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Abstract: Two series of Ni and Co catalysts supported onto La-Al2O3 were prepared and the CO2

hydrogenation reactions investigated. The catalytic performance was evaluated in terms of the
evolution with the reaction temperature of the CO2 conversion and product (CH4 and CO) yields,
as well as specific activities (TOF) and apparent activation energies. CH4 was the favored product
over both metals while the TOF for CH4 formation was about three times higher for Ni than Co at
240–265 ◦C. Metallic particle size effects were found, with the TOF for CH4 formation decreasing
over both Ni and Co as the mean metallic size decreased. In contrast, the TOF for CO formation
tended to increase at a decreasing particle size for the catalysts with the smallest Ni particle sizes.
The apparent activation energies for Ni and Co were very similar and significantly decreased to
values of 73–79 kJ/mol when the metallic dispersion increased. The catalysts were prepared using
the all-in-one method, resulting in (poly)vinyl alcohol (PVA) being a key additive that allowed us to
enhance the dispersion of Ni and Co to give very effective catalysts. This comparative study joins the
few existing ones in the literature in which catalysts based on these metals operated under strictly
the same reaction conditions.

Keywords: all-in-one method; Ni catalysts; Co catalysts; CO2 hydrogenation; Sabatier reaction

1. Introduction

Boosted by the flourishment of the Power-to-Gas (PtG) concept [1], Sabatier’s reaction
has regained great interest—once again, as already occurred in the 1980s [2]—as a means of
producing carbon-neutral methane and promoting the integration of renewables into the
energy and industry sectors. On this occasion, thanks to the sophisticated computational
and experimental tools currently available, this interest goes beyond process development,
and a great amount of effort is being devoted to an understanding of the catalytic aspects
prevailing at the molecular level in order to establish the criteria for the rational formulation
of these catalysts [3,4]. In particular, control over the reaction selectivity is perhaps the prin-
cipal current goal. This is because the main products—methane and carbon monoxide—are
both of great interest, so the selective production of each of them is obviously positive for
developing efficient processes aiming at the valorization of CO2. It is worth noting in this
regard how the perspective on CO has changed within the framework of CO2 hydrogena-
tion research, from being considered an undesired product of the methanation of CO2 to
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a valuable platform chemical, which also boosts research on the reverse water–gas shift
reaction (RWGS) [5,6].

The applied and fundamental interest existing around the CO2 hydrogenation reaction
has led to the production of a vast scientific and technical collection of literature that
constitutes the experimental and theoretical body of knowledge in this field. All the
relevant aspects of the development of a heterogeneous hydrogenation catalyst have been
investigated: the nature of the metal; nature, texture and structure of the metal oxide
support; metallic particle size effects; metal–support interaction phenomena; behavior of
bimetallic formulations and the use of promoters and modifiers [7–9]. The seminal series of
papers by Weatherbee and Bartholomew [2,10] provides the first systematic comparative
study of the catalytic performance of some of the most active metals (Ni, Fe, Co and Ru) in
CO2 hydrogenation. The support selected was silica, which minimized the influence of the
possible effects associated with these catalysts’ components. Since then, numerous CO2
hydrogenation studies have been reported, and several review articles have recurrently
addressed this topic over the years [9,11–15]. Emphasis has been put mainly on Ru, which
constitutes the state-of-the-art catalysts in terms of its low-temperature activity, selectivity
to methane and stability [12,16,17], as well as on Ni [18–20], because this metal presents
the best trade-off between availability, costs and catalytic performance. As a result, Ni has
been the active phase of choice for most commercial methanation catalysts [7,21].

Cobalt has been recognized for a long time as an active metal for the hydrogenation of
CO2 [7,10]; however, interest in it has concentrated on its activity for CO hydrogenation
in syngas to produce long-chain hydrocarbons according to Fischer–Tropsch synthesis
(FTS) [22,23]. Nevertheless, in recent years, attention is refocusing on cobalt in an attempt
to gain insight into the factors that control the CO2 hydrogenation selectivity and into
the interplay between the several reaction pathways [16,23–39]. In this regard, it is very
enlightening to establish parallelisms between the catalytic performances of cobalt and
nickel, which is meaningful for the obvious reason of both metals being neighbors in the
fourth period of the periodic table of the elements. However, it is surprising that few
comparative studies exist on the catalytic performance of Co and Ni with these metals
working under exactly the same operating conditions. Since the results from Weather-
bee and Bartholomew’s research were published [2,10], some works stand out, such as
the one by Habazaki et al. [40] on the co-methanation of CO2 and CO over Ni and Co
catalysts prepared from amorphous alloys with Zr. In addition, Mutschler et al. [16] and
Villagra-Soza et al. [35] investigated the CO2 hydrogenation performance of unsupported
Fe, Co, Ni and Cu and silica-supported Ni and Co catalysts, respectively. Liang et al.
compared alumina-supported Ni and Co catalysts [41], and Liu et al. performed theoretical
computational calculations on the CO2 adsorption and decomposition on Fe, Co, Ni and
Cu [42]. Attention has been paid also to bimetallic Ni–Co formulations [35,43–46] with the
aim of tuning the catalytic properties of nickel using the formation of alloys with a second
metal [47].

