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Abstract: The formation of valuable chiral skeletons through asymmetric gold catalysis has made
considerable progress due to the unrivaled affinity of gold complexes with multiple carbon–carbon
bonds. The renaissance of chiral ligands in recent decades has enabled the elaborate design of
chiral gold complexes, which are of great significance to control chiral formation in these catalytic
reactions. Therefore, this review intends to highlight the design and central role of versatile chiral
ligands in asymmetric gold catalysis. Specifically, the seminal applications of various chiral ligands
with representative examples in various gold-catalyzed asymmetric reactions are comprehensively
explored. In addition, the reaction mechanisms are mentioned when the crucial interactions between
ligands and activated substrates are introduced. Furthermore, the applications of enantioselective
gold catalysis in the construction of chiral functional organic materials and drug molecules are
also presented.
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1. Introduction

Catalysis is an advanced technology in both the chemical industry and academic
research [1–3]. Transition-metal catalyzed organic transformations have attracted a great
deal of attention for the efficient crack and formations of chemical bonds [4–7]; therefore,
they have been widely applied in the research and development of drugs, pesticides, fine
chemicals and other functional materials [8–10]. Compared to other transition metals, the
d10 electron configuration of gold(I) results in superior π affinity for multiple carbon–carbon
bonds (Figure 1a) [11–15]. In addition, the gold center adopted by linear coordination places
the ancillary ligand and substrate in opposite positions (Figure 1b). Thus, the conventional
chelating mode of the ligands used in catalytic reactions involving other transition metals
could not be employed for the design of ligand-modified gold catalysts. Furthermore, the
gold(I)-catalyzed carbophilic addition of nucleophiles to carbon–carbon triple bonds pro-
ceeds through outer-sphere activation [16–24]. These factors make asymmetric modulation
in gold(I) catalysis challenging. On the other hand, several gold(III) catalysts have also
been reported to be active for such transformations because of their inherent square-planar
geometry that promotes the formation of chiral centers.

The practical atom economy and step economy of enantioselective gold catalysis
are attributed to its unique catalytic mode for constructing sets of complex molecules
and efficient tandem processes, even when dealing with remote substrates and chiral
ligand fragments [25–30]. Enantioselective gold catalysis has flourished due to its distinct
performance. In particular, a series of valuable chiral ligands have been identified, including
aryl phosphine ligands bearing the proximal chiral sulfinamide motif, phosphoramidite
and phosphonite ligands, phosphine ligands comprising the ferrocene scaffold, bifunctional
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phosphine ligands, biphosphine ligands, chiral counterion-based ligands derived from
chiral phosphoric acids and chiral carbene ligands for gold(I) catalysis, along with unique
ligand frameworks for cyclometalated gold(III) catalysis. Notably, these types of chiral
ligands and structural modifications are of crucial significance.
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In practice, there are several reviews already reported in the literature [31–33]. These
reviews mainly focus on the latest development of ligands or the defined types of reactions
in asymmetric gold catalysis. However, it has been observed that the initial conception of
elaborated design for novel ligands can lead to the creation of new asymmetric reactions
and further accurate modification for the known ligands. Accordingly, the objective of
this review is to stress the key role of chiral ligands in achieving modulation of chiral
formation alongside exploring the unprecedented bonding modes and distinct activation
efficiencies for multiple carbon–carbon bond-involving reactions. The seminal elaborated
design and important progress of chiral ligands are the main focus of the review. To this
end, we present a comparison of different ligands in most cases, while the state-of-the-
art desired designs for ligands are inevitable considerations in “match” or “mismatch”
effects for reactions. There is also a brief mention of reaction mechanisms, which are
explained through interactions between ligands and activated substrates. Furthermore,
the applications of enantioselective gold catalysis in the construction of chiral functional
organic materials and drug molecules are also outlined.

2. Classification of Various Ligands

Various chiral organic ligands have been applied to asymmetric gold catalysis, rep-
resenting an important part of transition-metal-catalyzed asymmetric transformations.
Among them, the phosphine-containing ligands are one of the most common and effective.
In addition, non-phosphine ligands, including chiral carbene and cyclometalated ligands,
have also been developed by different research groups. To discuss these ligands in an ap-
propriate order, the first Sections 2.1–2.6 intend to focus on the different types of phosphine
ligands. The second Section 2.7 aims to address chiral carbene ligands followed by the
third Section 2.8 referring to cyclometalated ligand frameworks.

