
Citation: Wang, Z.; Qian, J.; Sun, Z.;

Zhang, Z.; He, M.; Chen, Q.

Application of Heterogeneous

Catalysis in Formic Acid-Based

Hydrogen Cycle System. Catalysts

2023, 13, 1168. https://doi.org/

10.3390/catal13081168

Academic Editor: Giuseppe Bonura

Received: 29 June 2023

Revised: 26 July 2023

Accepted: 27 July 2023

Published: 30 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Review

Application of Heterogeneous Catalysis in Formic Acid-Based
Hydrogen Cycle System
Zhenzhen Wang, Junfeng Qian *, Zhonghua Sun, Zhihui Zhang , Mingyang He * and Qun Chen

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green
Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China;
wangzhenzhen@cczu.edu.cn (Z.W.)
* Correspondence: qianjunfeng@cczu.edu.cn (J.Q.); hmy@cczu.edu.cn (M.H.)

Abstract: H2 has aroused significant attention as an unpolluted and renewable energy carrier. How-
ever, the efficient storage and controllable release of H2 are urgent to be addressed. Through the
hydrogenation of CO2 (bicarbonate) to produce formic acid (formate) and reverse dehydrogenation
reactions, a carbon-neutral formic acid-based hydrogen cycle system can be established. Given the
excellent recyclability and facile separation of heterogeneous catalysis, the development of hetero-
geneous catalysts for these reversible interconversions is thoroughly summarized, with a special
focus on the structure–activity relationship and the mechanistic insight. Finally, the challenges and
opportunities surrounding the formic acid-based hydrogen cycle system are discussed. It is hoped
that this review will provide guidance and an idea for the design and development of efficient
heterogeneous catalysts for the carbon-neutral H2 storage and release system.

Keywords: heterogeneous catalysis; hydrogen cycle system; supported catalyst; hydrogenation;
dehydrogenation

1. Introduction

With high gravimetric specific energy (33.3 kW·h/kg) and zero pollution during
combustion, H2 has been considered the most promising energy carrier in a low-carbon
economy [1–3]. However, due to its low volumetric energy density (2.5 W·h/L) and
flammability, it still faces some challenges as an energy carrier in actual storage and
transportation [4–7]. To effectively store and transport H2, various approaches have been
developed [8–11]. Among them, liquid organic hydrogen carriers (LOHCs), such as formic
acid (FA) [12–15], methanol (CH3OH) [16–18], ammonia borane (NH3BH3) [19–22], and
hydrazine hydrate (N2H4·H2O) [23–25], have gained widespread attention in recent years
because of their high hydrogen content, easy storage, and transportation.

As a typical LOHC, FA is supposed to be a promising H2 storage material with a high
volumetric hydrogen density (53 g/L) [26–28]. In addition, FA is low toxic, nonflammable,
and liquid under ambient conditions, which is convenient to store and transport [29–33].
Moreover, compared with other LOHCs, FA can easily dehydrogenate to release H2 and can
be regenerated under relatively mild conditions [34–37]. At present, the most prominent
FA production process is methyl formate hydrolysis, but the use of high-concentration CO
for the carbonylation process of methanol poses potential safety hazards [38]. Alternatively,
catalytic hydrogenation of CO2 to produce FA (CO2 + H2 → HCOOH) with 100% atomic
efficiency can not only achieve efficient storage of hydrogen energy but also effectively
reduce carbon emissions and synthesize high-value-added chemicals, attracting increasing
interest [39–44]. H2 chemically sealed in FA can be easily retrieved on-demand under mild
conditions [45–49], which constitutes a promising carbon-neutral and environmentally
benign FA-based hydrogen cycle system (Figure 1).
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Unfortunately, the direct catalytic hydrogenation of gaseous CO2 to FA (CO2 + H2 →
HCOOH, ∆rGθ

298K = +32.9 kJ/mol) is thermodynamically adverse because of its high chem-
ical stability [50,51]. If the reaction is carried out in an aqueous solution, negative free energy
(∆rGθ

298K = −4 kJ/mol) will be obtained due to the dissolution of the reaction gas [52,53].
An even stronger exergonic trend (∆rGθ

298K = −35 kJ/mol) will be observed if an alkaline
aqueous solution is used [54,55]. Here, the generated FA is captured by the base in FA-base
adducts form, which benefits a rightward shift of the reaction equilibrium. On the other
hand, the H2 release process from FA (HCOOH→ CO2 + H2, ∆rGθ

298K = −32.9 kJ/mol) is
the reverse reaction of CO2 hydrogenation to FA, which can proceed readily with favorable
thermodynamics [56–58]. Compared to CO2 molecules, the hydrogenation of bicarbonate
can proceed under much milder conditions, so a formate/bicarbonate salt-based reversible
H2 storage couple is also attractive [59–66].