The reports by Weatherbee and Bartholomew were the first comparative studies
including specific activities for CO2 hydrogenation [2,10]. Values about six-fold higher for
Co/SiO2 than for Ni/SiO2 were obtained at 252 ◦C and 1 atm total pressure. However, the
selectivity to CH4 was significantly higher for the nickel catalyst (77%) than for the cobalt
one (42%), which was in turn more selective to CO at comparable CO2 conversion levels
close to 10%. As for the apparent activation energies, very similar values of 79 kJ/mol
and 81 kJ/mol were obtained for Co/SiO2 and Ni/SiO2, respectively, in the temperature
range of 227–257 ◦C. It was in principle considered that CO2 methanation proceed via CO
hydrogenation, though the rate-determining step could change from C–O bond excision to
C species hydrogenation depending on the metal or the reaction conditions, particularly
pressure. Liang et al. also found that Co was more active than Ni, in this case in terms
of CO2 conversion and with both metals supported on alumina at contents between 5
and 25 wt. % [41]. No selectivity values were reported though; as judged from the CO2
conversions and CH4 and CO yields, the cobalt catalysts were rather more selective to
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CH4. Ni/Al2O3 with the lowest metallic content was more selective to CO than CH4 at
temperatures below 500 ◦C. The results were interpreted with the aid of in situ DRIFTS
measurements, and were explained in terms of a cooperative effect between Co and the
support affecting the reaction intermediates and facilitating their conversion into CH4.
Mutschler et al. preformed the hydrogenation of CO2 over unsupported metallic Ni and
Co in powder form [16]. The temperature at which the maximum CO2 conversion was
reached was adopted as a measure of the catalytic activity, with the result that cobalt,
with 71% conversion at 388 ◦C, was much more active than nickel (55% at 519 ◦C). Cobalt
was also significantly more selective to CH4 than nickel, with 99% versus 80% at the
maximum CO2 conversion conditions. As for the apparent activation energies, they were
very similar: 77 kJ/mol over Co and 74 kJ/mol over Ni. This fact was interpreted as an
indication that the reaction pathways over both metals were also similar, whereas the
higher activity of Co was ascribed to a higher availability of the active sites compared to Ni.
More recently, Villagra-Soza et al. have investigated the mechanism of CO2 hydrogenation
over monometallic Ni and Co and bimetallic Ni-Co catalysts supported over SiO2 [35]. In
this case, the specific activities for CH4 formation were found to be higher over Ni than
over Co, while the contrary occurred regarding the specific activities for CO formation.
Therefore, silica-supported Ni was more selective to CH4 than the Co counterpart was.
These results are in clear contrast with the trends found previously.

This brief overview illustrates that there are still remarkable discrepancies regarding
the catalytic performance of two base metals such as Ni and Co in fundamentals aspects of
the CO2 hydrogenation reaction. Within this context, the main objective of the present study
is to provide new information on this subject with the aim of contributing to clarifying
the reasons for the existing discordance. To this end, Ni and Co catalysts supported on
La-modified alumina (La-Al2O3) have been investigated under the same reaction condi-
tions. Lanthanides, and especially lanthanum, have been found to behave as promoters of
nickel- [48,49] and cobalt-based [50] catalysts in CO2 hydrogenation. On the other hand,
the preparation method employed was the so-called all-in-one method that was originally
developed by our groups for the preparation of structured catalysts [51]. It essentially
consists of a wet impregnation relying on the preparation of a slurried aqueous suspension
containing all the required components (metal precursor, support and additives). This
method also allows us to obtain catalysts in powder form with good metallic dispersion [52].
One of the additives employed is (poly)vinyl alcohol (PVA), which helps to improve the
rheological properties of the slurry and also reduces the surface tension during the drying
step that leads to the catalyst in powder form. In this work, several catalysts were prepared
with varying PVA contents in the slurry as well as in the absence of PVA. This has made
it possible to verify whether the additive affected the catalytic performance, while, at the
same time, a greater number of samples were available to validate the comparative study
without having to change key parameters such as, e.g., the metal content.

2. Results and Discussion
2.1. Catalysts Characterization

Table 1 summarizes the main physicochemical properties of the catalysts, which are
named in Mx/La-Al2O3 notation, with M being Ni or Co and x the PVA content (wt. %) in
the all-in-one suspension (see Section 3.1). The results of the elemental analyses indicate
that Ni and Co were adequately incorporated into the catalysts since the actual metal
contents, ranging between 13.8 wt. % and 15.1 wt. %, are close to the nominal value
(15 wt. %). As for the textural properties, the incorporation of the metallic precursors
followed by drying and calcination reduced by 12% and 24% the specific surface areas
of the Ni0/La-Al2O3 and Co0/La-Al2O3 catalysts, respectively, when compared with the
La-Al2O3 support. The pore volume decreased significantly as well. Adding PVA into
the suspension had a positive effect in all cases, with the result that the specific surface
areas were higher than those of Ni0/La-Al2O3 and Co0/La-Al2O3, and approached, in
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general, the value of the support. There is no a clear trend, however, with respect to the
PVA concentration in the suspension.

Table 1. Physicochemical properties of bare La-Al2O3 and supported Ni and Co catalysts a.

Sample Metal Content
(wt. %)

SBET
b

(m2/g)
Vp

c

(cm3/g)
dp

d

(nm)
SM

e

(m2/gmetal)
D f

(%)
DoR g

(%)
dM

h

(nm)

La-Al2O3 --- 85 0.35 16 -- -- -- --
Ni0/La-Al2O3 15.1 73 0.25 13 24 6.3 52 11

Ni0.3/La-Al2O3 13.9 82 0.26 13 41 11 57 6.0
Ni0.7/La-Al2O3 14.0 89 0.26 12 46 13 58 5.4
Ni1.0/La-Al2O3 14.5 82 0.27 12 49 12 56 5.0
Ni1.3/La-Al2O3 13.8 97 0.30 12 48 14 52 4.7
Ni1.6/La-Al2O3 14.0 84 0.28 12 50 14 54 4.6
Co0/La-Al2O3 14.6 64 0.24 14 21 3.1 91 17.4

Co0.2/La-Al2O3 14.3 70 0.22 14 41 6.0 51 8.6
Co0.5/La-Al2O3 14.3 81 0.24 12 47 7.0 55 8.0
Co1.0/La-Al2O3 14.7 92 0.35 14 43 6.4 52 8.1
Co1.6/La-Al2O3 14.3 76 0.28 14 42 6.3 52 8.3

a Characterization techniques are described in Section 3.2. b Specific surface area. c Specific pore volume.
d Average pore diameter. e Metallic surface area. f Metallic dispersion. g Metallic degree of reduction. h Average
metallic particle size.

The chemisorption measurements revealed that the Ni catalysts prepared using PVA
exhibited a higher metallic surface area and dispersion. The average Ni particle size
decreased from 11 nm for the catalyst prepared without PVA (Ni0/La-Al2O3) to less than
5 nm for the catalysts prepared in the presence of the highest PVA amounts (Ni1.3/La-
Al2O3 and Ni1.6/La-Al2O3), which showed a reasonable Ni dispersion (about 14%) given
their relatively high nickel content. These magnitudes showed asymptotical trends with
increasing PVA contents in the formulations. Indeed, the changes in the properties were
less marked at PVA contents over 1 wt. %. Regarding the Co catalysts, the presence of
PVA during the impregnation also had positive effects on the metallic surface areas and
metallic dispersions compared to the Co0/La-Al2O3 sample. In this case, the formulation
with 0.5 wt. % PVA stood out, leading to the highest cobalt dispersion of 7%, while the
other PVA contents employed, both lower (0.2 wt. %) and higher (1.0 and 1.6 wt. %), led to
similar results. The lowest Co particle size of 8.0 nm resulting from the H2 chemisorption
data and measured for Co0.5/La-Al2O3 is about half the one measured for the catalyst
prepared in the absence of PVA (17.4 nm for Co0/La-Al2O3), which indicates a remarkable
effect of the additive on the cobalt dispersion.