2.1. Phosphoramidite and Phosphonite Ligands

In the gold(I)-catalyzed [4 + 3] or [4 + 2] cyclization, electron-withdrawing phos-
phite ligands are believed to fit the excellent activation of the corresponding gold(I) cata-
lysts [34,35]. To construct better chiral modulation for the challenging asymmetric gold(I)
catalysis, phosphoramidite ligands have also been incorporated into the catalytic systems
owing to their similar electronic properties with phosphites and π–π interactions with
substrates resulting from the attenuated flexibility around the gold center as well as the
closer chiral information to the new carbon stereocenters. For the enantioselective in-
tramolecular cycloaddition of allene-tethered 1,3-dienes 1, the bicyclic products 2 and 3
can be furnished smoothly, and phosphoramidite ligand L1-ligated gold(I) catalyst dis-
played superior chemoselectivity (16:1.2) and enantioselectivity (91% enantiomeric excess
(ee)) over the chiral bisphophine (S)-(−)-2,2′-bis(diphenylphosphino)-1,1′-binaphthalene
(S-BINAP)-coordinated gold(I) analogue (Scheme 1) [36]. The proposed mechanism be-
gins with the activation of an allene through the coordination of a gold complex. This
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activation leads to a concerted [4 + 3] cycloaddition, resulting in the formation of gold car-
bene intermediate III. The selectivity between [1,2]-R migration and ring contraction was
demonstrated with density functional theory (DFT) calculations. The calculation results
indicate that the ring contraction pathway possesses a lower energy barrier than that of the
[1,2]-R migration pathway.
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Fürstner et al. implemented enantioselective cyclopropanation of styrene 4 catalyzed
by a gold(I) catalyst bearing a bulky steric chiral phosphoramidite ligand associated with
the 1-(2-hydroxynaphthalen-1-yl)naphthalen-2-ol (BINOL) core [37]. Nevertheless, the
performance of structural modifications on this type of ligand is difficult. Accordingly, the
authors further developed chiral gold catalysts with phosphoramidites featuring the α,α′-
(dimethyl-1,3-dioxolane-4,5-diyl)bis(diphenylmethanol) (TADDOL) backbone (Scheme 2).
With a certain adjustment of aryl substitution in the TADDOL part and amine compo-
nent, L3 was found to be an ideal companion for the gold catalyst in asymmetric [2 + 2]
cyclization with a 91% yield and 99% ee value, while inferior results were obtained with
the employment of L2 [38]. The crystal structure of L2AuCl suggests that the two phenyl
groups from the TADDOL part along with one phenyl ring from the amine part can form a
cone-shaped binding pocket surrounding the gold atom. This pocket effectively restricts
the flexibility of the gold center and conveys the chirality information to the final product.
Another study illustrated that L4 was highly effective to realize the gold-catalyzed enantios-
elective cycloisomerization of 1,6-enyne 6, leading to the formation of the bicyclic product
7 in 89% yield and 95% ee (Scheme 3) [39]. Despite being an ancillary point to the gold
catalysts, this ligand type displays remarkable chiral transformation for π-acidic activation.

In pursuit of greater success, the Alcarazo group adopted an elaborated preparation
of chiral cationic ancillary phosphonites and developed asymmetric cyclization of diyne 8
(Scheme 4) [40]. Their design utilized the TADDOL backbone to provide an appropriate
chiral pocket for this catalytic process, while the cationic imidazolium unit introduced
a positive charge to enhance the catalytic activity of the corresponding gold(I) template,
leading to the facile synthesis of chiral helicene 10 with excellent regioselectivity and
enantioselectivity when the L6-coordinated gold(I) catalyst was employed. However, L5
was unsatisfactory in this regard. The single-crystal structure of L6AuCl clearly reveals
that the gold atom can immerse into a chiral pocket resulting from two CF3-phenyl groups
and one mesityl group. Compared with L5AuCl, the formation of a seven-membered ring
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without the constrains of annulation was observed for L6AuCl, which leads to a closer
contact between the gold atom and the three vicinal aryl substituents.
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Given the success of TADDOL-type phosphonites in gold(I)-catalyzed enantioselective
hydroarylation, the Alcarazo group attempted to construct one helical and two axial
stereogenic elements in one molecule using similar ligands (Scheme 5) [41]. They anchored
multi-substituted diyne 12 for the attempt of gold(I) catalysts comprising chiral cationic
ancillary phosphonites. It was found that L7 led to the simultaneous isolation of 13a and
13b with a remarkable 91% ee value for 13a. However, L8 was not up to the task, resulting
in an unsatisfactory 8% ee value for 13a despite exhibiting excellent catalytic activity with
a total yield of 90% for 13a and 13b.
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2.2. Aryl Phosphine Ligand with a Proximal Chiral Sulfinamide

Apart from the phosphoramidite and phosphonite ligands mentioned above, aryl
phosphine ligands bearing one chiral sulfinamide motif have also been developed. As
reported by Zhang and coworkers, the in situ formed monogold cationic catalyst generated
from digold chloride [(AuCl)2] always showcased a better catalytic activation ability than
the pre-prepared monogold cationic catalyst [42,43]. Zhang et al. provided an elaborate
design of the MingPhos series (including L9 and L10), where the chiral sulfinamide moiety
containing adjustable steric groups was located on the ortho-position of the aryl phosphines
(Scheme 6) [44]. The L9/L10-tethered gold(I) complexes performed good activity for the
intermolecular asymmetric cycloaddition of 2-(1-alkynyl)-2-alken-1-one 14 and nitrone 15
with the L10-based gold complex exhibiting higher performance than the L9-containing
analogue in terms of enantioselectivity. Moreover, a proposed mechanism was presented.
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PC-Phos ligands, featuring a bigger chiral cave and bigger retortion of the sulfinamide
part to the proximal phosphine part, were later exploited by Zhang et al. (Scheme 7) [45].
As expected, the catalytic system accommodated protected N-allenamide 18 smoothly with
a 99% yield and 96% ee. The ligand L11 and a suitable protecting group were crucial for
the control of high regioselectivity and enantioselectivity in this catalytic process. The
authors proposed an asymmetric induction model based on the structure of L11AuCl and
product 18. According to the model, the indole part only attacks the gold-activated allene
bond at the Si face. Otherwise, if the attack occurs from the other side, the nucleophilic
attack will be blocked by the steric obstacle from the OMe group in phosphine. Additionally,
the chirality transfer can be facilitated by the hydrogen bonding interaction between the
sulfonyl group and the N–H bond from the amino group, as suggested by the model of the
substrates and the chiral PC-Phos ligands.
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Recently, MingPhos ligands were introduced into gold(I)-catalyzed intermolecular
asymmetric [3 + 2] cycloaddition of N-allenamides 19 and nitrone 20 by Zhang et al.
(Scheme 8) [46]. To note, the opposite enantiomers of oxazolidin-2-one 21 or 22 were
achieved via the usage of (R,Rs)-L12 or the corresponding (S,Rs)-L12. The interactions
between the sulfinamide N−H group and the pentafluorophenyl substituent are responsible
for the effective allocation of chirality transfer.
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2.3. Phosphine Ligands Comprising the Ferrocene Scaffold