Although substantial progress has been achieved for CO2 (bicarbonate) hydrogenation
and FA (formate) dehydrogenation, and a large number of outstanding reviews on homo-
geneous and heterogeneous catalytic systems have emerged [67–73], the hydrogenation
and dehydrogenation processes are generally studied individually on different catalysts
suitable for each reaction. It is highly desired to develop a catalyst that can concomitantly
catalyze the hydrogenation and dehydrogenation processes for a hydrogen cycle system.
Although homogeneous catalysts exhibit superior catalytic activity, disadvantages, such as
the use of expensive ligands and inseparability from the catalytic system, seriously restrict
their industrial applications [74–77]. In contrast, heterogeneous catalysts possess signif-
icant advantages in product separation, recycling, and continuous operation, providing
prospects for their industrial applications [78–82]. Accordingly, this review focuses on
and summarizes recent progress in the reaction system of heterogeneous catalysis for the
interconversion between CO2 (bicarbonate) and FA (formate) over the same catalyst, from
the first example through the most recent advancement in early 2023. By summarizing the
results obtained from these studies, we hope to provide some valuable references to the
development of a highly efficient heterogeneous catalyst, ultimately making the hydrogen
cycle system more practical. The challenges and opportunities worthy of further research
for the FA-based hydrogen cycle system are proposed.

2. Heterogeneous Catalysis in FA-based Hydrogen Cycle System
2.1. Monometal-Based Heterogeneous Catalytic System
2.1.1. Activated Carbon-Supported Monometallic Catalysts

In 1986, Sasson and co-workers proposed that the cyclic transformation of formate/
bicarbonate was promising for H2 storage and transport [83]. Three years later, they first
reported the use of a heterogeneous catalyst (Pd/C) for the reversible conversion between
formate (50 ◦C, 1 atm) and bicarbonate (30 ◦C, 5 atm) [84].

Considering the good solubility of ammonium formate (NH4HCO2) and thus im-
proved volumetric hydrogen density, Lin et al. reported an ammonium bicarbonate
(NH4HCO3)/NH4HCO2-based reversible H2 storage-release system over a Pd/AC cat-
alyst in 2015 [85]. The reaction pressure and temperature are critical factors governing
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the switch between H2 storage and the release steps in the same catalytic system. For
the hydrogenation process, up to a 96% yield of NH4HCO2 with a corresponding TOF of
118 h−1 (20 ◦C, 2.75 MPa H2) was achieved, whereas a 92% hydrogen yield with a TOF of
1132 h−1 (80 ◦C, 0.1 MPa N2) was obtained from the dehydrogenation of NH4HCO2. The
main by-products were CO2 and NH3 generated from the decomposition of NH4HCO3
and NH4HCO2 at an elevated reaction temperature (an increase from 20 to 120 ◦C). In 2018,
the same research group also used Pd/AC to catalyze reversible CO2 hydrogenation and
formate dehydrogenation reactions under mild operating conditions [86]. It was found that
piperidine added in the reversible reaction system acted as a reactant trap, promoting the
CO2 hydrogenation and formate dehydrogenation processes. Furthermore, a significant
solvent-promoting effect was observed in the reversible process. In a 70% ethanol aqueous
solution, a 96% yield of formate was achieved during a hydrogenation reaction at 30 ◦C,
and the TOF value was as high as 5945 h−1; for the formate dehydrogenation process,
the yield of H2 reached 92.1%, with a TOFinitial of 9908 h−1 at 100 ◦C. Additionally, the
mechanism study showed that the existence of piperidine tailored the electronic property
of Pd and reduced the free energy of the hydrogenation and dehydrogenation processes,
further resulting in improved catalytic activity for the reversible H2 storage and release
cycle. Notably, the Pd/AC catalyst possessed excellent stability, with negligible activity
decline in the five hydrogenation–dehydrogenation cycling tests.

2.1.2. Mesoporous Carbon-Supported Monometallic Catalysts

Furthermore, in 2016, Cao and colleagues found that electron-rich pyridinic-N-doped
carbon hybrids (CNs) could effectively regulate the electronic property of a Pd catalyst,
thus ameliorating its catalytic activity for reversible conversion between FA and CO2 [87].
CN materials with different N/C molar ratios were prepared by pyrolysis of chitosan
and melamine, which acted as a sturdy support to anchor uniformly dispersed Pd NPs
(3.1 ± 0.3 nm). Figure 2 presents a positive linear correlation between FA dehydrogenation
activity and the molar ratio of pyridinic-N/Pd, suggesting that the surface pyridinic-N
strongly altered the electronic property of Pd, thus promoting its catalytic performance. The
optimized Pd/CN0.25 catalyst displayed excellent activity for FA dehydrogenation and CO2
hydrogenation, with TOF values of 5530 h−1 (25 ◦C) and 1837 h−1 (100 ◦C), respectively.
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Huang and Zhang et al. established a carbon-neutral hydrogen cycle system based on
KHCO3/HCOOK redox equilibrium in 2016, which was catalyzed by Pd NPs anchored by
N-doped mesoporous carbon [88]. The activity of Pd/NMC for either the hydrogenation of
KHCO3 or H2 release from HCOOK was superior to that of nitrogen-free Pd/MC, indicating
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that the doped N-containing functionalities played a vital role in the interconversion of
KHCO3 and HCOOK. The experimental and characterization results showed that the
N-containing functionalities in Pd/NMC inhibited the aggregation of Pd NPs, increased
the electron density of the Pd element, and promoted the absorption of HCO3