The XRD diffraction patterns of the Ni and Co catalysts are shown in Figure 1. The
reduction and passivation of the samples allowed us to identify the crystalline phases of
nickel and cobalt in a metallic state. All the Ni catalysts present characteristic diffraction
peaks that can be ascribed to the spinel nickel aluminate phase (NiAl2O4), γ-Al2O3 and
La2O3, which decrease in intensity with an increase in the PVA present in the preparation of
the catalyst. This suggests that the additive leads to the formation of less ordered oxides in
the final catalyst. The peaks related to metallic Ni show a clear reduction in their intensity in
the XRD patterns of the catalysts prepared with increasing amounts of PVA in the all-in-one
slurry, thus showing a lower crystallite size, in accordance with the higher dispersion of
nickel found using CO chemisorption.
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Figure 1. XRD patterns of the reduced and passivated Ni (a) and Co (b) catalysts prepared with the
contents (wt. %) of PVA in the all-in-one suspension indicated in the figures (#: Ni or Co spinel,
□: γ-Al2O3, +: La2O3, 3: metallic Ni, △: metallic Co).

Regarding the reduced and passivated Co catalysts, apart from metallic cobalt, the
XRD patterns revealed characteristic diffraction peaks attributed to the crystalline phases of
the La-modified alumina support (γ-Al2O3 and La2O3), as well as the Co3O4 and CoAl2O4
spinel crystalline phases. These two Co oxide phases present overlapping diffraction peaks,
therefore making it impossible to elucidate the actual crystalline structure of the Co/Al
catalysts using XRD. However, considering the H2-TPR profiles, which will be discussed
next, it is very likely that both phases coexisted. The formation of crystalline spinel phases
is favored by relatively high calcination temperatures during the catalysts’ preparation,
and surface spinels can already be formed at temperatures as low as 400 ◦C [53]. As for the
PVA content of the slurry used for the catalyst preparation, the XRD patterns clearly show
a reduction in the intensity and a broadening of the peaks associated with metallic Co that
is consistent with an increased metallic dispersion, as also found for the Ni catalysts.

The H2-TPR profiles of the calcined catalysts are presented in Figure 2. Including
PVA in the all-in-one suspension during the catalysts’ preparation clearly modified the
reduction characteristics. In addition, the effects in this regard appear to be different for
the Ni and Co catalysts. The Ni catalyst prepared without PVA (Ni0/La-Al2O3) presented
two main reduction events. The first took place starting at temperatures around 300 ◦C
and with a maximum near to 430 ◦C. Overlapping occurs with the second reduction event,
which reaches its maximum at ca. 550 ◦C and ends at 640 ◦C. This broad profile indicates
that the reduction of various Ni oxide species with different degrees of interaction with the
support took place. In particular, the well-dispersed nickel oxide species strongly interacted
with the alumina, which are typically reduced in the range of temperature of the second
event [54,55].
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When PVA was added to the all-in-one suspension used for the catalysts’ prepara-
tion, the reduction profile of the resulting samples was dominated by the existence of a
very broad reduction region between 300 ◦C and 640 ◦C. A small peak appeared at lower
temperatures, between 280 ◦C and 325 ◦C, when the PVA content was above 0.7 wt. %.
The intensity of this low-temperature peak increased concomitantly with the PVA content
in the suspension. These results revealed the coexistence of different nickel species with
significantly different intensities of interaction with the support. The low-temperature
peak is compatible with the presence of bulk NiO weakly interacting with the support.
Its appearance at the highest PVA contents in the slurry could be rationalized in terms
of the opposite effects being introduced by the additive. On the one hand, at low PVA
contents, metallic dispersion is favored, likely due to the additive hindering Ni species
coalescence during the catalysts’ preparation and/or promoting the metal–support interac-
tion. However, if the PVA content exceeds some given value, hindrance to accommodate
all the metal content in a highly dispersed state over the support can occur, causing the
formation of bulk NiO. From the chemisorption and the XRD results, it can be inferred that
these species were present as relatively small nanoparticles. Three reduction events, includ-
ing the low-temperature one, have been reported for Ni/La-Al2O3 catalysts in previous
works [56], likely corresponding to nickel species from weak (bulk NiO) to strong (surface
NiAl2O4) interaction with the support. Finally, the H2-TPR profiles of the nickel catalysts
showed a smooth shift in the reduction events toward lower temperatures as the PVA
content of the preparation suspension increased. This fact, together with the development
of the low-temperature event, indicate that PVA improves slightly the reducibility of the
Ni catalysts.

As for the cobalt catalysts, the reduction of Co/La-Al2O3 prepared without PVA
(Co0/La-Al2O3) started at relatively low temperatures (about 240 ◦C), showing a large
peak centered at 385 ◦C with a weak but wide shoulder near 630 ◦C. Such a profile is
compatible with the presence in the catalyst precursor of a variety of cobalt oxide species
with varied sizes and degrees of interaction with the support [41,57]. The profile shape
is also supported by the fact that the Co3O4 reduction proceeds in two steps, first into
CoO and finally into metallic Co. The predominance of the relatively low-temperature
reduction events is compatible with a low dispersion of cobalt, which is in accordance with
the mean cobalt particle diameter of 17.4 nm determined for Co0/La-Al2O3 (see Table 1).
Adding PVA markedly modified the reduction pattern of the Co catalysts. Three peaks
with maxima at temperatures around 320 ◦C, 680 ◦C and 825 ◦C were observed in the
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H2-TPR profiles of all the catalysts prepared with PVA added to the all-in-one suspensions.
In this case, the increase in the cobalt dispersion from 3% for Co0/La-Al2O3 to 6–7% for
the samples prepared in the presence of PVA seems to have taken place due to an increased
metal–support interaction, with the result being the formation of a significant amount of
CoAl2O4. The partial reduction of cobalt aluminate would lead to a fraction of metallic
cobalt particles of a significantly lower mean size (about 8 nm) compared with Co0/La-
Al2O3. Therefore, PVA seems to improve the cobalt dispersion at the expense of a lower
catalyst reducibility, though with a positive final balance since the metallic surface area
doubles for the series of Co catalysts prepared in the presence of PVA.