Phosphine ligands bearing the ferrocene backbone are a typical class of chiral ligands
used for enantioselective gold(I) catalysis due to their easy accessibility and possibility to
modulate chiral formation. Hayashi and colleagues reported the successful cooperation
between chiral bisphosphines with the ferrocene backbone decorated with an amino group
and a gold complex, in situ generating an chiral gold species for the asymmetric aldol
reaction of aldehyde 23 and isocyanoacetate 24 (Scheme 9) [47]. The diastereoselectivity
and enantioselectivity depend on the selection of a bulky aldehyde and a suitable lig-
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and. Furthermore, the L13-tethered gold template provided divergent chiral oxazoline
derivative 25, while the similar ligand (L14) did not efficiently catalyze the process.

Owing to the outer-sphere catalytic mode between a gold(I)-activated carbon–carbon
triple bond and a nucleophile, the intermolecular asymmetric [2 + 2] cycloaddition of
terminal alkynes 27 with alkenes 28 is challenging to conduct in gold(I) catalysis. High-
throughput methods, including the screening of 90 chiral ligands, were employed to
accelerate the formation of chiral cyclobutene via gold(I) catalysis (Scheme 10) [48]. Non-
C2 symmetric bisphosphine ligand L15 with the ferrocene skeleton was found to be an
excellent promoter for the corresponding gold(I) complex, providing catalytic reactivity
under the accurate ratio of the gold(I) complex to NaBArF

4 in a 1:1 ratio.
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In light of the chiral JohnPhos-type scaffold, the Echavarren group synthesized a set
of planar chiral monodentate 1,3-disubstituted ferrocenyl phosphines for the assembly of
a sterogenic gold(I) complex (Scheme 11) [31]. It was suggested that the ancillary bulky
adamantyl in ferrocene was required for the excellent performance of L16 in the desired
[4 + 2] cyclization [49]. From the DFT calculations, the T-shaped π–π interaction between
3,5-(CF3)2-aryl from the phosphine ligand and an aryl group from the substrate as well as
the Si face interaction of an alkenyl group with an alkynyl group meet the lowest energy
for the chirality transfer.
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2.4. Bifunctional Phosphine Ligand

Benefitting from enol chemistry that the α-C−H bond of a carbonyl could be clearly
attenuated by the activation from an acid (Lewis acid or protic acid) to the carbonyl
group, the Zhang group developed bifunctional phosphine ligands for gold(I)-catalyzed
asymmetric reactions [50]. In such reactions, a Lewis acid acts as a ‘pull’, and a weak
base functions as a ‘push’. The weak base Et3N (pKa in DMSO, 9.0) can be employed
to remove α-H of a carbonyl or an imine group (pKa in DMSO ∼16–30) [51]. Without
the utilization of a strong base, the reactions could accommodate more base-sensitive
substances (Scheme 12A) [52,53]. From the initial design, it is anticipated that the α-H
of a C−C triple bond, i.e., a propargylic proton (estimated pKa in DMSO, >30) [54,55],
could be removed by a weak base with the ‘pull’ of a gold(I) catalyst to an alkynyl group
(Scheme 12B,C). As a typical example, biphenyl 2-ylphosphines with remote tertiary amino
groups for gold(I) catalysis were conceived by Zhang and coworkers (Scheme 13) [52]. As
expected, the ligated tertiary amino group could play the role of ‘push’ for the removal of
the propargylic proton to initiate new allene reactions, conjugated alkene reactions and
aldol-type reactions in alkyne chemistry. With the introduction of asymmetric elements into
the ligand, chiral products could be effectively achieved. As per the principle, the authors
successfully converted racemic β,γ-butenolides 32 into chiral α,β-butenolides 33 promoted
by chiral bifunctional phosphine ligand (S-L17)-ligated gold(I) catalysts (Scheme 13) [56].
In contrast to the JohnPhos-tethered gold(I) catalyst exhibiting 6% product yield and no ee
value, the (S)-L17-tethered gold(I) catalyst showed excellent asymmetric catalysis for the
γ-protonation process (99% yield and 99% ee).
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The bifunctional phosphine ligand (S)-L17 features a fluxional biphenyl axis and
contains a remote tertiary amino group possessing a vicinal chiral group to remove the
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α-H of an alkynyl group or a carbonyl group (Scheme 14). Though the biphenyl motif is
fluxional, the chiral group can shield the amino group from one conformer to conduct the
deprotonation step, which displays the chiral modulation for the process. Moreover, the
cooperative ‘pull’ and ‘push’ of the bifunctional phosphine ligand-ligated gold catalysts
were rationalized. Upon gold activation to the carbonyl group, the α-H is anticipated
to be more acidic, allowing it to be removed by a weak base such as a tertiary amino
group. Consequently, the metal enolate generated from soft enolization and the chiral
ammonium cation constitute a chiral ion pair. Eventually, the chiral protonation process
becomes possible, catering to the principle of soft deprotonation and chiral protonation for
the asymmetric isomerization into α,β-butenolides 33 with high enantioselectivity from
β,γ-butenolides 32.
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The Zhang group achieved the implementation of a reaction from propargylic sul-
fonamides into chiral polysubstituted pyrroles via the cooperative catalysis of gold(I) and
chiral bifunctional phosphine ligand (S)-L17 (Scheme 15) [57]. The innate diastereoselectiv-
ity of this reaction and the ‘matched’ geometry of the (S)-L17-associated gold(I) catalyst
with substrates contributed to an excellent diastereo ratio (d.r.) with two chiral centers
(2-methyl-5-cyclohexyl pyrrole derivative(36a–36c). The key procedure is the formation
of allenes generated from the asymmetric isomerization of sulfonamides. Notably, the
asymmetric reaction could tolerate high reaction temperature despite the routine pattern
of low temperature to achieve higher enantioselectivity. However, the desired product
was obtained in poor yield and low enantioselectivity when (R)-L17 was exposed to the
catalytic system.
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Additionally, the Zhang group reported that the asymmetric version of ynolates 37
to chiral α-Allyl-α,β-butenolides 38 was achieved with the aid of a (S)-L17-ligated gold
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catalyst (Scheme 16) [58]. As described, in this tandem reaction, the ‘push’ and ‘pull’
processes were involved several times for the generation of an allene intermediate, a furan
intermediate and the isomerization product. According to their reports, no ee value was
detected for the desired product if a racemic L18 ligand was introduced instead of (S)-L17,
despite the excellent yield obtained [59].