− and
HCOO− through electrostatic interaction (Figure 3a–g), which synergically facilitated the
hydrogenation of KHCO3 (799 h−1 at 80 ◦C) and the dehydrogenation of HCOOK (1118 h−1

at 60 ◦C). As shown in Figure 3g, they proposed a reaction mechanism for the reversible
H2 storage and release process on Pd/NMC. For the hydrogenation of HCO3

−, Pd NPs
catalyzed the dissociation of H2, forming Pd–H species. Then, the resulting Pd–H species
attacked the C–OH bonds of HCO3

−, forming HCOO− and OH−. Finally, the formed
OH− combined with the remaining H absorbed by the Pd NPs to release H2O. For the
dehydrogenation of HCOO−, the Pd NPs facilitated the release of CO2 by adsorption of H
from the cleavage of C–H bonds in the HCOO−. The H absorbed by the Pd NPs was then
combined with the H produced by the O–H bond breaking of H2O to form H2.
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spectra of Pd/MC-8 and Pd/NMC-8. (g) Probable reaction mechanisms for formate dehydrogenation
and bicarbonate hydrogenation over Pd/NMC. Reprinted with permission from Ref. [88]. Copyright
2016, Wiley.

In 2017, Asefa, Yoon, et al. synthesized polyaniline-derived N-doped mesoporous
carbon (PDMC) through a hard template method coupled with pyrolysis to immobilize Pd
NPs [89]. The preparation process of the Pd/PDMC nanocatalyst is shown in Figure 4a.
The catalytic performance of the as-obtained Pd/PDMC for the reversible transformation
between NaHCO2 and NaHCO3 was found to be dependent on the dosage of the hard
template and pyrolysis temperature (Figure 4b–e). With an increasing hard template dosage,
the specific surface area and porosity enlarged markedly. Thanks to the large surface areas,
high porosity, and a large number of electron-rich N-containing functionalities in the PDMC,
the optimized Pd/PDMC catalyst exhibited good activity for H2 release from NaHCO2
(TOF = 2562 h−1) and NaHCO3 hydrogenation (TOF = 68 h−1) at 80 ◦C.

In 2020, Shao, Ji, et al. prepared N,P-co-doped porous carbon through the pyrolysis of
a 1,10-phenanthroline and triphenylphosphine mixture to immobilize Pd NPs [90]. The
resulting Pd/N,P-C catalyst displayed good catalytic performance for H2 generation from
HCOOK (TOF = 3248 h−1, 80 ◦C) and KHCO3 hydrogenation (TOF = 2805 h−1, 80 ◦C,
8 MPa H2). DFT studies and XPS analysis revealed that the good activity of the Pd/N,P-C
was ascribed to the electron-rich Pd, which was regulated by N- and P-containing electron-
donating groups doped into the carbon support (Figure 5a–d). In addition, the Pd/N,P-
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C showed good stability in five dehydrogenations and three hydrogenation reactions,
respectively, and no deactivation was observed.
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the catalysts supported by carbon-based materials. (c) Formate dehydrogenation activity catalyzed by
different Pd-based catalysts at 80 ◦C. (d) Relation between the TON of bicarbonate hydrogenation and
Pd 3d binding energy. Reaction conditions: 20 mg catalyst, 4 M bicarbonate aqueous solution, 6 MPa
H2, 80 ◦C. Reproduced with permission from Ref. [90]. Copyright 2020, American Chemical Society.
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2.1.3. Graphite-Supported Monometallic Catalysts

Cao and co-workers reported that Pd NPs anchored by reduced graphite oxide (r-
GO) could efficiently decompose a potassium formate (HCOOK) aqueous solution with
a TOFinitial of 11,299 h−1 at 80 ◦C [91]. Pd/r-GO can also catalyze the hydrogenation of
potassium bicarbonate (KHCO3) with a TOF of 242 h−1 at 100 ◦C. The highly efficient
H2 charge/discharge over Pd/r-GO was ascribed to the lattice microstrain of Pd derived
from the lattice mismatch between Pd and r-GO. As displayed in Figure 6a, a positive
correlation between lattice expansion and dehydrogenation activity was identified. Note-
worthy, they realized the reversible conversion of HCOOK and KHCO3 in a single reaction
vessel over the single catalyst (Pd/r-GO), indicating that a rechargeable formate-based
H2 storage system had been built. As shown in Figure 6b, the Pd/r-GO catalyst also
showed long-term stability; the original HCOOK can be wholly decomposed after stor-
ing the catalyst-containing charged solution system under environmental conditions for
4 months. The Pd/r-GO catalyst also exhibited excellent recycling stability; six consecutive
dehydrogenation and hydrogenation cycles were performed by controlling the reaction
pressure and temperature (inset in Figure 6b).