The CO2-TPD profiles of the calcined catalysts are presented in Figure 3. In or-
der to interpret these results, it should be noted that different ranges of temperature
have been defined to distinguish between the types of sites responsible for CO2 adsorp-
tion/desorption [54]. The weakest basic sites are commonly assigned to surface hydroxyls
that adsorb CO2 in the form of bicarbonate that, upon heating, desorb at temperatures
below 200–250 ◦C. It can be seen that those sites are already present in the La-Al2O3 support.
The incorporation of Ni or Co in the presence of PVA leads to a broadening of the TPD
profiles in the low-temperature region, especially in the case of the Ni catalysts, meaning
that a greater variety of sites with different strengths are present. The CO2 desorbed be-
tween 200–250 ◦C and 400–500 ◦C is assigned to bidentate carbonate species formed over
medium-strength basic sites consisting of surface metal–oxide ion pairs. These sites are
clearly seen in the CO2-TPD profile of the support, as well as in the profiles of the cobalt
catalysts, although the corresponding desorption peak loses intensity as the PVA content of
the all-in-one suspension increases. In the case of the Ni catalysts, rather than an intensity,
and therefore, content loss, it seems that these sites lose basic strength as the PVA content
increases because the corresponding CO2-TPD signals shift toward lower temperatures,
and end up being part of the low-desorption-temperature weak sites. Finally, the strongest
sites correspond to coordinatively unsaturated oxide ions that adsorb CO2 in the form
of monodentate carbonates, which lead to desorption events at the highest temperatures,
above 500 ◦C [20,58]. Strong basic sites are present in the CO2-TPD profiles of the support
and the Ni0 and Co0 catalysts. However, the intensity of the corresponding TPD peak
decreases when PVA is used to prepare the catalysts.
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The quantitative results obtained after the integration of the CO2-TPD peaks are
given in Table 2. In accordance with the qualitative description of the TPD profiles, the
results confirm the increase in the amount of weak basic sites that takes place following
the preparation of the Ni catalysts in the presence of PVA. However, in the case of the
Co catalysts, a significant loss of this type of site takes place that varies from 28% for
Co0.2/La-Al2O3 to 60% for Co1/La-Al2O3 and Co1.6/La-Al2O3, referred to the support’s
content. As for the medium-strength and strong basic sites, no distinction has been made
in Table 2 due to the lack of sufficient precision to present the results separately. In general,
the amount of these types of centers tends to be somewhat higher for the Ni than for
the Co catalysts, even though it does not change substantially compared with that of the
support. The most salient case is that of Co0/La-Al2O3, which exhibits the highest content
of medium-strength and strong basic sites. In view of changes in the specific surface area
taking place as well, the quantitative results are also given in the form of site density, i.e.,
per m2 of catalyst. It can be seen that the conclusions drawn in terms of the amount of CO2
desorbed per g of catalyst remain valid for the densities of basic sites, so the effects of PVA
are not due changes in the specific surface area.

Table 2. Quantitative analysis of the CO2-TPD results.

Sample Weak Medium–Strong Total a Total b

La-Al2O3 88 38 126 1.48
Ni0/La-Al2O3 43 48 91 1.25

Ni0.3/La-Al2O3 201 4 204 2.49
Ni0.7/La-Al2O3 114 51 165 1.85
Ni1.0/La-Al2O3 113 39 152 1.85
Ni1.3/La-Al2O3 176 25 201 2.07
Ni1.6/La-Al2O3 109 27 136 1.62
Co0/La-Al2O3 50 241 291 4.55

Co0.2/La-Al2O3 63 38 101 1.44
Co0.5/La-Al2O3 56 35 91 1.12
Co1.0/La-Al2O3 35 22 57 0.62
Co1.6/La-Al2O3 35 19 54 0.71

a CO2 desorbed in mmol CO2 per g of catalyst for each category of basic sites. b Values expressed in mmol
CO2/m2.

Thanks to the variation in the amount of PVA used, a series of Ni and another of Co
catalysts supported on La-Al2O3 have been prepared using the all-in-one method. As a
summary of the characterization results, it can be said that the main effect of using the
additive has been on the metallic dispersion, increasing it for both Ni and Co, compared
with the catalysts prepared without PVA. More profound changes have been introduced into
the Co catalysts than into their Ni counterparts. Using PVA promoted the metal–support
interaction between Co and La-Al2O3, leading to a poorer reducibility. In the case of the Ni
catalysts, other effects of PVA, mostly steric, seem to have prevailed. These changes are also
reflected in the basic properties since using PVA has been detrimental to both the basicity
and basic strength of the cobalt catalysts. In contrast, in the case of the Ni catalysts, using
PVA in the all-in-one suspension increased the amount of weak basic sites, thus improving
their CO2 adsorption capacity.

It has been reported that organic additives soluble in water and rich in hydroxyl
groups such as polyols have positive effects on the dispersion of Ni in alumina-supported
Ni catalysts. The reason would be that the additive prevents the recrystallization of the
metallic salt precursor during the drying step. It was proposed that the presence of the
additive in the impregnation medium would lead to the formation of an amorphous deposit
on the support, whose calcination would finally lead to Ni in a high dispersion state, in
contrast with the calcination of the Ni nitrate crystals, which, presumably, finally would
produce bigger Ni particles [59]. The adsorption of the organic additive is governed by
the formation of hydrogen bonds with protonated surface hydroxyls from the support



Catalysts 2024, 14, 47 9 of 21

surface, with the result being the more homogeneous distribution of the metallic ions
due to the steric hindrance introduced for metal species migration [60]. Ribeiro et al.
compared Ni catalysts supported on ceria–alumina prepared using conventional incipient
wetness impregnation and the all-in-one method employed in the present work [52]. It
was found that the all-in-one method improved the nickel dispersion and that, as in
our case, the density of the weak basic sites increased as well. These authors argued
that surfactants such as PVA affect the metallic particle size due to their capacity to act
as capping agents, more specifically due to the formation of a chelating complex with
nickel. Similar effects have been described for Co/alumina catalysts prepared using
the encapsulation of cobalt nanoparticles in PVA [61]. Positive effects on the catalysts’
specific surface area have been reported as well, which is facilitated by the easy removal
of PVA upon thermal treatment at relatively mild temperatures of 300–400 ◦C [62,63].
Finally, Kovalenko et al. have investigated the effects of the concentration and degree of
polymerization of PVA [64]. When PVA of a low degree of polymerization was used, it
was found that at the lowest additive concentrations, PVA acted as a surfactant. However,
on increasing its concentration, its role changed to that of a template, leading to surface
deposits of different characteristics in each case. Taking into account that the PVA used
in the present work (Mowiol 4-88, Merck, Darmstadt, Germany) is of a low degree of
polymerization, the changes in behavior from surfactant to template could relate to the
effects introduced by varying the additive content of the all-in-one suspension on the
properties of the catalysts considered here.

