intermetallic (HEI) nanoplates with
distinct hexagonal close-packed (hcp) crystalline structure [83]. The partial substitution
of Pt atoms by Rh atoms and Bi atoms by Sn/Sb atoms leads to not only efficient elec-
tron transfer via p-d orbital hybridization but also robust valence states. The reaction
energy diagrams, in conjunction with in situ infrared spectra, reveal the strong preference
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toward non-CO HCOOH (HCOOads) pathway by PtRhBiSnSb HEI nanoplates. Zhao et al.
employed a distinct approach of spray drying (SD) and thermal decomposition reduc-
tion (TDR) to fabricate a class of high-entropy alloy nanoparticles with a single phase
of solid solution [117]. The SD process involves the rapid formation of dry precursor
nanoparticles in less than 0.6 seconds in the drying chamber after the solution precursor
emerges from the nozzle in less than 0.00017 seconds. The TDR process includes thermal
nucleation and nanocrystal growth, which involves the three stages of aggregation and
coalescence, oriented attachment, and Ostwald ripening. In addition, the abundant hydro-
gen bonds between the precursor solution and oxygenated groups on the GO substrate
help to anchor as-formed precursor nanoparticles. The resultant senary PtCoCuRuNiFe
HEA nanoparticles supported on rGO possess mass activity of 1.51 A mgPt

−1 compared
to that of Pt/C (0.3 A mgPt

−1) in 0.5 M H2SO4 + 0.5 M CH3OH electrolyte. Li et al.
fabricated Pt18Ni26Fe15Co14Cu27 high-entropy alloy nanoparticles by a simple oleylamine-
based oil-phase approach (Figure 10) [33]. They exhibit remarkable alkaline MOR activity
(15.04 A mg−1

Pt) and anti-CO poisoning properties in 1 M KOH + 1 M CH3OH. After
1000 CV cycles, the MOR activity of Pt18Ni26Fe15Co14Cu27 declines by only 6.4%, in sharp
contrast to 26.9% for Pt/C. The electron transfer is markedly promoted for MOR catalysis,
wherein the lowest location of Pt-5d serves as an electron reservoir while Ni-3d and Co-3d
with high-lying positions serve as electron depletion centers. The 3d orbitals of Cu, Co, and
Fe mitigate the energy barrier for MOR electron transfer. Moreover, the linear relation for
energy positions of s,p orbitals of MOR intermediates (CH3O*, CH2O*, CHO*, CO2) gives
rise to optimal binding strength and thus exceptional MOR catalytic activity of PtNiFeCoCu
high-entropy alloy nanoparticles. Using a compressive strain engineering strategy, Wang
et al. synthesized PtFeCoNiCu HEA nanoparticles with face-centered cubic structures by
calcination of the precursor at 400 ◦C (HEA-400) and 700 ◦C (HEA-700) [118]. The 0.94%
compressive strain, as evidenced by the shortened Pt–Pt bond length of HEA-700 compared
to HEA-400, promotes the CO tolerance of the former catalyst. The HEA-700 and HEA-400
exhibit MOR mass activities of 1.40 A mgPt

−1 and 1.30 A mgPt
−1, respectively, 2.50 and

2.32 times higher than that of Pt/C. The peak current density ratios of forward to backward
(If/Ib) are 1.21, 1.09, and 0.58 for HEA-700, HEA-400, and Pt/C, respectively. The downshift
of the d-band center in HEA-700 corroborates its weaker CO adsorption and remarkable
MOR activity.
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7. Conclusions and Perspectives

The MOR kinetics determines the overall anodic performance of direct methanol fuel
cells. Based on classic d-band theory, a wide variety of MOR catalysts have been developed
with exceptional catalytic activity, CO tolerance and stability (Table 1). The formation of
intermetallic compounds serves to modulate electronic structure via ligand effect and strain
effect. Interfacial electronic engineering and surface facet engineering can also be employed
to tune the chemisorption of reaction intermediates. These strategies are usually combined
or jointly function when it comes to designing highly effective MOR catalysts.

Table 1. Comparison of recently reported catalysts, mass and specific activities, and stabilities.