Catalysts 2023, 13, x FOR PEER REVIEW 6 of 19 
 

 

 

Figure 5. (a) Density of states (DOS) plots of various carbon-based materials. (b) Pd 3d XPS spectra 

of the catalysts supported by carbon-based materials. (c) Formate dehydrogenation activity cata-

lyzed by different Pd-based catalysts at 80 °C. (d) Relation between the TON of bicarbonate hydro-

genation and Pd 3d binding energy. Reaction conditions: 20 mg catalyst, 4 M bicarbonate aqueous 

solution, 6 MPa H2, 80 °C. Reproduced with permission from Ref. [90]. Copyright 2020, American 

Chemical Society. 

2.1.3. Graphite-Supported Monometallic Catalysts 

Cao and co-workers reported that Pd NPs anchored by reduced graphite oxide (r-

GO) could efficiently decompose a potassium formate (HCOOK) aqueous solution with a 

TOFinitial of 11,299 h−1 at 80 °C [91]. Pd/r-GO can also catalyze the hydrogenation of potas-

sium bicarbonate (KHCO3) with a TOF of 242 h−1 at 100 °C. The highly efficient H2 

charge/discharge over Pd/r-GO was ascribed to the lattice microstrain of Pd derived from 

the lattice mismatch between Pd and r-GO. As displayed in Figure 6a, a positive correla-

tion between lattice expansion and dehydrogenation activity was identified. Noteworthy, 

they realized the reversible conversion of HCOOK and KHCO3 in a single reaction vessel 

over the single catalyst (Pd/r-GO), indicating that a rechargeable formate-based H2 storage 

system had been built. As shown in Figure 6b, the Pd/r-GO catalyst also showed long-

term stability; the original HCOOK can be wholly decomposed after storing the catalyst-

containing charged solution system under environmental conditions for 4 months. The 

Pd/r-GO catalyst also exhibited excellent recycling stability; six consecutive dehydrogena-

tion and hydrogenation cycles were performed by controlling the reaction pressure and 

temperature (inset in Figure 6b). 
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In 2019, Lim’s group elucidated the mechanism underlying the reversible transfor-
mation between HCO3

− and HCO2
− on a N-doped graphene-tethered Pd nanocluster

(NC) by density functional theory (DFT) calculations [92]. As indicated in Figure 7a–h,
the rate-determining steps for HCOO− dehydrogenation (Ebarr = 1.24 eV) and HCO3

−

hydrogenation (Ebarr = 1.49 eV) were confirmed to be the desorption of hydrogen protons
from the Pd NC. The doping of an appropriate dose of pyridine nitrogen could signif-
icantly reduce the energy barrier of the reversible reaction by regulating the electronic
and geometric effects of the Pd NC (Figure 7), thus improving the efficiency of reversible
transformation between HCO3

− and HCO2
−.
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2.1.4. Mesoporous Graphitic Carbon Nitride-Supported Monometallic Catalysts

In 2014, Yoon et al. reported mesoporous graphitic carbon nitride (mpg-C3N4)-
immobilized Pd nanoparticles (NPs) for the interconversion between FA and CO2, which
was one of the earliest heterogeneous catalysts for a CO2-mediated H2 cycle system [93].
The resulting Pd/mpg-C3N4 demonstrated activity for H2 generation from FA without any
base/additive, with a turnover frequency (TOF) of 144 h−1 at 25 ◦C and a TOF of 4 h−1

for CO2 hydrogenation with triethylamine (NEt3) as the CO2 absorbent at 150 ◦C. X-ray
absorption near-edge structure (XANES) analysis and DFT calculation revealed that the
abundant nitrogen functionalities in the mpg-C3N4 support had a pivotal role in stabilizing
Pd NPs and activating FA and CO2, which explained the activity for the reversible H2
storage-release process. However, the efficiency of CO2 hydrogenation was rather low in
this preliminary study.