2.2. Catalytic Performance

Figure 4 shows the time evolution of the CO2 hydrogenation conversion provided
by the nickel (Ni0/La-Al2O3 and Ni1/La-Al2O3) and cobalt (Co0/La-Al2O3 and Co1/La-
Al2O3) catalysts at a constant reaction temperature of 400 ◦C and 12 N L CO2/(gcat·h)
(GHSV = 5211 h−1). In that figure, the dots represent the average values of the five
replicates, and the bars correspond to the 95% confidence interval of these replicates. The
stability of the catalytic performance is remarkable; no loss of activity was observed during
the experiments. The sum of the CH4 and CO yields (not shown) was only slightly greater
than the corresponding average CO2 conversion values. The overall mass and atomic C
balance closures were very good in all cases (averaging 98 ± 1%). Therefore, the discrepancy
between the average CO2 conversion values and those resulting from the sum of CH4 and
CO yields can be attributed to experimental error. In any case, the differences are less
than or equal to 1%. It can be seen that the nickel catalysts were significantly more active
than their cobalt counterparts in terms of the CO2 conversion achieved. In view of the
metallic surface areas of the Ni and Co catalysts prepared in the presence of PVA not being
very different (see Table 1), this result pointed toward different specific activities for CO2
hydrogenation over nickel and cobalt.

The evolution of the CO2 conversion with increasing reaction temperatures in the
experiments conducted in dynamic mode (GHSV = 10,422 h−1) with the Ni and Co catalysts
with different PVA contents is presented in Figure 5. Moreover, the main results obtained in
these tests are summarized in Table 3. T50 is the temperature at which the CO2 conversion
reaches 50%, whereas Tmax

XCO2
, and Tmax

YCH4
are the temperature values at which the maximum

CO2 conversion and CH4 yield are attained, respectively.
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Table 3. Summary of the results obtained in the catalytic tests conducted in dynamic mode.

Active Metal Ni Co

PVA Content (%) 0.0 0.3 0.7 1.0 1.3 1.6 0.0 0.2 0.5 1.0 1.6

T50 (◦C) 337 328 327 321 326 327 382 365 355 368 374
Tmax

XCO2
(◦C) 432 419 420 411 420 418 501 492 482 488 491

Tmax
YCH4

(◦C) 428 419 424 415 412 414 480 471 465 471 478
XCO2max (%) 78.4 80.2 80.5 80.9 80.0 80.7 64.8 66.1 68.4 66.8 66.5
YCH4max (%) 74.6 74.8 76.3 74.2 73.5 74.1 52.9 55.5 58.9 57.5 57.1
YCOmax (%) 6.6 8.5 7.3 9.5 9.5 9.5 13.0 12.9 11.5 10.6 10.8

These results also show that under the same reaction conditions, the nickel catalysts
provided higher CO2 conversions and CH4 yields than their cobalt counterparts. The nickel
catalysts allowed us to reach the equilibrium conversion at about 450 ◦C. At temperatures
above this value, the reaction became thermodynamically controlled over Ni, and no
distinction could be made between the catalysts (see Figure 5a). In contrast, the cobalt
catalysts did not reach the equilibrium conditions even at 500 ◦C, which was the highest
reaction temperature of the dynamic tests. The difference in T50 values was as high as
45 ◦C between Ni0/La-Al2O3 (337 ◦C) and Co0/La-Al2O3 (382 ◦C). The maximum CH4
yield attained was much higher over Ni0/La-Al2O3 (74.6%) than Co0/La-Al2O3 (52.9%)
while Tmax

YCH4
was 52 ◦C lower over Ni0/La-Al2O3 (428 ◦C) than Co0/La-Al2O3 (480 ◦C).

As for the effect of the PVA content on the suspensions used for catalyst preparation, it
was positive on the CO2 conversion over both Ni and Co. Taking the corresponding T50
values as references, a maximum decrease of 21 ◦C took place between Ni1/La-Al2O3
and Ni0/La-Al2O3. This value was close to the difference of 19 ◦C reached between
Co0.5/La-Al2O3 and Co0/La-Al2O3. However, it is interesting to note how the increase in
the conversion has different consequences on the product yields depending on the metal
considered. This can be seen in Figure 6, which shows the yields of CH4 and CO in the
dynamic tests performed at increasing reaction temperatures. In the case of Ni, the use of
PVA had positive effects on the yields of both CH4 and CO over the whole temperature
range. The yield increase was proportionally higher for CO than CH4 because the CO yield
provided by Ni1/La-Al2O3, Ni1.3/La-Al2O3 and Ni1.6/La-Al2O3 almost doubled that of
Ni0/La-Al2O3 (see Figure 6c). In contrast, the situation reversed as concerned the cobalt
catalysts because the CO yield decreased above 325 ◦C for the catalysts prepared in the
presence of PVA compared to Co0/La-Al2O3, whereas it remained almost unaffected at
lower temperatures (see Figure 6c). The CH4 yield, on the other hand, increased for the
Co catalysts prepared in the presence of PVA compared to Co0/La-Al2O3 over the whole
temperature range. In terms of selectivity, it can be said that the selectivity to CO increased
over Ni but decreased over Co above 325 ◦C when the catalysts prepared in the presence of
PVA are compared with Ni0/La-Al2O3 and Co0/La-Al2O3, respectively.