Catalysts 2023, 13, x FOR PEER REVIEW 10 of 26 
 

 

The Zhang group achieved the implementation of a reaction from propargylic sul-
fonamides into chiral polysubstituted pyrroles via the cooperative catalysis of gold(I) and 
chiral bifunctional phosphine ligand (S)-L17 (Scheme 15) [57]. The innate diastereoselec-
tivity of this reaction and the ‘matched’ geometry of the (S)-L17-associated gold(I) catalyst 
with substrates contributed to an excellent diastereo ratio (d.r.) with two chiral centers (2-
methyl-5-cyclohexyl pyrrole derivative(36a–36c). The key procedure is the formation of 
allenes generated from the asymmetric isomerization of sulfonamides. Notably, the asym-
metric reaction could tolerate high reaction temperature despite the routine pattern of low 
temperature to achieve higher enantioselectivity. However, the desired product was ob-
tained in poor yield and low enantioselectivity when (R)-L17 was exposed to the catalytic 
system. 

 
Scheme 15. Enantioselective isomerization of β,γ-butenolides to chiral α,β-butenolides 

Additionally, the Zhang group reported that the asymmetric version of ynolates 37 
to chiral α-Allyl-α,β-butenolides 38 was achieved with the aid of a (S)-L17-ligated gold 
catalyst (Scheme 16) [58]. As described, in this tandem reaction, the ‘push’ and ‘pull’ pro-
cesses were involved several times for the generation of an allene intermediate, a furan 
intermediate and the isomerization product. According to their reports, no ee value was 
detected for the desired product if a racemic L18 ligand was introduced instead of (S)-L17, 
despite the excellent yield obtained [59]. 

 
Scheme 16. Asymmetric synthesis of chiral α-Allyl-α,β-butenolides Scheme 16. Asymmetric synthesis of chiral α-Allyl-α,β-butenolides.

Later, the same group reported gold(I)-catalyzed enantioselective dearomatization of
phenol 39 to drug-valuable chiral spirocyclic enone products 40, employing the strategy
of gold(I)-chiral ligand cooperation (Scheme 17) [60]. The distal phosphonate presented
in the binaphthyl framework L19 displayed better catalytic performance compared to
the JohnPhos ligand. It is believed that the H-bond interaction of the phosphate with
the hydroxyl group in phenol is the crucial step that dictates asymmetric selectivity and
accelerates the dearomatization/cyclization process.
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2.5. Biphosphine Ligands

Apart from the above monophosphine ligands, biphosphine ligands have also been
developed. Thus, this section intends to present the development of these biphosphine
ligands and their applications in gold-catalyzed asymmetric reactions. Although the linear
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coordination of a ligand with the gold(I) complex generates a single coordination site from
the metal center, the asymmetric bisphosphine ligands have been successfully applied
to multiple carbon–carbon bond activation reactions. The arguable Au–Au interaction is
believed to play a crucial role in modulating chiral transfer due to its subtle tortuosity for
the linear coordination way.

The Echavarren group first discovered the potential of a bisphosphine ligand (L20) in
the gold(I)-catalyzed enantioselective tandem cycloisomerization and hydromethoxylation
process (Scheme 18) [61]. Remarkably, the addition of a catalytic amount of a silver salt
suggested that the monocationic Au species promoted the transformation. The reaction
occurred as the electron-rich alkenyl part acted as a nucleophile to attack the chiral gold-
activated alkynyl group. After the gold complex feedbacked one pair of electrons to the
double bond, the alkenyl group combined with an unstable cation for the formation of a
gold carbene species. Following the ring-opening and protodeauration process, the chiral
alkoxylation product could be given.
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In the same year, the Toste group documented cyclopropantion reactions of alkyne 43
and aryl alkenes 44 using (R)-DTBM-SEGPHOS (L21) as the optimal bisphosphine ligand,
affording the desired products 45 with high diasteroselectivity (>20:1) and enantioselectivity
(76–94% ee) [62]. In this catalytic process, reactive gold carbene species were involved after
a Rautenstrach rearrangement process. The proposed mechanism suggests that substituents
from alkenes will intrinsically interact with the ligated gold complex (IIb), which disfavors
the formation of trans-substituted cyclopropanes. Thus, the cis-selectivity was easily offered
in most cases. However, the sterically less hindered BINAP ligand could not efficiently
induce the transfer of chirality (Scheme 19), as observed from the ligand screening data.