In consideration of the vital role of N-doping in the reversible H2 storage system,
Huang, Wang, et al. also prepared mesoporous graphitic carbon nitride (mpg-C3N4) by
pyrolysis of dicyandiamide to support Pd NPs [94]. The resulting Pd/mpg-C3N4 catalyst
was proved to be an excellent catalyst for high-concentration KHCO3 hydrogenation
(TOF = 4076 h−1) and the dehydrogenation of HCOOK (511 h−1) at 80 ◦C. Nitrogen species
doped in mpg-C3N4 stabilized the Pd NPs with high dispersion and small size, changed
the electronic state of the Pd through donating electrons toward the Pd, and formed
hydrogen bonds with OH− in HCO3

−, which synergistically boosted the hydrogenation of
KHCO3. In addition, Pd/mpg-C3N4 was sturdy and could be reused six times during the
hydrogenation reaction and three times during the dehydrogenation reaction. They also
provided a possible mechanism for HCO3

− hydrogenation catalyzed by Pd/mpg-C3N4
(Figure 8). First, HCO3

− was adsorbed on the Pd/mpg-C3N4 surface through hydrogen
bonds between the OH− in HCO3

− and the N functionalities in mpg-C3N4. Then, the
positively polarized C in the HCO3

− was attacked by the H proton generated by H2
dissociation on the Pd NPs, forming HCOO−.
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The catalytic performance of monometal-based heterogeneous catalysts for the FA-
based hydrogen cycle system are summarized in Table 1.

Table 1. Catalytic performance of the monometal-based heterogeneous catalysts for the interconver-
sion between CO2 (bicarbonate) hydrogenation and FA (formate) dehydrogenation.

Hydrogenation Reaction Dehydrogenation Reaction

Catalyst Substrate Additive pH2/pCO2
(MPa)

T
(◦C)

TOF
(h−1) Substrate Additive T

(◦C)
TOF
(h−1) Ref.

Pd/AC 1 M
NH4HCO3

/ 2.75/0 20 118 1 M
HCO2NH4

/ 80 1132 [85]
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Table 1. Cont.

Hydrogenation Reaction Dehydrogenation Reaction

Catalyst Substrate Additive pH2/pCO2
(MPa)

T
(◦C)

TOF
(h−1) Substrate Additive T

(◦C)
TOF
(h−1) Ref.

Pd/AC CO2
a 1 M

piperidine 2.76/0 30 5945 1 M FPA b / [86]

Pd/CN0.25 CO2 5.7 M NEt3 3/3 100 1837 1 M
HCOOH / 25 5530 [87]

Pd/NMC 4 M KHCO3 / 6/0 80 799 2 M
HCOOK / 60 1118 [88]

Pd/PDMC 1 M
NaHCO3

/ 4/0 80 68 1 M
NaHCO2

/ 80 2562 [89]

Pd/N,P-C 4 M KHCO3 / 8/0 80 2805 4 M
KHCO2

/ 80 3248 [90]

Pd/r-GO 4.8 M
KHCO3

/ 4/0 100 242 4.8 M
HCOOK / 80 11,299 [91]

Pd/mpg-
C3N4

CO2 1.4 M NEt3 2/2 150 4 1 M
HCOOH / 25 144 [93]

Pd/mpg-
C3N4

4 M KHCO3 / 8/0 80 4076 4 M
HCOOK / 80 511 [94]

a Piperidine-captured CO2. b Formate piperidine adducts.

2.2. Bimetal-Based Heterogeneous Catalytic System
2.2.1. Molecular Sieve-Supported Bimetallic Catalysts

In 2017, Yamashita et al. immobilized bimetallic PdAg NPs in the mesoporous silica
SBA-15, which was the first study on the potential of bimetallic nanocatalysts in the
reversible conversion between FA and CO2 [95]. To improve the interaction between the
metal precursor and support, phenylamine, with a weak basicity functional group, was
introduced into the SBA-15 to produce SBA-15-phenylamine support. TEM images showed
that the size of the PdAg NPs anchored by the SBA-15-phenylamine was 3.9 nm, which
was smaller than that of PdAg/SBA-15 (~10 nm), confirming the reduction in the metal
NP size after the introduction of phenylamine. The PdAg/SBA-15-phenylamine catalyst
(the molar ratio of the Pd to Ag was 1:1) exhibited activity for H2 production from FA
offering a TOF of 822 h−1 (75 ◦C), with the aid of sodium formate (HCOONa), and a TOF
of 36 h−1 (100 ◦C) for CO2 hydrogenation with NaHCO3 as the additive. Compared to the
corresponding monometallic Pd catalyst, the activity of the PdAg/SBA-15-phenylamine
was at least four-fold higher for FA dehydrogenation and at least three-fold higher for
CO2 hydrogenation. However, the corresponding monometallic Ag was inactive in both
reactions, suggesting that the Pd was the active site and the Ag only served as a co-
catalyst to boost the activity of the Pd. They concluded that the improved activity of the
PdAg/SBA-15-phenylamine was primarily due to the generation of smaller PdAg NPs
via introducing phenylamine and the synergistic effect between bimetallic components.
However, the recycling stability of the PdAg/SBA-15-phenylamine was not satisfactory,
and the activity of the FA dehydrogenation and CO2 hydrogenation was significantly
reduced after three recycles.