As highlighted in the previous section, the preparation of the catalysts in the presence
of PVA improved the dispersion of Ni and Co. Therefore, it is convenient to compare the
catalysts’ performance in terms of the specific activities. To this end, CO2 hydrogenation
experiments were conducted under a differential conversion regime at temperatures rang-
ing between 230 ◦C and 275 ◦C. Figure 7 shows the variation in the TOF values for CH4
(TOFCH4) and CO (TOFCO) formation with the reaction temperature, mean metallic particle
diameter estimated according to chemisorption measurements and PVA content of the
suspension employed for the catalysts’ preparation.
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The comparison between Ni and Co is limited by the fact that no Co catalysts with
a mean metallic particle size below 8 nm could be prepared using PVA. In addition, TOF
values for cobalt are available only at 245 ◦C and 260 ◦C, whereas for nickel, data are
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available below 275 ◦C. Therefore, these restrictions should be taken into account when
extrapolating the TOF values (Figure 7) to the product yields (Figure 6). Regardless, it is
clear that the specific activity of Ni for CH4 formation was much higher than that of Co,
which is in line with the much higher CH4 yields provided by the Ni catalysts compared
to the Co ones. As for the formation of CO, according to the results obtained at 260 ◦C
(Figure 7b,d), the specific activity was higher for Co than for Ni. However, at 245 ◦C,
the differences between both metals were greatly reduced, and no clear trend could be
identified, probably due to the lack of precision associated with the low TOFCO values. As
for the metallic particle size effects, TOFCH4 decreased for both Ni and Co as the mean
metallic particle decreased as well (Figure 7a). The effect of the metallic particle diameter on
TOFCO is more difficult to analyze (Figure 7b). For particles above 6 nm, TOFCO decreased
as the mean size became smaller for both Ni and Co, whereas below 6 nm, TOFCO increased
as the Ni particle size decreased. This increase in the specific activity, together with the
increase in the metallic surface area that also took place, could have provoked the increase
in the CO yield observed for the Ni catalysts prepared in the presence of PVA (see Figure 6c).
Over Co, TOFCH4 was only moderately higher than TOFCO, and the specific activities for
both products decreased in similar proportions as the Co particle size became smaller.
These results are in accordance with the product yield evolution, which showed little effect
of the use of PVA on the Co catalyst preparation at low reaction temperatures. While in
our work the lowest mean particle size was 8.0 nm for Co0.5/La-Al2O3, the same trend
of decreasing specific activities can be expected for smaller sizes, following the studies by
Iablokov et al. [24].

According to some of the most recent studies, such as the one by Simons et al., CO2
hydrogenation takes place over nickel according to the RWGS reaction, followed by CO
methanation [65]. The authors prepared Ni/SiO2 catalysts with different metallic contents
between 1.7 and 14.6 wt. %, adding citric acid to the impregnation solution, which resulted
in a series of catalysts with mean Ni particle sizes between 2 nm and 12 nm. Thanks to
operando infrared spectroscopy and isotopic transient experiments, this study claimed
that CO2 dissociates directly over Ni to form strongly chemisorbed surface carbonyls that
are subsequently hydrogenated. In addition, the active sites for CO2 dissociation would
be different from those responsible for CO hydrogenation. It was found that TOFCH4
decreased and TOFCO increased for catalysts with Ni mean particle sizes below 5 nm,
which was attributed to a decrease in the proportion of step edges, which are the active sites
for the CO dissociation that takes place as the metallic particle size decreases [65]. These
results are very similar to the ones found in the present study, in which TOFCH4 decreased
and TOFCO increased for the catalysts with Ni particle sizes below 6 nm (see Figure 6a,b).

On the other hand, Villagra-Soza et al. compared silica-supported Ni, Co and bimetal-
lic NiCo catalysts in the hydrogenation of CO2 under methanation conditions [35]. Isotopic,
kinetic and spectroscopic experiments allowed them to conclude that CO2 hydrogenation
followed similar reaction paths over Ni and Co. According to this work, both CH4 and CO
were produced via parallel pathways but with different rate-determining steps. In addition,
different types of active sites would be involved in each route. In this regard, CO species
strongly adsorbed led to CH4 formation through the H-assisted dissociation of CO, whereas
carbonyls adsorbed weakly would desorb, producing CO. This mechanistic scheme seems
compatible with the above-described one by Simons et al. [65]. Particle size effects on the
distribution of products during the hydrogenation of CO2 over cobalt are evidenced at
extremely low particle sizes, which were not reached in the present work. Indeed, Zhou
et al. prepared silica-supported catalysts with very small Co particle sizes [38]. The catalyst
with the smallest nanoparticles (1.6 nm) mainly produced CO through the RWGS reaction,
whereas catalysts with nanoparticles not much bigger (2.1–3.0 nm) catalyzed the methana-
tion reaction. It was found that the smallest nanoparticles were fully oxidized in the form
of CoO under the reaction conditions, which explained the change in catalytic performance.
Recent works have also highlighted the role of oxidized cobalt in the promotion of the
RWGS reaction [31,36,66–68].



Catalysts 2024, 14, 47 14 of 21

Finally, another important aspect of the catalytic performance is the apparent activation
energy. Thanks to the kinetic experiments, Arrhenius plots could be drawn for the Ni0/La-
Al2O3, Ni1/La-Al2O3, Co0/La-Al2O3 and Co1/La-Al2O3 catalysts (see Figure 8). Very
good fits of the experimental data using linear correlations were obtained in all cases. Both
metals provided close apparent energy values for methane formation, which suggests
that the reaction pathways over both Ni and Co should be similar. It is interesting to
note that that using PVA to prepare the catalysts led to a remarkable decrease in the
apparent activation energies from 97–100 kJ/mol for Co0/La-Al2O3 and Ni0/La-Al2O3 to
73–79 kJ/mol for Co1/La-Al2O3 and Ni1/La-Al2O3. Villagra-Soza et al. obtained apparent
activation energies of 81 kJ/mol and 77 kJ/mol for silica-supported Ni and Co catalysts,
respectively, that had the same mean metallic particle diameter of 5 nm [35]. These values
are close to the ones found in the present work for Ni1/La-Al2O3 and Co1/La-Al2O3. It is
also worth noting that Wheatherbee and Bartholomew [2,10] obtained 79 kJ/mol for CO2
hydrogenation over Co/SiO2 and 81 kJ/mol over Ni/SiO2 (with a mean Ni particle size of
2.5 nm), which are also similar to the values found here for Ni1/La-Al2O3 and Co1/La-
Al2O3. Taking into account the increase in metallic dispersion provoked by the use of the
additive during the catalysts’ preparation, the decrease in the activation energy observed
could be attributed to particle size effects leading to, e.g., a change in the rate-determining
step [10]. In addition, the reduction in the activation energy upon preparing the catalysts
in the presence of PVA is another piece of evidence of the positive effects introduced by
using the all-in-one preparation method in order to prepare effective Ni and Co catalysts
for the CO2 hydrogenation reaction.
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Due to structure sensitivity, one has to be very cautious when making comparisons
between different results. Meaningful comparisons require analyzing the results obtained
using catalysts with close mean metallic particle sizes. In this case, it is particularly
important when dealing with very small metallic particles, for which the changes in the
proportion of the low coordination number of metallic surface sites such as corners, kinks
and edges is more marked, even for slight changes in size. It is remarkable in this regard
that some work, such as that by Beierlein et al. [69], concluded that CO2 hydrogenation over
Ni/Al2O3 is structure-insensitive. This finding is not necessarily in complete contradiction
with other works claiming its highly sensitive character. Beierlein et al. worked with a series
of high-loaded Ni catalysts, most of them showing very large Ni particles (5–91 nm). The
apparent activation energies changed moderately between 79 kJ/mol and 86 kJ/mol [69].
However, structure sensitivity developed at much lower particle sizes (1–7 nm), as found
by Vogt et al. [70].
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Whereas proposing a reaction mechanism was not the objective of the present study,
the fact that our findings are in accordance with the ones reported by Villagra-Soza et al. [35]
and Simons et al. [65] allows us, with the required caution, to assume the reaction schemes
proposed in those works. They coincide in attributing a key role to adsorbed car-bonyls as
reaction intermediates. The strong adsorption of these species on specific sites such as step
edges would lead to CO dissociation and the hydrogenation of the fragments to form CH4
and H2O. On the other hand, carbonyls weakly adsorbed would desorb, forming CO as
a reaction product. Particle size effects mainly develop for very small metallic particles,
which would have a lower proportion of sites capable of adsorbing CO sufficiently strongly
compared to larger ones. As the proportion of step edges decreases as the particle size
decreases, this would explain the increase in the selectivity to CO that takes place for the
very small particles.