Additionally, bisphosphine-containing gold complexes were also applicable to asym-
metric alkoxylation of allenes, as illustrated by Widenhoefer and coworkers (Scheme 20) [63].
Specifically, bisphosphine ligand L22 was smoothly accommodated with allene 46, provid-
ing (R)-4,4-diphenyl-2-vinyltetrahydrofuran 47 with a moderate yield and high enantiose-
lectivity (67% yield, 93% ee).

Shin and coworkers applied a chiral bisphosphine ligand (L23) derived from the
SegPhos backbone to a gold-catalyzed enantioselective intermolecular [4 + 2] cycloaddition
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of propiolate 48 with substituted alkene 49 (Scheme 21) [64]. α, β-Unsaturated δ-lactone
50 was detected as the main product along with several diene side-products generated
from metathesis and conjugate addition. Furthermore, the use of 1,1,2,2-Cl4-ethane as a
solvent and the addition of sodium dodecyl sulfate (SDS) as a surfactant were significant
for enhancing chemoselectivity and mediating chiral transfer.
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2.6. Chiral Counterions Derived from Chiral Phosphoric Acids

The phosphine-containing organic ligands are summarized from Section 2.1 to Section 2.5.
In this section, a unique type of phosphine ligand, referred to as chiral phosphoric acid-
derived chiral counterion ligands, is discussed. The development of asymmetric gold
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catalysis via chiral ion pairs between cationic gold catalysts and chiral counterions is
a successful strategy to confer to the enantioselectivity of gold-catalyzed reactions [65].
The Toste group explored the counterion strategy in gold catalysis for the intramolecular
asymmetric hydroalkoxylation of allenes [66]. To achieve high enantioselectivity in the
reactions, the “matched” effect of a phosphine-associated gold catalyst with a chiral silver
salt should be considered (Scheme 22). Specifically, the cooperation of bis(chlorogold)
bis(diphenylphosphino)methane [dppm(AuCl)2] with Ag-L24 prompted the asymmetric
cyclization of allenol 51 to tetrahydrofuran 52 with excellent yield and enantioselectivity.
On the contrary, inferior results were provided when Ph3PAuCl was utilized instead
of dppm(AuCl)2.
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On the other hand, the chiral counterion induction approach could be extended to
enantioselective cyclization of alkynyl hydroxylamine 53 (Scheme 23) [67]. The ‘matched’
system of dppm(AuCl)2 with Ag-L25 could induce efficient chirality mediation for the
formation of vinyl isoxazolidine 54. As an alternative, if Ag-L25 was displaced with Ag-L26,
the enantioselectivity of the reaction decreased dramatically.

Catalysts 2023, 13, x FOR PEER REVIEW 14 of 26 
 

 

PAr2

PAr2

L23
Ar = 3,5-Me2-Ph

OtBu

O

L23(AuCl)2 (2.5 mol%)
KBPh4 (2.5 mol%)
SDS (2.5 mol%) OO

O

O

O

O

1,1,2,2-Cl4-ethane

50
84% yield
85% ee

+

48 49

 
Scheme 21. Dimeric gold catalyst-promoted enantioselective [4 + 2] cycloaddition. 

2.6. Chiral Counterions Derived from Chiral Phosphoric Acids 
The phosphine-containing organic ligands are summarized from Section 2.1 to Sec-

tion 2.5. In this section, a unique type of phosphine ligand, referred to as chiral phosphoric 
acid-derived chiral counterion ligands, is discussed. The development of asymmetric gold 
catalysis via chiral ion pairs between cationic gold catalysts and chiral counterions is a 
successful strategy to confer to the enantioselectivity of gold-catalyzed reactions [65]. The 
Toste group explored the counterion strategy in gold catalysis for the intramolecular 
asymmetric hydroalkoxylation of allenes [66]. To achieve high enantioselectivity in the 
reactions, the “matched” effect of a phosphine-associated gold catalyst with a chiral silver 
salt should be considered (Scheme 22). Specifically, the cooperation of bis(chlorogold) 
bis(diphenylphosphino)methane [dppm(AuCl)2] with Ag-L24 prompted the asymmetric 
cyclization of allenol 51 to tetrahydrofuran 52 with excellent yield and enantioselectivity. 
On the contrary, inferior results were provided when Ph3PAuCl was utilized instead of 
dppm(AuCl)2. 

 
Scheme 22. Chiral counterion-induced asymmetric cyclization of allenol 51. 

On the other hand, the chiral counterion induction approach could be extended to 
enantioselective cyclization of alkynyl hydroxylamine 53 (Scheme 23) [67]. The ‘matched’ 
system of dppm(AuCl)2 with Ag-L25 could induce efficient chirality mediation for the for-
mation of vinyl isoxazolidine 54. As an alternative, if Ag-L25 was displaced with Ag-L26, 
the enantioselectivity of the reaction decreased dramatically. 

 
Scheme 23. Gold(I)-catalyzed asymmetric formation of vinyl isoxazolidines. Scheme 23. Gold(I)-catalyzed asymmetric formation of vinyl isoxazolidines.