2.2.2. Zeolite-Supported Bimetallic Catalysts

In 2020, Yan, Yu, et al. confined Pd-Mn bimetallic clusters to silicalite-1 zeolites via
a ligand-protected approach (Figure 9a) [96]. The aberration-corrected STEM-HAADF
images showed that the size of the monometallic Pd and PdMn clusters was similar, about
1 nm or smaller, indicating that the introduction of Mn components did not change the size
of the Pd clusters (Figure 9b–e). XPS measurement confirmed that most Pd and Mn species
in the PdMnx@S-1 sample were confined within the zeolite crystals. The results of thermal
stability investigation demonstrated that PdMn0.6@S-1 displayed significantly enhanced the
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thermal stability compared to Pd/S-1-im synthesized via an incipient wetness impregnation
approach. XANES and in situ analysis revealed that the introduction of Mn components
facilitated the formation of electron-rich Pd in PdMn0.6@S-1 through electron transfer from
the Mn to the Pd. The resultant PdMn0.6@S-1 catalyst achieved a TOF of 2151 h−1 for
formate generation by CO2 hydrogenation at 80 ◦C and an initial TOF of 6860 h−1 for
CO-free H2 release by FA decomposition at 60 ◦C. The observed high activity of the CO2
hydrogenation and FA decomposition gave credit to the generation of highly dispersed
metal clusters and a synergistic effect of the bimetallic components in the PdMn0.6@S-1.
Moreover, PdMn0.6@S-1 also displayed excellent reusability in the CO2 hydrogenation and
FA decomposition reactions, with an unchanged formate generation rate and H2 release
rate after five consecutive runs, respectively.
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2.2.3. Activated Carbon-Supported Bimetallic Catalysts

In 2019, Shishido et al. revealed the correlation between the electronic property and
structure of bimetallic alloys and the activity for reversible conversion between NH4HCO3
and NH4HCO2 through activated carbon-supported Pd-Au alloy catalysts (AuPd/AC) [97].
HAADF-STEM characterization indicated that the mean size of AuPd NPs in the AuPd/AC
with a Au/Pd molar ratio of 0.1~10 was ca. 3 nm. XPS and XAFS analyses both proved the
transfer of electrons from the Pd to the Au in the bimetallic catalyst. According to the coor-
dination number derived from EXAFS characterization, the configuration and distribution
of the Au and Pd atoms on the bimetallic alloy NP surface changed with the Au/Pd molar
composition (Figure 10a). If the ratio of the Au/Pd was high, Au atoms encircled a single
Pd atom (10Au1Pd/AC). If the molar ratio of the Au/Pd was 1 (1Au1Pd/AC), the Pd atoms
were encircled by equal amounts of Pd and Au atoms. The reaction results demonstrated
that all the Pd-Au/AC binary catalysts demonstrated superior activity than that of the
corresponding monometallic species for reversible hydrogenation and dehydrogenation
reactions. The difference in the electronic state and local structure of AuPd bimetallic
NPs caused by different bimetallic compositions affected their catalytic activity for the
reversible reaction. For the hydrogenation of NH4HCO3 (Figure 10b), the TOF value in-
creased monotonically with an increasing Au/Pd molar ratio, and 10Au1Pd/AC exhibited
the best activity, with a TOF of 5820 h−1 at 60 ◦C. Whereas a volcano-type relationship was
found between the TOF values for H2 production and the Au/Pd ratios (Figure 10c), the
optimum catalyst was 1Au1Pd/AC, exhibiting the best TOF of 4200 h−1 at 40 ◦C.
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Figure 10. (a) Pd-Au bimetallic NP structures with different molar compositions. (b) Production rate
of NH4HCO2 and corresponding TOF values over different catalysts. Conditions: 0.1 g catalyst, 20 mL
1 M NH4HCO3, 5 MPa H2, and 60 ◦C. (c) H2 generation rate and corresponding TOF values over
different catalysts. Reaction conditions: 0.1 g catalyst, 4 mL 1 M NH4HCO2, and 40 ◦C. Reprinted
with permission from Ref. [97]. Copyright 2019, American Chemical Society.

Liang, Huang, et al. synthesized Pd-Au/AC and Pd-Cu/AC bimetallic catalysts using
a biomass-reduction method and investigated their catalytic activities for the interconver-
sion between CO2 and FA [98]. Monometallic Cu/AC and Au/AC demonstrated negligible
activity for CO2 hydrogenation to formate. The TOF values at 110 ◦C of the Pd-Au/AC
(81 h−1) and Pd-Cu/AC (100 h−1) for formate generation were 1.9 and 2.4 times that of
the Pd/AC (43 h−1), respectively. In addition, the activity of the bimetallic catalysts was
remarkably superior to that of the corresponding mixture of monometallic catalysts, indi-
cating the existence of synergistic effects between the Pd and doped metals. Concomitantly,
the synergistic effect between the metal components made both the Pd-Cu/AC and Pd-
Au/AC bimetallic catalysts exhibit FA dehydrogenation activity with a TOF of 101 h−1 and
431 h−1 at 80 ◦C, respectively. As shown in Table 2, the downshift of Pd 3d binding energies
in the bimetallic catalysts indicated that the electron donor capability of Au and Cu toward
the Pd affected the electron property of the Pd, thus improving the hydrogenation and
dehydrogenation activity of the Pd-based bimetallic catalyst.