3. Materials and Methods
3.1. Catalyst Preparation

Ni/La-Al2O3 and Co/La-Al2O3 catalysts with nominal metallic contents of 15 wt. %
were prepared following the all-in-one method [52] using γ-Al2O3 (Sphalerite 505, Axens
S.A., Rueil-Malmaison, France) modified with La as the support. First, γ-Al2O3 spheres
were milled and sieved to collect the particle size distribution comprised within 100 and
200 µm, which was used for the catalyst preparation. After calcination at 500 ◦C for 2 h,
the alumina powder was impregnated to incipient wetness with an aqueous solution of
La(NO3)3·6H2O (Merck, Darmstadt, Germany) in order to obtain a nominal La content
in the final material of 3 wt. %. After the impregnation, the solids were dried at 120 ◦C
for 2 h and calcined at 900 ◦C for 6 h. The all-in-one method relies on the preparation of a
slurried aqueous suspension containing all the required components to obtain the catalyst
(metal precursor, support and additives). In this case, Ni or Co nitrates (Ni(NO3)2·6H2O,
Co(NO3)2·6H2O, Merck, Darmstadt, Germany), a La-modified alumina support, colloidal
alumina (Nyacol® Al20, Nanotechnologies Inc., Ashland, MA, USA) as a stabilizing agent,
and (poly)vinyl alcohol (PVA, Mowiol 4-88, Merck, Darmstadt, Germany) were employed.
The PVA was first dissolved in deionized water at 80 ◦C in an amount so as to obtain a
PVA content of 1 wt. % in the final slurry. After cooling down the solution, Ni or Co nitrate
and La-modified alumina were sequentially and slowly added under continuous stirring.
Afterward, colloidal alumina was added so as to have a total content of 1 wt. % in the
final suspension, which required the addition of water as well (84.6 wt. % of water in the
final slurry). The mixture was sonicated for 10 min and then the pH was adjusted to 4
with HNO3 by adding concentrated acid (65% HNO3, PanReac, Barcelona, Spain), whereas
the pH was monitored. The resulting suspension was kept under stirring for 24 h at room
temperature. The catalyst in powder form was finally obtained after drying at 120 ◦C for
24 h and calcination at 500 ◦C for 2 h. Catalysts in the absence of PVA were prepared as
well. Hereafter, the catalyst samples will be denoted as Mx/La-Al2O3, with M being Ni or
Co and x corresponding to the PVA content in the final slurried suspension. The values of
x were 0.3, 0.7, 1.0, 1.3 and 1.6 wt. % for the Ni catalysts and 0.2, 0.5, 1.0 and 1.6 wt. % for
the Co formulation.

3.2. Physicochemical Characterization

Inductively coupled plasma—optical emission spectrometry (ICP-OES) was used to
determine the actual Ni and Co contents of the catalysts. The analyses were carried out by
the Servicio de Apoyo a la Investigación (SAI) of the Universidad de Zaragoza (Zaragoza,
Spain). The N2 physisorption analyses were measured at 77 K using a Gemini V 2380
(Micromeritics, Norcross, GA, USA) analyzer. Before the measurements, each sample was
pre-treated at 200 ◦C for 2 h under flowing nitrogen. The specific surface area, pore volume
and pore size distribution were calculated according to the Brunauer–Emmett–Teller (BET)
and Barrett–Joyner–Halenda (BJH) methods, respectively.
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The X-ray diffraction (XRD) patterns were recorded using a Bruker D8 ADVANCE
(Rheinstetten, Germany) diffractometer with CuKα radiation (λ = 0.154 nm) and a graphite
monochromator, operating at 40 kV and 30 mA. The XRD patterns were recorded on the
reduced and passivated samples. To this end, the catalysts were reduced in the same
conditions before performing the catalytic tests, i.e., under a flow (60 N mL/min) of H2 at
500 ◦C for 3 h. Afterward, the sample was cooled down under flowing N2 until reaching
room temperature. Then, passivation was carried out under a flow of 0.5 vol. % O2 in
Ar for 2 h. The samples were scanned within a 2θ range of 5–95◦ in steps of 0.05◦ at 5 s
per step.

The H2-TPR experiments were carried out in a AutoChem II 2920 (Micromeritics,
Norcross, GA, USA) analyzer. In each of the TPR experiments, 50 mg of the catalyst sample
was loaded into a U-shaped quartz reactor and subjected to reduction under 75 N mL/min
of a 5% H2/Ar gas mixture, following a 10 ◦C/min heating ramp until a final temperature of
900 ◦C was reached. The hydrogen consumption was recorded using a thermal conductivity
detector (TCD). The same apparatus was used to perform the CO2-TPD measurements as
described in a previous work [54].