2.7. Chiral Carbene Ligand

Apart from the above phosphine-containing organic ligands, chiral carbene ligands
have also been developed for asymmetric gold catalysis. As the distinct performance of
gold(I)-carbene complexes in terms of chemoselectivity and regioselectivity in carbophilic
activation, chiral carbene ligand-involving gold(I) catalysts were also elaborately designed
to conduct a set of asymmetric transformations [68]. Considering the repertoire of an
electron-rich group in offering the stability of an allene intermediate, Toste and cowork-
ers conceived that, compared to phosphite-tethered gold complexes, the more electron-
donating carbene-coordinated gold(I) catalysts could facilitate 6-endo-trig cyclization of
propargyl ester 55 in a more efficient manner (Scheme 24) [69]. Undoubtedly, incorporation
of different substituents into the ligand skeleton is crucial for the effective enantioselectivity
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control. As observed, ligand L28 bearing a 4-CF3 group was identified as an excellent auxil-
iary for achieving 85% yield and 91% ee, while the unsubstituted ligand (L27) triggered an
inferior result.
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Scheme 24. Asymmetric [3 + 3] reaction catalyzed by (acyclic diaminocarbene)-gold(I) complexes.

Subsequently, Slaughter and coworkers developed impressive monodentate acyclic
diaminocarbene ligands (L29, L30) for the enantioselective gold(I) catalysis based on the
comprehension of the chiral (carbene)gold template (Scheme 25) [70]. The designed mon-
odentate gold(I) complexes were introduced into tandem cyclization and nucleophilic
addition of ortho-alkynylbenzaldehyde 57. Although L29 mismatched the catalytic system
with a detrimental result, the modified ligand (L30) was found to be an excellent promoter
for the formation of sterogenic 1H-isochromene 58 (70% yield, 99% ee). It appeared that the
secondary interactions generated from the electrostatic attraction between the decorated
amino group and suitable substrate promoted the efficient construction of the chiral motif.
The crystal structure of L30AuCl reveals that the rotation of the gold complex with the
substrates is restricted due to the interaction between the gold atom and the aryl ring
(3,5-(CF3)2-Ph in binaphthyl skeleton) as well as the π–π stacking between a phenyl (in
the amino part) and a naphthyl unit. This restriction facilitates chirality control during the
cyclization process.
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Acyclic diaminocarbene gold(I) complexes were further applied to the asymmetric
hydroazidation and hydroamination of allenes 59 by the Toste group (Scheme 26) [71]. The
introduction of carbene ligand L31 resulted in excellent yield and ee values, whereas the
other explored ligands failed to dictate the chirality formation. It is noteworthy that, with
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L31 as a ligand, opposite conformers can be obtained only by using different nucleophiles
(TMSN3 for the formation of 60 and H2NBoc for the generation of 61).
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Scheme 26. Chiral carbene-tethered gold catalyzed nucleophilic addition of allenes.

The Toste group subsequently challenged enantio-induction of tandem [3,3]-sigmatropic
rearrangement and [2 + 2]-cyclization of propiolate 62 containing an indolyl group with the
aid of computation (Scheme 27) [72]. The bulky L32-tethered gold(I) complex was identified
as the optimized catalyst for chirality transformation through the construction of three
chiral carbon centers. The computational studies suggested that the intramolecular H-bond
formation from vicinal amino NH and O facilitated the mediation of chirality achievement.
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2.8. Cyclometalated X-Y (X = C, O; Y = C, O) Ligand Frameworks

Enantioselective reactions with gold(I) catalysis have been extensively developed [73–75],
as also illustrated in all the above examples. However, the linear geometry of gold(I)
catalysts restricts its ability to modulate chirality formation (Scheme 28). On the other
hand, the square-planar geometry of gold(III) catalysts introducing cyclometalated ligand
frameworks is expected to avoid the restriction owing to the potential mediation from
lithered chiral ligand proximal to the reactive center. However, the unstable risk of gold(III)
complex 64 for reduction to gold(I) or unreactive state of traditional gold(III) catalyst 65
impeded its application in enantioenriched catalysis [76–78].

To address the above-mentioned limitations of traditional gold(III) catalysts, the Toste
group developed a cyclometalated C−C ligand framework to stabilize the gold(III) cationic
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species [79]. This framework possesses powerful catalytic activity while maintaining a sta-
ble structure that facilitates effective reaction turnover (Scheme 29). A chiral N-heterocyclic
carbene (NHC) ligand was positioned in the square vicinal to the reaction center to induce
chiral formation. The resulting elaborated chiral NHC-tethered gold(III) catalysts displayed
varied activity and divergent enantioselectivity in the cycloisomerization of enynes 66. No-
tably, (R,R)-gold(III)(biphenyl)L33Cl selectively facilitated the conversion of the (R)-enyne
substrate into bicyclic adducts 67 in moderate conversion (44%) and good ee value (85%),
whereas the gold(III) catalyst bearing L34 showcased a sluggish result (4% conversion,
−2% ee) [80]. Meanwhile, (S)-enyne substrate 68 was provided along with the enantiocon-
vergent cyclization via kinetic resolution. As described above, the reaction is initiated by
the effective coordination of the gold complex with the triple bond of the enyne substrates,
leading to the formation of complex I. Following this, a concerted cycloaddition took place,
resulting in the generation of gold carbenes (II and II’). Subsequently, the bicyclic scaffold
is furnished with the migration of α–H and the release of the catalyst from the system.