Table 2. Comparison of Pd0 binding energies in different Pd-based catalysts. Reproduced with
permission from Ref. [98]. Copyright 2022, American Chemical Society.

Catalyst Sample
Binding Energy (eV)

Pd0 3d3/2 Pd0 3d5/2

Pd/AC 341.28 335.92
Pd-Cu/AC 341.18 335.86
Pd-Au/AC 341.06 335.73

Very recently, Ren et al. synthesized L-arginine-modified carbon-anchored PdAu
alloy catalysts (PdAu/AC-LA) for reversible H2 storage under ambient conditions [99]. By
adjusting the introduction amount of LA and the composition of Pd and Au, the optimal
catalyst Pd1Au2/AC-LA showed good activity for H2 release from FA (TOFs = 1760 h−1)
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and CO2 hydrogenation (TOFs = 138 h−1) at 25 ◦C. The comprehensive characterization re-
sults demonstrated that the alloying effect of the PdAu and the modification of the strongly
basic L-arginine improved the adsorption of the reactants (Figure 11), thus increasing the
activity of the Pd1Au2/AC-LA.
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2.2.4. Mesoporous Carbon-Supported Bimetallic Catalysts

To develop more powerful catalysts for the reversible conversion between FA and
CO2, the same research group modified the mesoporous carbon with p-phenylenediamine
(amine-MSC) to load PdAg NPs in 2018 [100]. TEM measurements revealed that the average
NP diameters of PdAg/amine-MSC and PdAg/MSC were 1.2 and 2.3 nm, respectively.
Compared with the support of SBA-15, the MSC appeared to be more conducive to controlling
the dispersion and size of the active metals. In addition, amine groups in the MSC could
further reduce the size of metal NPs through the interaction of the metal precursor and
the support. The reaction results showed that the TOF values for FA dehydrogenation and
CO2 hydrogenation were 5638 h−1 (75 ◦C) and 35 h−1 (100 ◦C), respectively. Experimental
explorations and DFT calculation showed that functional groups in phenylamine played a
crucial role in not only the determination of the metal NP size but also the adsorption and
activation of the FA and CO2 in the catalytic cycle (Figure 12). Additionally, PdAg/amine-
MSC can be reused for at least three cycles for the reversible conversion between FA and CO2
without any decline in its catalytic activity, exhibiting good reversibility and recyclability.
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2.2.5. Graphene-Supported Bimetallic Catalysts

In the same year, Kawanami et al. grafted p-phenylenediamine (PDA) into reduced
graphene oxide to form a PDA-rGO support [101]. Bimetallic PdAu NPs with various
Pd/Au molar compositions were anchored in the PDA-rGO support through an impreg-
nation method coupled with NaBH4 reduction. The average size of the PdAu NPs in
all the bimetallic PdAu/PDA-rGO was about 1.8 nm. The resulting PdAu/PDA-rGO
catalysts were employed for KHCO3 hydrogenation and the dehydrogenation of HCOOK
and FA. The catalytic activity of all the PdAu bimetallic catalysts was superior to that of
corresponding monometallic catalysts for the reversible H2 storage system. The compo-
sition of PdAu bimetallic NPs dramatically affected the activity of the PdAu/PDA-rGO
catalysts. Among them, the Pd0.5Au0.5/PDA-rGO catalyst with a molar composition of
Pd/Au of 1/1 demonstrated the highest catalytic activity. For KHCO3 hydrogenation, a
94% HCOOK yield was achieved at 50 ◦C. The TOFinitial values for high-concentration
HCOOK (6 M) and FA (8 M) dehydrogenation reached 1630 h−1 and 6980 h−1 at 80 ◦C,
respectively. The authors suggested that the stabilizing effect of the PDA on the metal NPs
and the electronic regulation of the Pd by Au synergistically promoted the catalytic activity
of the Pd0.5Au0.5/PDA-rGO. However, the influence of the local structure and electronic
state of PdAu alloys with different compositions on the activity of catalysts has not been
studied in depth. In addition, the catalyst was not stable due to the conversion and leaching
of the PDA during the reaction under high-pressure conditions (3–7 MPa of H2).