The metallic surface area and dispersion of the Ni catalysts were obtained from
dynamic CO pulse chemisorption measurements at 30 ◦C using the AutoChem II 2920
(Micromeritics, Norcross, GA, USA) equipment. In the case of the Co catalysts, static
volumetric H2 chemisorption at 35 ◦C was carried out using a ASAP 2020 (Micromeritics,
Norcross, GA, USA) following the double isotherm method. Prior to the analyses, about
50 mg of the samples were reduced in situ under a H2 gas flow at 500 ◦C for 3 h. Once
the chemisorption experiments were completed, the degree of metal reduction (DOR) was
measured by heating the sample up to 430 ◦C under a He flow of 50 N mL/min and dwelled
at the final temperature for 2 h. Then, pulses of a 10% O2/He mixture were injected until
the oxygen consumption ended. The Ni and Co DOR were estimated from the oxygen
consumption assuming that the metals were converted into NiO and Co3O4, respectively.

3.3. Catalytic Activity

The catalytic tests were carried out under 1.3 atm total pressure, using a Microactivity
XS15 system (Micromeritics, Norcross, GA, USA). The gas compositions of the feeding line
and of the reaction products were analyzed online using an Agilent 490 (Santa Clara, CA,
USA) micro-gas chromatograph equipped with two analysis modules with Molsieve 5Å
and PPU chromatographic columns, respectively, each connected to a TCD detector.

The CO2 hydrogenation tests were carried out in a fixed-bed tubular quartz reactor by
loading 50 mg of the catalyst diluted with α-Al2O3 (1.10 g; Strem Chemicals, Newburyport,
MA, USA) used as an inert filler. The mixed solids were placed inside the reactor between
two quartz wool plugs, resulting in a bed volume of 0.64 cm3. The thermosensitive tip of
a K-type thermocouple was exactly placed in contact with the solids at the catalytic bed
exit to monitor and control the temperature by means of a proportional integral derivative
(PID) controller that regulated the furnace power. Prior to the catalytic tests, the activation
of the catalyst was carried out by flowing pure hydrogen (60 N mL/min) at 500 ◦C for 3 h.
A reactor feed stream composed of N2 (10 vol. %), CO2 (18 vol. %) and H2 (72 vol. %) with
a H2:CO2 molar ratio of 4:1 was used. First, constant-temperature runs were performed
with the Ni0/La-Al2O3, Co0/La-Al2O3, Ni1.0/La-Al2O3 and Co1.0/La-Al2O3 at 400 ◦C
for 3 h with a spatial velocity of 12 N L CO2/(gcat·h) (GHSV = 5211 h−1). Five replicates
were performed with each catalyst. Next, dynamic activity tests were developed with the
Ni0/La-Al2O3, Co0/La-Al2O3, Ni1.0/La-Al2O3 and Co1.0/La-Al2O3 in the 215–275 ◦C
temperature range under a spatial velocity of 24 N L CO2/(gcat·h) (GHSV = 10,422 h−1). The
temperature was raised stepwise in increments of 15 ◦C and the catalytic bed was allowed
to operate at each temperature for 120 min. These experiments were performed under a
kinetic control regime and at experimental conditions that would allow the performance of
differential analysis of the kinetic data. Finally, dynamic tests were also carried out between
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150 and 500 ◦C using all the catalysts prepared in uninterrupted temperature increase mode
with a heating rate of 1 ◦C/min and under a spatial velocity of 24 N L CO2/(gcat·h).

From the inlet and outlet concentrations of the several compounds and the inlet and
outlet total flows, the CO2 conversion (XCO2) and yields (Yi) and selectivities (Si) to the
products (i = CO, CH4) were calculated according to Equations (1)–(3):

XCO2(%) = 100·
FCO2,in − FCO2,out

FCO2,in

(1)

Yi(%) = 100· Fi,out

FCO2,in
(2)

Si(%) = 100· Yi

XCO2

(3)

where FCO2,in and FCO2,out are the CO2 molar flow rates at the reactor inlet and outlet,
respectively, and Fi,out is the outlet molar flow rate of product i.

The turnover frequency (TOF) of the CO2 hydrogenation process was calculated
according to [54]:

TOFCO2

(
s−1

)
=

XCO2 ·FCO2in ·NA·AM

Wcat·SM
(4)

where FCO2,in is given in mol/s; NA is Avogadro’s number (6.02 × 1023 molecules/mol);
Wcat is the catalyst mass (gcat) in the bed; SM is the metallic (Ni or Co) surface area in m2/gcat
and AM the mean area occupied by an exposed Ni or Co atom (ANi = 6.77 × 10−20 m2/Ni
atom [71], ACo = 6.85 × 10−20 m2/Co atom [72]).

The TOF values for CH4 and CO formation can be calculated from Equation (4)
as follows:

TOFCH4 = TOFCO2 ·SCH4 (5)

TOFCO = TOFCO2 ·SCO (6)

4. Conclusions

The present comparative study between Ni/La-Al2O3 and Co/La-Al2O3 catalysts in
the hydrogenation of CO2 has shown that Ni is more active than Co for CH4 formation,
as revealed by taking specific activity measurements. This apparently trivial finding is in
contrast with most of the few comparative studies existing in which Ni and Co catalysts
have been investigated under rigorously the same reaction conditions. To the best of
our knowledge, only a recent work with Ni and Co catalysts supported on silica [35] is
completely in line with the results from the present study.

It has been found also that within the range of metallic particle sizes involved in the
present study, CH4 was the product favored over both metals. In addition, the specific
activity for CH4 formation over Ni was about three times higher than over Co at 240–265 ◦C.
The effects of particle size on the specific activities and presumably the apparent activation
energies have been found as well. The specific activities for the formation of CH4 tended to
decrease as the metallic particle size decreased for both Ni and Co. In contrast, the specific
activity for the formation of CO tended to increase over nickel as the particle diameter
decreased for very small particles. In the case of cobalt, no catalysts with sufficiently
small metallic particles could be prepared as to identify any clear trend. The apparent
activation energies were similar over Ni and Co, suggesting the prevalence of similar
reaction paths and rate-determining steps for CO2 hydrogenation over these metals. The
apparent activation energy decreased and remained similar for both Co and Ni in catalysts
prepared with relatively small metallic particles.

The catalysts were prepared using the all-in-one method, which relies on the prepara-
tion of an aqueous suspension containing all the required components (metal precursor,
support and additives). (Poly)vinyl alcohol (PVA) had been revealed as a key additive
that allowed us to improve the dispersion of Ni and Co, thus resulting in more effective
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hydrogenation catalysts. The positive effects of PVA were limited to low contents in the
suspension (below 1 wt. %), at which the additive acted mainly as a surfactant.
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