Catalysts Electrolyte Mass Activity
(A mgPt/Pd

−1)
Specific Activity

(mA cm−2)

Stability
(Retention in Activity

after Tests
References

22% YOx/MoOx-Pt
ultrathin nanowires

0.1 M HClO4 +
0.5 M CH3OH 2.10 3.25 64.7% after 1200 cycles

(Pt/C: 50.6%) [1]

Pt69Ni16Rh15
ultrathin nanowires

0.1 M HClO4 +
0.5 M CH3OH 1.72 2.49

146.8 mA mgPt
−1

after 5000 s
(Pt/C: 17.2 mA mgPt

−1)
[4]

screw thread-like
PtCu2.1 nanowires

0.1 M HClO4 +
0.2 M CH3OH 1.56 3.31 72.9% after 1000 cycles

(Pt/C: 27.6%) [119]

Pt77Co11Rh12
spiral nanowires

0.1 M HClO4 +
0.5 M CH3OH 1.48 4.76 74.3% after 1600 cycles

(Pt/C: 49.9%) [120]
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Table 1. Cont.

Pt2Bi nanochains 1 M KOH +
1 M CH3OH 4.61 N/A

1.52 A mgPt
−1

after 10,000 s
(Pt/C: 0.28 A mgPt

−1)
[94]

Pt3Bi3Zn nanoplates 0.1 M HClO4 +
0.5 M CH3OH 3.29 3.02 71% after 1000 cycles

(Pt/C: 58%) [2]

Pt94Zn6 zigzag-like
nanowires

0.1 M HClO4 +
0.2 M CH3OH 0.51 2.98

~60 mA mgPt
−1

after 3000 s
(Pt/C: ~8 mA mgPt

−1)
[121]

Pd59Fe27Pt14
nanomeshes

0.1 M HClO4 +
0.5 M CH3OH 1.61 4.36 80% after 500 cycles

(Pt/C: 40%) [36]

PtCoNiRh ultrathin
nanowires

0.1 M HClO4 +
0.5 M CH3OH 1.36 2.08

~0.30 A mgPt
−1

after 10,000 s
(Pt/C: ~0.08 A mgPt

−1)
[20]

Pt18Ni26Fe15Co14Cu27
high-entropy alloy

nanoparticles

1 M KOH +
1 M CH3OH 15.04 114.93 93.6% after 1000 cycles

(Pt/C: 73.1%) [33]

PtBi@6.7%Pb
nanoplates

1 M KOH +
1 M CH3OH 13.93 43.32 71.9% after 3000 cycles [74]

PtPb/C irra-3
nanoplates

0.1 M HClO4 + 0.1 M
CH3OH 5.15 6.22 52.4% after 2500 cycles

(Pt/C: 18.2%) [122]

Pt64Fe20Ir16
jagged nanowires

0.1 M HClO4 +
0.5 M CH3OH 2.13 4.25

1.34 A mgPt
−1 after

10,000 s
(Pt/C: 0.30 A mgPt

−1)
[26]

Pt62Ru18Ni20–O
ultrathin nanowires

0.5 M H2SO4 + 0.5 M
CH3OH 2.72 4.36 92.4% after 1000 cycles

(Pt/C: 79.8%) [6]

core-shell
Pt56Cu28Ni16

tetrahedra
1 M KOH +

1 M CH3OH 7.0 14.0
0.83 A mgPt

−1 after
3600 s

(Pt/C: 0.20 A mgPt
−1)

[123]

There are still some issues in need of being addressed. First, most Pt-based alloys
possess conventional fcc or ordered fct phases. Novel crystal phases with tailorable mor-
phologies may boost catalytic performances. Second, mixed-dimensional structured Pt
alloys may be beneficial to MOR catalysis via the synergistic effect of individual compo-
nents and interfacial engineering. Third, a precisely controlled structure of high-entropy
alloy to better expose active centers and tune their composition may represent a promising
research direction. Last but not least, efficient MOR catalysts need to be assessed under
DMFC operating conditions for practical applications, even if fuel cell performances are
affected by many factors, such as ionomer-to-catalyst weight ratio. Maya-Cornejo et al. dis-
covered that Pt67Ru33 alloy supported on single-wall carbon nanotubes (SWCNT) reaches
a peak power density of 132 mW cm−2 at a Pt loading of 1.0 mg cm−2 [124]. Wang et al.
measured DMFC performances of the membrane electrode assemblies (MEAs) based on
dealloyed PtCu with Cu-vacancies (d-Pt2Cu1 NWs) as anode catalyst and commercial Pt/C
as cathode catalyst [3]. At a low Pt loading of 0.6 mg, the d-PtCu NWs catalyst layer with
12 wt% ionomer at 80 ◦C achieved a peak power density of 49.3 mW cm−2. The MEAs
show ~94% activity retention after 24 h at the current density of 50 mA cm−2. All in all,
Pt-based alloys show favorable prospects for DMFC systems.
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