2.2.6. Metal Oxide-Supported Bimetallic Catalysts

In 2020, Mori, Yamashita, et al. explored the effect of a Pd-Ag alloy structure on the
interconversion between HCOONa and NaHCO3, including a PdAg solid solution (PdAg),
a Pd core-Ag shell structure (Pd@Ag), and a Ag core-Pd shell structure (Ag@Pd) [102].
As shown in Figure 13a, the alloy structure greatly affected the electronic property and
activity of the Pd for reversible reactions. Among various alloy structures, Pd@Ag/TiO2
with electron-rich Pd demonstrated the highest activity for HCOONa dehydrogenation
and NaHCO3 hydrogenation with TOF values (calculated based on the surface Pd atoms)
of 20,578 and 1568 h−1, respectively. To further improve the catalytic activity, the authors
modified these alloy catalysts with TiOx shells. As shown in Figure 13b, the introduction of
TiOx shells facilitated the improvement of the activity of all the Pd-Ag alloy catalysts. They
concluded that the generation of the Pd-TiO2 interface was responsible for the improved
catalytic activity. The characterization results and kinetic studies revealed that the genera-
tion of the Pd-Ag alloy and Pd-TiO2 interface facilitated the cleavage of the C–H bonds in
HCOONa dehydrogenation and improved the adsorption and activation of bicarbonate
during the hydrogenation process.
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The catalytic performance of bimetal-based heterogeneous catalysts for an FA-based
hydrogen cycle system are summarized in Table 3.

Table 3. Catalytic performance of the bimetal-based heterogeneous catalysts for the interconversion
between CO2 (bicarbonate) hydrogenation and FA (formate) dehydrogenation.

Hydrogenation Reaction Dehydrogenation Reaction

Catalyst Substrate Additive pH2/pCO2
(MPa)

T
(◦C)

TOF
(h−1) Substrate Additive T

(◦C)
TOF
(h−1) Ref.

PdAg/SBA-15-
phenylamine CO2

1 M
NaHCO3

1/1 100 36 0.9 M
HCCOH

0.1 M
HCOONa 75 822 [95]

PdMn0.6@S-1 CO2
1.5 M

NaOH 2/2 80 2151 2 M
HCOOH / 60 6860 [96]

10Au1Pd/AC 1 M
NH4HCO3

/ 5/0 60 5820 1 M
HCO2NH4

/ 40 4200 [97]

Pd-Au/AC CO2 1.8 M NEt3 5/5 110 81 1 M
HCOOH 0.5 M NEt3 80 431

[98]
Pd-Cu/AC CO2 1.8 M NEt3 3.5/3.5 110 100 1 M

HCOOH 0.5 M NEt3 80 101

Pd1Au2/AC-LA CO2
1 M

NaHCO3
0.075/0.025 25 138 1 M

HCOOH / 25 1760 [99]

PdAg/amine-MSC CO2
1 M

NaHCO3
1/1 100 35 0.27 M

HCOOH
0.03 M

HCOONa 75 5638 [100]

Pd0.50Au0.50/PDA-
rGO 0.5 M KHCO3 / 5/0 50 /

6 M
HCOOK / 80 1630

[101]
8 M

HCOOH / 80 6980

Pd@Ag/TiO2 NaHCO3 / 3/0 80 1568 HCOONa / 75 20,578 [102]

3. Conclusions and Perspectives

In summary, many strategies have been devoted to improving the activation of het-
erogeneous catalysts for FA-based hydrogen cycle systems, chiefly in the construction of
electron-rich Pd-based catalysts through the introduction of electron-donating ligands. For
example, the doping of N and/or P elements, the grafting of organic functional groups, and
the formation of bimetallic alloys are believed to provide stability and induce geometrical
and electronic effects of active metal, which determine the final catalytic performance.
Although many efforts have been made in this field, there are still significant challenges
that motivate researchers to develop efficient catalysts to construct a practical FA-based
hydrogen cycle system.

Firstly, although the reported heterogeneous catalysts showed superior activity and
selectivity for the dehydrogenation of FA (formate) under mild conditions, the efficiency
for CO2 (bicarbonate) hydrogenation was still far from satisfactory due to the strong
thermodynamic stability and kinetic inertness of CO2 molecules. Furthermore, the reaction
of CO2 hydrogenation is generally proceeded under high-temperature and high-pressure
conditions and requires alkaline additives. Therefore, developing highly efficient CO2
hydrogenation catalysts under mild conditions remains a challenge for a carbon-neutral
hydrogen cycle system.

Secondly, amine-functionalized or N-doped support materials are usually prepared
to enhance the activity of Pd-based catalysts for the reversible reaction between CO2
(bicarbonate) and FA (formate). The nitrogen-containing groups in these materials are
usually monodentate ligands, while support materials modified with polydentate and
pincer-type ligands have rarely been studied, which are commonly used in homogeneous
catalysis systems.

Thirdly, to date, the heterogeneous catalysts commonly used in the FA-based hydrogen
storage and release system are Pd-based catalysts, and it still needs to develop other efficient
and stable transition metal catalysts or non-noble metal catalysts.

With this comprehensive overview, it is believed that the readers could understand
the current trends in designing and evaluating heterogeneous catalysts for efficient H2
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storage-release systems. We hope this review can shed light on the design and development
of efficient heterogeneous catalysts for a carbon-neutral hydrogen cycle system.
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