Catalysts 2023, 13, x FOR PEER REVIEW 17 of 26 
 

 

 
Scheme 27. (Acyclic diaminocarbene)gold(I) complexes for challenging chirality formation 

2.8. Cyclometalated X-Y (X = C, O; Y = C, O) Ligand Frameworks 
Enantioselective reactions with gold(I) catalysis have been extensively developed 

[73–75], as also illustrated in all the above examples. However, the linear geometry of 
gold(I) catalysts restricts its ability to modulate chirality formation (Scheme 28). On the 
other hand, the square-planar geometry of gold(III) catalysts introducing cyclometalated 
ligand frameworks is expected to avoid the restriction owing to the potential mediation 
from lithered chiral ligand proximal to the reactive center. However, the unstable risk of 
gold(III) complex 64 for reduction to gold(I) or unreactive state of traditional gold(III) cat-
alyst 65 impeded its application in enantioenriched catalysis [76–78]. 

 
Scheme 28. The innate difference of gold(I) and gold(III) catalytic mode. 

To address the above-mentioned limitations of traditional gold(III) catalysts, the 
Toste group developed a cyclometalated C−C ligand framework to stabilize the gold(III) 
cationic species [79]. This framework possesses powerful catalytic activity while maintain-
ing a stable structure that facilitates effective reaction turnover (Scheme 29). A chiral N-
heterocyclic carbene (NHC) ligand was positioned in the square vicinal to the reaction 
center to induce chiral formation. The resulting elaborated chiral NHC-tethered gold(III) 
catalysts displayed varied activity and divergent enantioselectivity in the cycloisomeriza-
tion of enynes 66. Notably, (R,R)-gold(III)(biphenyl)L33Cl selectively facilitated the con-
version of the (R)-enyne substrate into bicyclic adducts 67 in moderate conversion (44%) 
and good ee value (85%), whereas the gold(III) catalyst bearing L34 showcased a sluggish 
result (4% conversion, −2% ee) [80]. Meanwhile, (S)-enyne substrate 68 was provided 
along with the enantioconvergent cyclization via kinetic resolution. As described above, 

Scheme 28. The innate difference of gold(I) and gold(III) catalytic mode.

Catalysts 2023, 13, x FOR PEER REVIEW 18 of 26 
 

 

the reaction is initiated by the effective coordination of the gold complex with the triple 
bond of the enyne substrates, leading to the formation of complex I. Following this, a con-
certed cycloaddition took place, resulting in the generation of gold carbenes (II and II’). 
Subsequently, the bicyclic scaffold is furnished with the migration of α–H and the release 
of the catalyst from the system. 

 
Scheme 29. The chiral gold(III)-catalyzed asymmetric cycloisomerization of enynes. 

The square-planar chiral gold(III) catalysts were further applied to the asymmetric 
cycloaddition of 2,4-hexadienals 69 and cyclopentadiene 70 to synthesize valuable chiral 
bicycles 71 (Scheme 30) [81]. Different NHC ligands were prepared for the formation of 
chiral gold(III) catalysts. As observed, 1-naphthyl substituted NHC (L36) demonstrated 
superior chiral induction compared with the 2-naphthyl counterpart (L35), which sug-
gests that a sterically bulky ligand is beneficial for this catalytic transformation. 

 
Scheme 30. The chiral gold(III)-catalyzed enantioselective Diels–Alder reaction. 

Subsequently, Wong and coworkers synthesized O,O-chelated cyclometalated oxa-
zoline gold(III) catalysts [78]. When the chiral O,O-chelated backbone was introduced into 
the gold(III) complexes, the combination of gold(III) catalyst (74 or 75) and L-camphorsul-
fonic acid (L-CSA) effectively initiated the carboalkoxylation reaction of alkyne 72 for the 

Scheme 29. The chiral gold(III)-catalyzed asymmetric cycloisomerization of enynes.

The square-planar chiral gold(III) catalysts were further applied to the asymmetric
cycloaddition of 2,4-hexadienals 69 and cyclopentadiene 70 to synthesize valuable chiral
bicycles 71 (Scheme 30) [81]. Different NHC ligands were prepared for the formation of
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chiral gold(III) catalysts. As observed, 1-naphthyl substituted NHC (L36) demonstrated
superior chiral induction compared with the 2-naphthyl counterpart (L35), which suggests
that a sterically bulky ligand is beneficial for this catalytic transformation.
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Subsequently, Wong and coworkers synthesized O,O-chelated cyclometalated oxazo-
line gold(III) catalysts [78]. When the chiral O,O-chelated backbone was introduced into the
gold(III) complexes, the combination of gold(III) catalyst (74 or 75) and L-camphorsulfonic
acid (L-CSA) effectively initiated the carboalkoxylation reaction of alkyne 72 for the for-
mation of 3-methoxyindanone 73 (Scheme 31) [82]. From the proposed transition state,
the steric hindrance from the 2,4,6-trimethylphenyl group in the oxazoline part would be
significant. This hindrance creates clear repulsion towards the substrate in the unfavored
TSB, which contributed significantly to the improvement of enantioselectivity (75% ee for
74 vs. 90% ee for 75).
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3. Application of Asymmetric Gold Catalysis

Axially chiral biaryl compounds exert important roles in natural product synthesis.
The asymmetric hydroalkenylation strategy for the synthesis of axially chiral N-hetero-
biaryl compound 77 was first achieved by Tanaka and coworkers utilizing chiral bispho-
sphine L37 as the ligand for asymmetric gold catalysis (Scheme 32). This methodology,
though achieving a moderate ee value, opened the avenue for the enantioselective forma-
tion of various axially chiral polyaryl molecules.
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Scheme 32. Bisphosphine-tethered gold catalyzed asymmetric hydroalkenylation.

Axially chiral phosphines have been demonstrated to be an important class of chiral
ligands. Aiming at the chiral non-C2-symmetric BINOL ligand-directed synthesis, the Al-
carazo group developed the asymmetric arylation of naphthyl alkynone 78 into enantiopure
1,1′-binaphthalene-2,3′-diol 79 (90% yield, 95% ee) with the assistance of the phosphonite
L38-tethered gold(I) catalyst (Scheme 33). To ensure higher catalytic activity of the gold
complex, the positively charged heterocyclic rest was cooperated into the ligand, which
had a strong electron-withdrawing character [83]. After several steps, a new axially chiral
phosphine 80 with a 92% ee value was provided, which could be used for the formation of
new chiral gold compounds 81.
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Scheme 33. Atropselective synthesis of non-C2-symmetric BINOL.

Helicenes have been extensively studied as functional organic materials due to their po-
tential photophysical properties. In the asymmetric gold-catalyzed arylation of tetraalkynes
82 (Scheme 34), (S)-BINAP was introduced to achieve the desired S-shaped double azahe-
licenes [84]. The tandem control for chiral formation posed challenges for diasteroselectivity
and enantioselectivity. The desired enantio-pure (+)-83 and separable (rac)-83 and (meso)-83
could be smoothly produced. Gratifyingly, the desired azahelicenes 84 with enhanced
circularly polarized luminescence were readily given after another two steps.

Chiral 3-aminochromane is an important precursor used to synthesize medicinally
relevant chiral serotonin 5-HT7 receptor [85,86] or MALT1 inhibitor [87]. For the effective
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construction of this skeleton, the Patil group developed a gold(I)/gold(III) catalytic system
for asymmetric 1,2-difunctionalization of alkenes in 2022 (Scheme 35) [88]. To tackle the
challenging conflict between linear dicoordination in gold(I) and square-planar tetraco-
ordination in gold(III), the authors introduced a hard Lewis base part (an amino group)
adjacent to a sterically bulky soft phosphine group. Gold(III) is anticipated to form rigid
geometry due to the combination of the hard amino group and the soft phosphine group
simultaneously, while only the soft phosphine can construct coordination with gold(I).
The Ad-ChetPhos-tethered gold(I) complex was exposed to the iodoaryl alkene 85 to yield
3-methoxychromane 86 in high yield and enantioselectivity (up to 88% yield and 99% ee).
After an additional three steps, chiral 3-aminochromane 87 was smoothly achieved.
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The prenylated stibenoid scaffolds have attracted the research interest of synthetic
chemists due to their potential pharmaceutical applications. The Carexanes, which were
isolated from the leaves of Carex distachya, demonstrated considerable good antimicrobial
and antioxidant activity [89]. Recently, the Carexane core was efficiently prepared using
bifunctional phosphines with a dual H-bond donor group (urea) for the gold catalyst by
the Echavarren group (Scheme 36). To achieve this, the novel catalytic system was utilized
for the effective asymmetric 5-exo-dig or 6-exo-dig cycloisomerization of 1,6-enynes 88.
The bicyclic alcohol 89 was obtained in 77% yield and 85% ee, and it could be further
transformed into other valuable molecules (69% yield and 93:7 er for 90; 88% yield and
92:8 er for 91) [90]. The chiral benzoate 90 and diene core 91 of the Carexane natural
products offer considerable pharmaceutical potential.
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4. Conclusions and Perspectives

In this review, a variety of chiral ligands are presented and their applications in
asymmetric gold catalysis are demonstrated. These ligands are divided into different
types, including aryl phosphine ligands bearing the proximal chiral sulfinamide motif,
phosphoramidite and phosphonite ligands, phosphine ligands comprising the ferrocene
scaffold, bifunctional phosphine ligands, biphosphine ligands, chiral counterion-based
ligands derived from chiral phosphoric acids and chiral carbene ligands for Gold(I) catalysis
along with unique ligand frameworks for cyclometalated gold(III) catalysis. The pivotal
roles of the versatile ligands are comprehensively emphasized and the representative ligand-
involving catalytic mechanisms are briefly discussed. Moreover, the potential applications
of these gold-involved asymmetric reactions are further illustrated by the preparation of
valuable functional molecules.

From the above discussions, significant progress has been made in the rapidly grow-
ing field of asymmetric gold catalysis. Nevertheless, several challenging problems and
limitations remain, as described in the following aspects.

(1) Although the combination of photoredox catalysis and gold catalysis has been uti-
lized to construct structurally diverse molecules, the direct construction of chiral molecules
through this strategy has yet to be accomplished. Thus, designing chiral Gold photocata-
lysts for enantioselective transformations should be explored in future research.

(2) Gold(I) catalysts have been investigated more extensively than gold(III) catalysts.
Thus, conducting detailed mechanistic studies utilizing gold(III) catalysts could provide a
better understanding of the precise functions of gold and ligands in these transformations,
potentially leading to broader applications of gold(III) catalysts.

(3) Apart from the intermolecular cycloaddition reactions, most of the asymmetric
transformations have been achieved in an intramolecular manner. Thus, the exploration
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of various intermolecular reactions in the future may be another hot research topic in
gold catalysis.

(4) The gold loadings for most reported reactions in the literature are between 5 and
10 mol%, which are relatively high and may restrict the applications of these techniques
in industry. As a solution, designing new ligands capable of better binding to both gold
catalysts and substrates may help alleviate this problem.
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